EC5 en
EC5 en
Euro-Code 5
Beams
Half-span roof:
rd
a b
l
System:
Beam length l = 7,00 m
Beam width b = 14,00 cm
Beam height an a ha = 26,00 cm
Pitch α = 6,00 °
Support length t = 10,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS14h
fm,g,k = TAB("wood/EC"; fm.k; SG=SG) = 28,00 N/mm²
fv,g,k = TAB("wood/EC"; fv.k; SG=SG) = 2,70 N/mm²
ft,90,g,k = TAB("wood/EC"; ft,90.k; SG=SG) = 0,45 N/mm²
fc,90,k = TAB("wood/EC"; fc,90.k; SG=SG) = 5,50 N/mm²
E0,mean = TAB("wood/EC"; E0.mean; SG=SG) = 12500,00 N/mm²
γM = 1,30
γS = 1,10
Load:
rd = 12,50 kN/m
Calculation:
fm,g,d = fm,g,k * kmod / γM = 19,38 N/mm²
fv,g,d = fv,g,k * kmod / γM = 1,87 N/mm²
fc,90,d = fc,90,k * kmod / γM = 3,81 N/mm²
ft,90,g,d = ft,90,g,k * kmod / γM = 0,31 N/mm²
hb = ha+l*100*TAN(α) = 99,57 cm
Euro-Code 5 Folder: _EC5 Beams
Bearing pressure:
Assumption: l < 150 mm;l1 > 150 mm ; kc,90 according to Tab. 5.1.5
⇒ kc,90 = 1,0
req_A = Vd *10 / ( fc,90,d * kc,90) = 114,83 cm²
req_t = req_A / b = 8,20 cm
req_t / t = 0,82 < 1
Euro-Code 5 Folder: _EC5 Buck
Buck
Buckling lengths:
Euler's crippling load:
l= 5,00 m
lef = l = 5,00 m
l
Kr
Roof post:
System:
Post height h = 3,40 m
Cross-sectional width b = 14,00 cm
Cross-sectional thickness d = 14,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Calculation:
Buckling length lef = h = 3,40 m
A= b *d = 196,00 cm²
i= √(12)*MIN(b;d)
1/√ = 4,04 cm
Degree of slenderness λmin = 100*lef/i = 84,16 > 30
⇒ Buckling proof required!
kc = TAB("wood/ECbuckl"; kc; SG=SG; λ=λ
λmin) = 0,427
σc,0,d = 10*Vc,d / A = 2,57 N/mm²
fc,0,d = fc,0,k * kmod/γM = 14,54 N/mm²
fc,90,d = fc,90,k * kmod/γM = 3,46 N/mm²
Structural verifications:
Buckling: σc,0,d /(kc*fc,0,d) = 0,41 < 1
Lateral pressure: σc,0,d/fc,90,d = 0,74 < 1
Euro-Code 5 Folder: _EC5 Dowel
Dowel
Beam connection:
e3
h
e2
e1
a1 a1 a1
b
t1 t2 t2
Fd
System:
Distance a1 = 4,00 cm
Width b = 3*a1 = 12,00 cm
Distance e1 = 4,00 cm
Distance e2 = 8,50 cm
Distance e3 = 5,50 cm
Thickness t1= 6,00 cm
Thickness t2 = 8,00 cm
Load:
Fd = 40,00 kN
Material:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Dowel: S235
Dowel diameter d = SEL("wood/DPin"; d; )/10 = 1,20 cm
fu,k = 360,00 N/mm²
γS = 1,10 N/mm²
Calculation:
My,d = 0.8*fu,k*d³/(6*γS )*103 = 75403,64 Nmm
Post:
fh,1,d = 0.082 * ρk * (1-0.1*d)*kmod /γM = 16,87 N/mm²
Euro-Code 5 Folder: _EC5 Dowel
Support:
k90 = 1.35 + 0.15 * d = 1,53
fh,2,d = 0.082 * ρk * (1-0.1*d)*kmod/( γM*k90) = 11,03 N/mm²
n= Fd / ( 2 * RD) = 3,8
t1
t2
t1
dN
System:
Timber thickness t1 = 8,00 cm
Timber thickness t2 = 12,00 cm
Load:
Fsd = 116,00 kN
Materials: NH S 10
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Dowel: DPin ∅ 16mm S 275
Dowel diameter d = SEL("wood/DPin"; d; )/10 = 0,80 cm
fu,k = 360,00 N/mm²
Calculation:
Minimum distances according to Tab.6.6a:
a1 = 7* d = 5,60 cm
a2 = 3*d = 2,40 cm
a3,t = 7* d = 5,60 cm
a4,t = 3*d = 2,40 cm
Tension diagonal:
2
ß
slot plate
Ft 1
System:
Rod 1 : 1 * 160mm * 160mm Glulam
Rod 2 : 1 * 160mm * 180mm Glulam
System angle β = 60,0 °
