0% found this document useful (0 votes)
29 views54 pages

EC5 en

The document outlines the design and calculations for structural elements under Euro-Code 5, focusing on beams, buckling, dowel connections, and load-bearing capacity. It provides specific dimensions, material properties, and load conditions for various components, including a half-span roof and roof post. The calculations include stress resultants, buckling lengths, and required dowel specifications to ensure structural integrity and compliance with safety standards.

Uploaded by

mojmax6
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views54 pages

EC5 en

The document outlines the design and calculations for structural elements under Euro-Code 5, focusing on beams, buckling, dowel connections, and load-bearing capacity. It provides specific dimensions, material properties, and load conditions for various components, including a half-span roof and roof post. The calculations include stress resultants, buckling lengths, and required dowel specifications to ensure structural integrity and compliance with safety standards.

Uploaded by

mojmax6
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 54

Euro-Code 5 Folder: _EC5 Beams

Euro-Code 5
Beams

Half-span roof:
rd

a b

l
System:
Beam length l = 7,00 m
Beam width b = 14,00 cm
Beam height an a ha = 26,00 cm
Pitch α = 6,00 °
Support length t = 10,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS14h
fm,g,k = TAB("wood/EC"; fm.k; SG=SG) = 28,00 N/mm²
fv,g,k = TAB("wood/EC"; fv.k; SG=SG) = 2,70 N/mm²
ft,90,g,k = TAB("wood/EC"; ft,90.k; SG=SG) = 0,45 N/mm²
fc,90,k = TAB("wood/EC"; fc,90.k; SG=SG) = 5,50 N/mm²
E0,mean = TAB("wood/EC"; E0.mean; SG=SG) = 12500,00 N/mm²
γM = 1,30
γS = 1,10

Load:
rd = 12,50 kN/m

Calculation:
fm,g,d = fm,g,k * kmod / γM = 19,38 N/mm²
fv,g,d = fv,g,k * kmod / γM = 1,87 N/mm²
fc,90,d = fc,90,k * kmod / γM = 3,81 N/mm²
ft,90,g,d = ft,90,g,k * kmod / γM = 0,31 N/mm²

Stress resultants for analysis of load bearing capacity:


Md = rd * l² / 8 = 76,56 kNm
Vd = l / 2 * rd = 43,75 kN

hs,req = 150*Vd/(b*fv,g,d) = 250,67 mm


hs,req / (10*ha) = 0,96 < 1

hb = ha+l*100*TAN(α) = 99,57 cm
Euro-Code 5 Folder: _EC5 Beams

Point of maximum stress:


x= l/(1+hb/ha) = 1,45 m
Mx,d = Vd * x - rd * x² * 0,5 = 50,30 kNm
W x,req = 1100 * Mx,d / fm,g,d = 2855,01 cm³
hx = ha+x*100*TAN(α) = 41,24 cm
Wx = b * hx² / 6 = 3968,39 cm³

W x,req / W x = 0,72 < 1

Required area moment of second degree at a deflection of l/300:


Ireq = 3130000 * Md / 1,4 * l / E0,mean = 95853,12 cm4
hm,req = 0,1*(12000*Ireq/b)1/3 = 43,47 cm
hm = (hb-ha)/2+ha = 62,78 cm
hm,req / hm = 0,69 < 1

Analysis of load-bearing capacity:


Shearing stress at footing a:
τa,d = 1,5*Vd*10/(b*ha) = 1,80 N/cm²
τa,d / fv,g,d = 0,96 < 1

Stresses in the edge parallel to the grain:


σm,0,d = 0,001*(1+4*(TAN(α))²)*6*106*Mx,d/(b*hx²) = 13,24 N/mm²
σm,0,d / fm,g,d = 0,68 < 1

Stresses in the edge with grains at an angle:


σm,α,d = 0,001*(1-4*(TAN(α))²)*6*106*Mx,d/(b*hx²) = 12,12 N/mm²
fm,α,d = fm,g,d/(fm,g,d/fc,90,d*(SIN(α))²+(COS(α))²) = 18,55 N/mm²
σm,α,d / fm,α,d = 0,65 < 1

Bearing pressure:
Assumption: l < 150 mm;l1 > 150 mm ; kc,90 according to Tab. 5.1.5
⇒ kc,90 = 1,0
req_A = Vd *10 / ( fc,90,d * kc,90) = 114,83 cm²
req_t = req_A / b = 8,20 cm
req_t / t = 0,82 < 1
Euro-Code 5 Folder: _EC5 Buck