Timber thickness t1 = 16,00 cm
Timber thickness t2 = 16,00 cm
Thickness of slotted plate t3 = 0,80 cm
Ft,d = 80,79 kN
Calculation:
Minimum distances of Rod1 according to Tab.6.6a:
a1 = 7* d = 11,20 cm
a2 = 3*d = 4,80 cm
a3,t = 7* d = 11,20 cm
a4,t = 3*d = 4,80 cm
Rod 1 :
fh,1,d = 0.082 * ρk * (1-0.1*d)*kmod /γM = 17,38 N/mm²
Euro-Code 5 Folder: _EC5 Dowel
Rod 2 :
fh,0.d = 0.082 * ρk * (1-0.1*d)*kmod /γM = 17,38 N/mm²
k90 = 1.35 + 0.15 * d = 1,59
fh,2,d = fh,0.d /(k90*(SIN(β))²+(COS(β))²) = 12,05 N/mm²
Tension diagonal:
2
Ft
System:
Rod 1 : 2 * 60mm * 140mm
Rod 2 : 1 * 100mm * 180mm
System angle β = 60,00 °
Timber thickness t1 = 6,00 cm
Timber thickness t2 = 10,00 cm
γM = 1,30
γS = 1,10
Dowel: DPin ∅ 12mm
Dowel diameter d = SEL("wood/DPin"; d; )/10 = 1,20 cm
fu,k = 360,00 N/mm²
Load:
Ft,d = 40,00 kN
Calculation:
Minimum distances of Rod1 according to Tab.6.6a:
a1 = 7* d = 8,40 cm
a2 = 3*d = 3,60 cm
a3,t = 7* d = 8,40 cm
a4,t = 3*d = 3,60 cm
Rod 1 :
fh,1,d = 0.082 * ρk * (1-0.1*d)*kmod/γM = 15,54 N/mm²
Euro-Code 5 Folder: _EC5 Dowel
Rod 2 :
fh,0.d = 0.082 * ρk * (1-0.1*d)*kmod/γM = 15,54 N/mm²
k90 = 1.35 + 0.15 * d = 1,53
fh,2,d = fh,0.d/(k90*(SIN(β))²+(COS(β))²) = 11,12 N/mm²
Nail
dN
System:
Sheet thickness t1 = 0,15 cm
Timber thickness t2 = 4,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
t1 / dN = 0,39 < 0,5
otherwise a different calculation applies
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²
lr l l
h1 h
2
hi h
n
be h
b2 b b2
System:
Thickness of outer wood d2 = 4,00 cm
Nail distance lr = 6,00 cm
Nail distance be = 16,00 cm
Cross beam width b = 16,00 cm
Cross beam height h = 40,00 cm
Height h1= 24,00 cm
Height h2 = 28,00 cm
Height h3 = 32,00 cm
Height h4 = 36,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
Shear and torsion fv,g,k = TAB("wood/EC"; fv,k; SG=SG) = 2,70 N/mm²
Rectangular shear ft,90,g,k = TAB("wood/EC"; ft,90.k; SG=SG) = 0,45 N/mm²
γMH = 1,30
Nails 38x100:
Nail diameter d = 0,38 cm
Nail length lN = 10,00 cm
Nail strength RD = 6000*d² = 866,40 N
γF = 1,50
Nail calculation for each shear joint for two different kinds of wood:
two unequal kinds of wood
t1
t2
t1
< dN
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm
t1< t2
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG1= SEL("wood/EC"; SG; ) = S13
ρk1 = TAB("wood/EC"; ρk; SG=SG1) = 380,00 kg/m³
Strength grade SG2= SEL("wood/EC"; SG; ) = MS13
ρk2 = TAB("wood/EC"; ρk; SG=SG2) = 400,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
Calculation:
pre-drilled:
fh,k1 = 0.082 * ρk1 * (1-0.1*dN) = 29,98 N/mm²
not pre-drilled::
fh,k1 = 0.082 * ρk1 * (10*dN)-0.3 = 20,88 N/mm²
pre-drilled:
fh,k2 = 0.082 * ρk2 * (1-0.1*dN ) = 31,55 N/mm²
not pre-drilled::
fh,k2 = 0.082 * ρk2 * (10*dN)-0.3 = 21,98 N/mm²
dN
System:
Sheet thickness t1 = 0,50 cm
Timber thickness t2 = 4,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
otherwise a different calculation applies
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²
dN
System:
Timber thickness t1 = 4,00 cm
Sheet thickness t2 = 1,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²
t1
t2
t1
dN
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²
t1
t2
t1
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm
Materials:
Construction material CM = SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = permanent
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,60
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 42x110
Nail length lN = 12,00 cm
Nail diameter dN = 0,42 cm
Load:
Fsd = 16,00 kN
Calculation:
Minimum timber thickness adhered to according to 6.3.1.2(11):
(MAX(7*dN;(13*dN -30)*ρk/400))/(MIN(t1;t2)) = 0,73 < 1
Minimum driving depth according to 6.3.1.2(4):
(8*dN)/MIN(t1;t2) = 0,84 < 1
Minimum nail distances according to Tab.6.3.1.2:
a1 = 10* dN = 4,20 cm
a2 = 5 * dN = 2,10 cm
a3,t = 15* dN = 6,30 cm
a4,t = 5 * dN = 2,10 cm
t1
t2
t1
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm
Timber width b = 8,00 cm
Materials:
Construction material CM = SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = permanent
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,60
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 42x110
Nail length lN = 6,50 cm
Nail diameter dN = 0,28 cm
Load:
Fsd = 16,00 kN
Calculation:
t3 = (lN - t1) = 2,50 cm
Checking the lapped joint length according to 6.3.1.2(10):
4 * dN / (t2 - t3) = 0,75 < 1
Minimum timber thickness adhered to according to 6.3.1.2(11):
(MAX(7*dN;(13*dN-30)*ρk/400))/(MIN(t1;t2 )) = 0,49 < 1
Minimum driving depth according to 6.3.1.2(4):
(8*dN)/MIN(t1;t2;t3) = 0,90 < 1
Minimum nail distances according to Tab.6.3.1.2:
a1 = 10* dN = 2,80 cm
a2 = 5 * dN = 1,40 cm
a3,t = 15* dN = 4,20 cm
a4,t = 5 * dN = 1,40 cm
kt = MAX(t1;t2;t3)/MIN(t1;t2;t3) = 1,60
kM = 10*MIN(t1;t2;t3) / √( My,d / ( fh,d * 10*dN ) ) = 2,79
Euro-Code 5 Folder: _EC5 Nail
t1
t2
System:
Timber thickness t1 = 2,80 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 7,50 cm
Nail diameter dN = 0,40 cm
Load:
Wind suction Fax,d = 0,55 kN CLD: short term
Roof shear Load scheme g Fla,d1 = 0,25 kN CLD: permanent
Roof shear Load scheme g+s Fla,d2 = 0,45 kN CLD: short term
Calculation:
Load-bearing capacity under shear load:
pre-drilled fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,91 N/mm²
not pre-drilled fh,k = 0.082 * ρk * (10*dN )-0.3 = 20,56 N/mm²
Pullout capacity:
according to DIN 1052-2 Section 6.3.1
f1,d = 40*10 -6*ρk²*kmod2/γM = 4,00 N/mm²
f2,d = 600*10-6 *ρk²*kmod2/γγM =59,98
N/mm²
Rd1 = 100* f1,d * dN * t2 = 752,00 N
Rd2 = 100* f2,d * dN² = 959,68 N
Rd = MIN(Rd1 ;Rd2)/1000 = 0,75 kN
Combined loads:
t1
t2
dN
System:
Sheet thickness t1 = 0,50 cm
Timber thickness t2 = 4,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²
t1
t2
dN
System:
Sheet thickness t1 = 0,15 cm
Timber thickness t2 = 4,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
t1 / dN = 0,39 < 0,5
otherwise a different calculation applies
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²
t1
t2
dN
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
Calculation:
pre-drilled:
fh,k = 0.08 * ρk * (1-0.1*dN) = 29,24 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²
kt = MAX(t1;t2)/MIN(t1;t2) = 1,00
kM = 10*MIN(t1 ;t2) / √( My,d / ( fh,d *10* dN ) ) = 4,09
s h1
System:
Timber thickness t1 = 3,80 cm
Timber thickness t2 = 3,80 cm
Timber height h1 = 14,00 cm
Timber height h2 = 10,00 cm
Nail distance s = 3,50 cm
Nail distance b = 2,50 cm
Nail rows a = 3
Nail columns v = 3
Load:
Fd = 15 kN
Materials:
Construction material CM = SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 42x110
Nail length lN = 11,00 cm
Nail diameter dN = 0,42 cm
Calculation:
t3 = (lN - t1 - t2 ) = 3,40 cm
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN) = 29,85 N/mm²
not pre-drilled::Imposed Load:
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,26 N/mm²
Characteristic value for yield moment of square nails
My,d = 270 * (10*dN)2.6 / γS = 10242,81 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 6828,54 Nmm
a4 a2 a4
h
h
ß
F
t s b
System:
Beam thickness h = 16,00 cm
Driving depth t = 11,40 cm
Sheet thickness s = 0,60 cm
Angle of tensile force β = 45,00 °
Tensile force Fd = 23,54 kN
Materials: Post
Construction material CM = SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS14h
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
γM = 1,30
Screws: 4 Sr ∅ 12*120 DIN 571
Screw diameter d = 1,20 cm
fu,k = 300,00 N/mm²
γS = 1,10
Combined loads:
Shrinkage
Shrinkage and swelling of wood:
b
System:
The only appreciable stress is generated ⊥ to the fibre.
Width b = 32,00 cm
Height h = 12,00 cm
Coefficient for the degree of shrinkage and swelling β90 = 0,24 %
Stress:
σc,90= E90,mean*β90*(w2-w1)/200 = 2,22 N/mm²
Total force:
Fσ,90 = σc,90 * b * h = 852,48 N
Euro-Code 5 Folder: _EC5 spec dowel
spec dowel
Diagonal tie connection with special dowels:
a2
h
a2
ß
a
h1
d1 d d1
System:
Distance a = 8,00 cm
Distance a2 = 9,00 cm
System angle β = 40,00 °
Beam height h = 30,00 cm
Beam thickness d = 16,00 cm
Strut height h1 = 18,00 cm
Strut thickness d1 = 8,00 cm
Number of rows nz = 2
Tensile force Ft,d = 165,00 kN
Structural verification:
Fd/(2*nz*nef*per.Nc) = 0,97 < 1
Euro-Code 5 Folder: _EC5 spec dowel
a1 a1
a a a
t1
t2
t1
System:
Distance a = 22,00 cm
Distance a1 = 6,00 cm
Thickness t1= 8,00 cm
Thickness t2 = 10,00 cm
Cut surfaces nz = 2
Tensile force Ft,d = 95,00 kN
Structural verification:
Fd/(nz*nef*zul.Nc ) = 0,73 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
Stress analysis
Arched beam:
Fd
t α
d
System:
Cutting depth t = 12,00 cm
Support length d = 24,00 cm
Beam width b = 16,00 cm
Support angle α = 55,00 °
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS14k
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
Rectangular shear fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 27,50 N/mm²
Rectangular shear fc,90,k = TAB("wood/EC"; fc,90.k; SG=SG) = 5,50 N/mm²
γM = 1,30
Load:
Fd = 300,00 kN
Calculation:
fc,0,d = fc,0,k * kmod / γM = 16,92 N/mm²
fc,90,d = fc,90,k * kmod / γM = 3,38 N/mm²
Vertical supporting force:
β= 90 - α = 35,00 °
kc,ββ = 1 /((fc,0,d/fc,90,d)*(SIN( β))²+(COS(β
β ))²) = 0,431
Vd,max = 100* b*d*kc,β*fc,0,d*0.001 = 280,03 kN
Horizontal supporting force:
kc,αα= α))²+(COS(α
1 /((fc,0,d/fc,90,d)*(SIN(α α))²) = 0,271
Hd,max = 100* b*d*kc,α*fc,0,d*0.001 = 176,08 kN
Structural verifications:
Fd,h / Hd,max = 0,98 < 1
Fd,v / Vd,max = 0,88 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
b
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S10
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30
Load:
Loading moments as a result of the sloping load
My,d = 20,00 kNm
Mz,d = 5,00 kNm
Calculation:
fm,d = fm,k * kmod / γM = 16,62 N/mm²
Approximation W y,req = 1000*(My,d + Mz,d) / fm,d = 1504,21 cm³
Structural verification:
km = 0,70 for rectangular cross section
otherwise km = 1.0
(My,d/W y*1000+km*Mz,d/W z*1000)/fm,d = 0,99 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
1 1
Fd
System:
Cross-sectional width in cut 1-1 b = 8,00 cm
Cross-sectional in cut 1-1 h = 16,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
Rectangular shear fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 21,00 N/mm²
γM = 1,30
Load:
Fd = 112,00 kN
Calculation:
A= b*h = 128,00 cm²
fc,0.d = fc,0,k * kmod / γM = 12,92 N/mm²
Structural verification:
σc,0.d / fc,0.d = 0,68 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
Nd
h
l b
System:
Beam width b = 18,00 cm
Beam height h = 24,00 cm
Beam length l = 3,50 m
Load angle α = 75,00 °
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
Rectangular shear fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 21,00 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30
Load:
qd = 13,21 kN/m
Nd = 94,50 kN
Calculation:
qd,y = qd * SIN(α) = 12,76 kN/m
qd,z = qd * COS(α) = 3,42 kN/m
My,d = qd,y * l² / 8 = 19,54 Nmm
Mz,d = qd,z * l² / 8 = 5,24 Nmm
Wy = b * h² / 6 = 1728,00 cm³
Wz = h * b² / 6 = 1296,00 cm³
A= b*h/1 = 432,00 cm²
Structural verifications:
(σc,0,d/fc,0,d)²+(My,d/W y*1000+km*Mz,d/W z*1000)/fm,d = 0,99 < 1
(σc,0,d/fc,0,d)²+(km*My,d/W y*1000+Mz,d/W z*1000)/fm,d = 0,84 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
Nd h
l b
System:
Beam width b = 18,00 cm
Beam height h = 24,00 cm
Beam length l = 3,50 m
Load angle α = 75,00 m
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
ft,0,k = TAB("wood/EC"; ft.0.k; SG=SG) = 14,00 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30
Load:
qd = 10,21 kN/m
Nd = 47,50 kN
Calculation:
qd,y = qd * SIN(α) = 9,86 kN/m
qd,z = qd * COS(α) = 2,64 kN/m
My,d = qd,y * l² / 8 = 15,10 Nmm
Mz,d = qd,z * l² / 8 = 4,04 Nmm
Wy = b * h² / 6 = 1728,00 cm³
Wz = h * b² / 6 = 1296,00 cm³
A= b*h/1 = 432,00 cm²
Structural verification:
10*Nd/A/ft,0,d+(My,d/W y*1000+km*Mz,d/W z*1000)/fm,d = 0,87 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
Vd
d
System:
Width of laminated timber beam b = 18,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