Buck

Buckling lengths:
Euler's crippling load:
l= 5,00 m

lef = 2*l = 10,00 m

lef = l = 5,00 m

lef = 0,7*l = 3,50 m

lef = 0,5*l = 2,50 m


Euro-Code 5 Folder: _EC5 Buck

l
Kr

Sorting grade SG = SEL("Wood/EC"; SG; ) = S10


E0,mean = TAB("Wood/EC"; E0.mean; SG=SG) = 11000,00 N/mm²
Kr = 100000,00 1/N
lef = √(4+(π²*E0,mean)/(l*Kr))
l*√ = 10,27 m
Euro-Code 5 Folder: _EC5 Buck

Roof post:

System:
Post height h = 3,40 m
Cross-sectional width b = 14,00 cm
Cross-sectional thickness d = 14,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90

Strength grade SG= SEL("wood/EC"; SG; ) = S10


ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
fc,0,k = TAB("wood/EC"; fc,0,k; SG=SG) = 21,00 N/mm²
fc,90,k = TAB("wood/EC"; fc,90,k; SG=SG) = 5,00 N/mm²
γM = 1,30

Load at the head:


Vc,d = 50,40 kN

Calculation:
Buckling length lef = h = 3,40 m
A= b *d = 196,00 cm²
i= √(12)*MIN(b;d)
1/√ = 4,04 cm
Degree of slenderness λmin = 100*lef/i = 84,16 > 30
⇒ Buckling proof required!
kc = TAB("wood/ECbuckl"; kc; SG=SG; λ=λ
λmin) = 0,427
σc,0,d = 10*Vc,d / A = 2,57 N/mm²
fc,0,d = fc,0,k * kmod/γM = 14,54 N/mm²
fc,90,d = fc,90,k * kmod/γM = 3,46 N/mm²

Structural verifications:
Buckling: σc,0,d /(kc*fc,0,d) = 0,41 < 1
Lateral pressure: σc,0,d/fc,90,d = 0,74 < 1
Euro-Code 5 Folder: _EC5 Dowel

Dowel
Beam connection:

e3

h
e2
e1
a1 a1 a1
b
t1 t2 t2

Fd
System:
Distance a1 = 4,00 cm
Width b = 3*a1 = 12,00 cm
Distance e1 = 4,00 cm
Distance e2 = 8,50 cm
Distance e3 = 5,50 cm
Thickness t1= 6,00 cm
Thickness t2 = 8,00 cm

Load:
Fd = 40,00 kN

Material:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80

Strength grade SG= SEL("wood/EC"; SG; ) = S10


ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30

Dowel: S235
Dowel diameter d = SEL("wood/DPin"; d; )/10 = 1,20 cm
fu,k = 360,00 N/mm²
γS = 1,10 N/mm²

Calculation:
My,d = 0.8*fu,k*d³/(6*γS )*103 = 75403,64 Nmm
Post:
fh,1,d = 0.082 * ρk * (1-0.1*d)*kmod /γM = 16,87 N/mm²
Euro-Code 5 Folder: _EC5 Dowel

Support:
k90 = 1.35 + 0.15 * d = 1,53
fh,2,d = 0.082 * ρk * (1-0.1*d)*kmod/( γM*k90) = 11,03 N/mm²

β= fh,2,d / fh,1,d = 0,654

RD1 = fh,1,d * t1 * d * 100 =12146


N
RD2 = 0.5 * fh,1,d * t2 * d * β * 100 =5296
N
RD3 = √(2*β*(1+β)+4*β*(2+ β)*My,d/(fh,1,d*103*d*t1²))-β)
1,1*fh,1,d*10²*t1*d/(2+β )*(√ =5254
N
RD4 = √(2*β/(1+β))* √(2*My,d*fh,1,d*d*10)
1.1*√ =5405
N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 5,25 kN

n= Fd / ( 2 * RD) = 3,8

selected: 4 PIN ∅ 12mm S 235 l = 20 cm


Euro-Code 5 Folder: _EC5 Dowel

Tensile splice Design of strut

t1
t2
t1

dN
System:
Timber thickness t1 = 8,00 cm
Timber thickness t2 = 12,00 cm

Load:
Fsd = 116,00 kN

Materials: NH S 10
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Dowel: DPin ∅ 16mm S 275
Dowel diameter d = SEL("wood/DPin"; d; )/10 = 0,80 cm
fu,k = 360,00 N/mm²

Calculation:
Minimum distances according to Tab.6.6a:
a1 = 7* d = 5,60 cm
a2 = 3*d = 2,40 cm
a3,t = 7* d = 5,60 cm
a4,t = 3*d = 2,40 cm