Rectangular shear fc,90,k = TAB("wood/EC"; fc,90.k; SG=SG) = 5,50 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30
Load:
Vd = 98,00 kN
Calculation:
fc,90,d = fc,90,k * kmod / γM = 3,38 N/mm²
Assumption: l > 150 mm otherwise kc,90 according to Tab. 5.1.5
⇒ kc,90 = 1,00
erf_A = Vd *10 / ( fc,90,d * kc,90) = 289,94 cm²
sel. d = 17,00 cm
Structural verification:
erf_d / d = 0,95 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
Td
h
Vd b
System:
Support width b = 30,00 cm
Support depth h = 14,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS16k
fv,g,k = TAB("wood/EC"; fv.k; SG=SG) = 2,70 N/mm²
γM = 1,30
Load:
relevant shear force Vd = 18,00 kN
relevant torsional moment Td = 1,74 kNm
Calculation:
A= b*h = 420,00 cm²
η= 1+0.6/(b/h) = 1,28
τtor,d = 3000*Td*η/(b*h²) ?? = 1,14 N/mm²
τv,d = 30*Vd/(2*A) = 0,64 N/mm²
fv,d = kmod * fv,g,k / γM = 1,87 N/mm²
Structural verifications:
Shear: τv,d / fv,d = 0,34 < 1
Torsion: τtor,d / fv,d = 0,61 < 1
Combination: τtor,d / fv,d+(τv,d / fv,d)² ?? = 0,73 < 1
Euro-Code 5 Folder: _EC5 Stress analysis
Stud:
a l l1 l
Fc,d Fc,d
h
System:
Length of wood beam projection a = 6,00 cm
Support length l = 6,00 cm
Support depth d = 12,00 cm
clear distance between studs l1 = 34,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30
Load:
Fc,d = 20,00 kN
Calculation:
fc,90.d = kmod * fc,90,k / γM = 3,46 N/mm²
for: 15 / l1 = 0,44 < 1
and: l / 15 = 0,40 < 1
⇒according to Tab. 5.1.5 kc,90 = 1+a*(150-10*l)/1700 = 1,32
A= l*d = 72,00 cm²
σc,90.d = 10 * Fc,d / A = 2,78 N/mm²
Structural verification:
σc,90.d / ( kc,90 * fc,90.d ) = 0,61 < 1
Euro-Code 5 Folder: _EC5 System
System
β /2
β /2 N1 N2
1
α
t v1 t v2
h
l v1
l v2
System:
Beam height h = 22,00 cm
Beam width b = 14,00 cm
Length of wood beam projection lv1 = 22,00 cm
Length of wood beam projection lv2 = 30,00 cm
Shoulder depth tv1 = 3,50 cm
Shoulder depth tv = 4,50 cm
Angle α = 45,00 °
Comply with structural rules for shoulder depth and length of wood beam projection.
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
fv,k = TAB("wood/EC"; fv.k; SG=SG) = 2,50 N/mm²
fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 23,00 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
γM = 1,30
Load:
Nd = 86,00 kN
Calculation:
fv,d = kmod * fv,k / γM = 1,54 N/mm²
fc,0,d = kmod * fc,0,k / γM = 14,15 N/mm²
fc,90,d = kmod * fc,90,k / γM = 3,08 N/mm²
with approximation:
kF = 1 / ((fc,0,d/fc,90,d)*(SIN(α))²*COS(α)+COS(α)³) = 0,51
ks = 4 / ((fc,0,d/fc,90,d)*(SIN(α))²+(COS(α))²+2*COS(α)+1) = 0,77
detailed calculation:
kc,α = 1 / ((fc,0,d/fc,90,d) * (SIN(α))² + (COS(α))² ) = 0,358
RF,d = kc,α * fc,0,d * b * tv / COS(α)/10 = 45,13 kN
Structural verification:
Nd / (RF,d+RS,d) = 0,76 < 1
Euro-Code 5 Folder: _EC5 System
N
β /2
β /2 α
N1
h tv
lv
System:
Beam height h = 22,00 cm
Beam width b = 14,00 cm
Length of wood beam projection lv = 22,00 cm
Shoulder depth tv = 4,50 cm
Angle α = 45,00 °
Comply with structural rules for shoulder depth and length of wood beam projection.