Design value of bearing stress resistance:


fh,0,d = 0.082 * ρk * (1-0.1*d)*kmod/γM = 17,64 N/mm²

My,d = 1000*0.8*fu,k*d³/(6*γS ) = 22341,82 Nmm

kM = 10*t1 / √( My,d / ( fh,0,d * d *10) ) = 6,36

RD1 = 100* fh,0,d * t1 * d = 11289,60 N


RD2 = 100* 0.5 * fh,0,d * t2 * d = 8467,20 N
RD3 = 100* 0.367 * fh,0,d * t1 * d * ( 2 * √(1 + 3 / kM²) - 1 ) = 4445,08 N
RD4 = 155.6 * fh,0,d * t1 * d / kM = 2762,05 N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 2,76 kN

required number of dowels n = Fsd/(2*RD) = 21,0

selected: 6 dowels ∅ 16 S235 l=28cm


Euro-Code 5 Folder: _EC5 Dowel

Tension diagonal:
2

ß
slot plate

Ft 1
System:
Rod 1 : 1 * 160mm * 160mm Glulam
Rod 2 : 1 * 160mm * 180mm Glulam
System angle β = 60,0 °
Timber thickness t1 = 16,00 cm
Timber thickness t2 = 16,00 cm
Thickness of slotted plate t3 = 0,80 cm

Construction material CM= SEL("wood/kmod"; CM; ) = Glulam


Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80

Strength grade SG= SEL("wood/EC"; SG; ) = BS11


ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
γM = 1,30
γS = 1,10

Dowel: DPin ∅ 16mm S 275


Dowel diameter d = SEL("wood/DPin"; d; )/10 = 1,60 cm
fu,k = 430,00 N/mm²

Ft,d = 80,79 kN

Calculation:
Minimum distances of Rod1 according to Tab.6.6a:
a1 = 7* d = 11,20 cm
a2 = 3*d = 4,80 cm
a3,t = 7* d = 11,20 cm
a4,t = 3*d = 4,80 cm

Minimum distances Rod2 according to Tab.6.6a:


a1 = ( 3 + 4 * ABS(COS( β)))* d = 8,00 cm
a2 = 3*d = 4,80 cm
a3,t continuous top chord
a4,t = ( 2 + 2 * ABS(SIN(β))) * d = 5,97 cm

Rod 1 :
fh,1,d = 0.082 * ρk * (1-0.1*d)*kmod /γM = 17,38 N/mm²
Euro-Code 5 Folder: _EC5 Dowel

Rod 2 :
fh,0.d = 0.082 * ρk * (1-0.1*d)*kmod /γM = 17,38 N/mm²
k90 = 1.35 + 0.15 * d = 1,59
fh,2,d = fh,0.d /(k90*(SIN(β))²+(COS(β))²) = 12,05 N/mm²

My,d = 0.8*fu,k*d³*1000/(6*γS) = 213488,48 Nmm

Design value of drift pins in Rod 1:


RD1 = 100* fh,1,d *( t1 / 2 - t3) * d = 20022 N
RD2 = 1.1*fh,1,d*(10*t1/2-10*t3)*d*10*(√√(2+4*My,d/(fh,1,d*10*d*(10*t1/2-10*t3)²))-1) =13437
N
RD3 = 1.5* √(20*My,d*fh,1,d*d) = 16345 N

RD = 0.001 * MIN(RD1;RD2;RD3) = 13,44 kN

n= Ft,d / ( 2 * RD) = 3,0

selected: 4 DPin ∅ 16 S 275 l = 16cm

Design value of drift pins in Rod 2:


RD1 = 100* fh,2,d *( t1 / 2 - t3) * d = 13882 N
RD2 = 1.1*fh,2,d*(10*t1/2-10*t3)*10*d*(√√(2+4*My,d/(fh,2,d*10*d*(10*t1/2-10*t3)²))-1) = 10528 N
RD3 = 15* √(0.2*My,d*fh,2,d*d) = 13610 N

RD = 0.001 * MIN(RD1;RD2;RD3) = 10,53 kN

n= Ft,d / ( 2 * RD) = 3,8

selected: 4 DPin ∅ 16 S 275 l = 16cm


Euro-Code 5 Folder: _EC5 Dowel

Tension diagonal:
2

Ft
System:
Rod 1 : 2 * 60mm * 140mm
Rod 2 : 1 * 100mm * 180mm
System angle β = 60,00 °
Timber thickness t1 = 6,00 cm
Timber thickness t2 = 10,00 cm

Construction material CM= SEL("wood/kmod"; CM; ) = solid wood


Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80

Strength grade SG= SEL("wood/EC"; SG; ) = S7


ρk = TAB("wood/EC"; ρk; SG=SG) = 350,00 kg/m³

γM = 1,30
γS = 1,10
Dowel: DPin ∅ 12mm
Dowel diameter d = SEL("wood/DPin"; d; )/10 = 1,20 cm
fu,k = 360,00 N/mm²