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
fv,k = TAB("wood/EC"; fv.k; SG=SG) = 2,50 N/mm²
fc,0,k = TAB("wood/EC"; fc.0.k; SG=SG) = 23,00 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
γM = 1,30
Load:
Nd = 63,00 kN
Calculation:
fv,d = kmod * fv,k / γM = 1,54 N/mm²
fc,0,d = kmod * fc,0,k / γM = 14,15 N/mm²
fc,90,d = kmod * fc,90,k / γM = 3,08 N/mm²
with approximation:
ks = 4 / ((fc,0,d/fc,90,d)*(SIN(α))²+(COS(α))²+2*COS(α)+1) = 0,77
lv,min = 10*Nd *COS(α)/(b * fv,d) = 20,66 cm
lv,1 = 8* tv = 36,00 cm
lv,min / lv,1 = 0,57 < 1
lv,min / lv = 0,94 < 1
detailed calculation:
kc,α = 1 / ((fc,0,d/fc,90,d) * (SIN(α/2))² + (COS(α/2))² ) = 0,655
fc,0,5α,d = kc,α * fc,0,d = 9,27 N/mm²
Structural verification:
Nd / RS,d = 0,92 < 1
Euro-Code 5 Folder: _EC5 System
N2
α
h tv
lv
System:
Beam height h = 22,00 cm
Beam width b = 14,00 cm
Length of wood beam projection lv = 22,00 cm
Shoulder depth tv = 4,50 cm
Angle α = 45,00 °
Comply with structural rules for shoulder depth and length of wood beam projection.
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
fv,k = TAB("wood/EC"; fv.k; SG=SG) = 2,50 N/mm²
fc,0,k = TAB("wood/EC"; fc.0.k; SG=SG) = 23,00 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
γM = 1,30
Load:
Nd = 43,00 kN
Calculation:
fv,d = kmod * fv,k / γM = 1,54 N/mm²
fc,0,d = kmod * fc,0,k / γM = 14,15 N/mm²
fc,90,d = kmod * fc,90,k / γM = 3,08 N/mm²
with approximation:
kF = 1 / ((fc,0,d/fc,90,d)*(SIN(α))²*COS(α)+COS(α)³) = 0,51
lv,min = 10*Nd *COS(α)/(b * fv,d) = 14,10 cm
lv,1 = 8* tv = 36,00 cm
lv,min / lv,1 = 0,39 < 1
detailed calculation:
kc,α = 1 / ((fc,0,d/fc,90,d) * (SIN(α))² + (COS(α))² ) = 0,358
Rd = kc,α * fc,0,d * b * tv / COS(α)/10 = 45,13 kN
Structural verification:
N d / Rd = 0,95 < 1
Euro-Code 5 Folder: _EC5 System
s1 s
h1
c
h1
c
h1
Schlitzblech
b1b1
System:
Centroidal distance s = 16,00 cm
Centroidal distance s1 = 5,00 cm
Dowel distance b1 = 5,00 cm
Dowel distance h1 = 8,00 cm
Thickness of slotted plate m = 1,00 cm
Width of binding joist b = 16,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
γM = 1,30
γS = 1,10
Geometric values:
r1 = √(b1²+(h1/2)²) = 6,4 cm
r2 = √(b1²+(h1*1,5)²) = 13,0 cm
αM = ATAN(b1/(h1*1,5)) = 22,62 °
Calculation:
Drift pin forces:
as the result of shear force FV,d = Vc,d / 8 = 4,33 kN
as the result of moment FM,d = 100*Mc,d*r2/(4*(r1²+r2²)) = 11,25 kN
Components:
FM2,d,V = FM,d * SIN(αM) = 4,33 kN
FM2,d,H = FM,d * COS(αM) = 10,38 kN
Structural verification:
Fd,max / ( 2 * RD) = 0,61 < 1
Euro-Code 5 Folder: _EC5 System
Joist hanger:
B'
F1,d
hN
h H
H'
s
h1
h1
System:
Height of principal beam hH = 32,00 cm
Height of short-tie beam hN = 24,00 cm
Joist hanger distance h1 = 6,00 cm
Nail distance s = 15,20 cm
Load:
F1,d = 12,00 kN
Materials:
Principal beam: 120mm*380mm
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
ft,90,g,k = TAB("wood/EC"; ft.90.k; SG=SG) = 0,45 N/mm²
γM = 1,30
Short-tie beam: 140mm*240mm NH S 10
Structural verification:
F1,d/Rd = 0,73 < 1
Euro-Code 5 Folder: _EC5 System
Notch joist
qd
he h
ε
d Fd
x l
System:
Cross-sectional width b = 14,00 cm
Support length d = 18,00 cm
Cross sectional height h = 88,00 cm
Cross sectional height at footing he = 78,00 cm
Notch distance x = 13,00 cm
Notch length l = 20,00 cm
Beam length l1 = 850,00 cm
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS14k
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
fv,g,k = TAB("wood/EC"; fv.k; SG=SG) = 2,70 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,50 N/mm²
for solid wood kn = IF(CM="Glulam";6,5;5) = 6,50
γM = 1,30
Load:
Supporting force Fd = 95,30 kN
Line load qd = 2,80 kN/m
Structural verification:
(1500*Fd,b/(100*b*he))/(kv*fv,d) = 0,88 < 1
Euro-Code 5 Folder: _EC5 System
Structural verification:
erf_d / d = 0,99 < 1
Euro-Code 5 Folder: _EC5 System
Rail post:
Hd
h1
h3h2
h
System:
Post distance l = 1,70 m
Rail height h1 = 100,00 cm
Dowel distance h2 = 5,00 cm
Dowel distance h3 = 23,00 cm
γQ = 1,50
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
ft,90.g,k = TAB("wood/EC"; ft,90.k; SG=SG) = 0,45 N/mm²
γM = 1,30
Calculation:
Mc,d = 0,01*Hd*(h1+h2+h3/2) = 2,97 kNm
F1,d = Hd/2+Mc,d/(h3*0,01) = 14,19 kN
F2,d = Mc,d/(h3*0,01)-Hd/2 = 11,64 kN
selected: 2 DPin ∅ 85 - D
Structural verification:
F1/ zul_Nc = 0,70 < 1
Euro-Code 5 Folder: _EC5 System
Suspender:
t t
Ft,d
α
Fc,d Fc,d
System:
Height of diagonal brace h = 14,00 cm
Width of diagonal brace b = 14,00 cm
Height of suspender hH = 18,00 cm
Width of suspender bH = 14,00 cm
Shoulder depth tv = 3,00 cm
Diameter of pin d = 1,20 cm
Angle α = 45,00 °
Comply with structural rules for shoulder depth and length of wood beam projection.
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ft,0,k = TAB("wood/EC"; ft.0.k; SG=SG) = 18,00 N/mm²
γM = 1,30
Calculation:
Aw,v = 2*b*tv = 84,00 cm²
Aw,bo = (d+1)*(hH-2*tv) = 26,40 cm²
Aw = bH*hH-MAX(Aw,bo;Aw,v) = 168,00 cm²
ft,0,d = kmod * ft,0,k / γM = 11,08 N/mm²
Maximum force to be accepted by the construction:
Ft,d,max = ft,0,d*Aw*0,1 = 186,14 kN