Load:
Ft,d = 40,00 kN

Calculation:
Minimum distances of Rod1 according to Tab.6.6a:
a1 = 7* d = 8,40 cm
a2 = 3*d = 3,60 cm
a3,t = 7* d = 8,40 cm
a4,t = 3*d = 3,60 cm

Minimum distances Rod2 according to Tab.6.6a:


a1 = ( 3 + 4 * ABS(COS(β)))* d = 6,00 cm
a2 = 3*d = 3,60 cm
a3,t continuous top chord
a4,t = ( 2 + 2 * ABS(SIN( β))) * d = 4,48 cm

Rod 1 :
fh,1,d = 0.082 * ρk * (1-0.1*d)*kmod/γM = 15,54 N/mm²
Euro-Code 5 Folder: _EC5 Dowel

Rod 2 :
fh,0.d = 0.082 * ρk * (1-0.1*d)*kmod/γM = 15,54 N/mm²
k90 = 1.35 + 0.15 * d = 1,53
fh,2,d = fh,0.d/(k90*(SIN(β))²+(COS(β))²) = 11,12 N/mm²

β= fh,2,d / fh,1,d = 0,716

My,d = 10 3*0.8*fu,k*d³/(6* γS) = 75403,64 Nmm

RD1 = 100* fh,1,d * t1 * d = 11189 N


RD2 = 100* 0.5 * fh,1,d * t2 * d * β = 6676 N
√(2*β *(1+β)+4*β*(2+β)*My,d/(fh,1,d*103*d*t1²))-β)
RD3 = 1.1*fh,1,d*t1*100*d/(2+β)*(√ = 5026 N
RD4 = 1.1* √(2*β/(1+β))*√√(2*My,d *fh,1,d*10*d) = 5329 N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 5,03 kN

n= Ft,d / ( 2 * RD) = 4,0

selected: 4 DPin ∅ 12 S 235 l = 22cm


Euro-Code 5 Folder: _EC5 Nail

Nail

Nail calculation for each shear joint, thin outside plate:


Thin outside plate
t1
t2
t1

dN
System:
Sheet thickness t1 = 0,15 cm
Timber thickness t2 = 4,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
t1 / dN = 0,39 < 0,5
otherwise a different calculation applies
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 5264,02 Nmm

fh,d = kmod / γM * fh,k = 14,46 N/mm²

RD1 = 100*0.5* fh,d * t2 * dN = 1098,96 N


RD2 = √(20*My,d*fh,d*dN)
1.1*√ = 836,65 N

RD = 0.001 * MIN(RD1;RD2) = 0,84 kN


Euro-Code 5 Folder: _EC5 Nail

Design of a shear connection:

lr l l
h1 h
2
hi h
n
be h

b2 b b2

System:
Thickness of outer wood d2 = 4,00 cm
Nail distance lr = 6,00 cm
Nail distance be = 16,00 cm
Cross beam width b = 16,00 cm
Cross beam height h = 40,00 cm
Height h1= 24,00 cm
Height h2 = 28,00 cm
Height h3 = 32,00 cm
Height h4 = 36,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
Shear and torsion fv,g,k = TAB("wood/EC"; fv,k; SG=SG) = 2,70 N/mm²
Rectangular shear ft,90,g,k = TAB("wood/EC"; ft,90.k; SG=SG) = 0,45 N/mm²
γMH = 1,30

Strength grade SG= SEL("wood/EC"; SG; ) = S10


Rectangular shear ft,0,k = TAB("wood/EC"; ft,0,k; SG=SG) = 14,00 N/mm²

Nails 38x100:
Nail diameter d = 0,38 cm
Nail length lN = 10,00 cm
Nail strength RD = 6000*d² = 866,40 N

γF = 1,50

fv,g,d = kmod*fv,g,k/ γMH = 1,869 N/mm²


ft,90,g,d = kmod*ft,90,g,k/ γMH = 0,312 N/mm²
ft,0,d = kmod*ft,0,k/γMH = 9,692 N/mm²
leff = 10*MIN(d2;12*d;lN-d2) = 40,00 mm

Calculation of maximum design value:


from nail analysis F90,d,N = 0.002 * 16 * RD = 27,72 kN
from tension bar F90,d,Z = 0.2 / γF * d2 *lN * ft,0,d = 51,69 kN
Euro-Code 5 Folder: _EC5 Nail

detailed structural verification:


be / h = 0,40 < 0,5
⇒ detailed structural verification required
bef = 2 * leff = 80,00 mm
c= 4/3 *√ √(be/h * (1 - be/h)³) = 0,392
lr,ef = 10*√ √(lr²+ ( c * h)² ) = 167,89 mm
Aef = lr,ef *bef = 13431,20 mm²
kr = 0.25 *((1) + (h1 /h2)² + (h1 /h3)² + (h1 /h4)²) = 0,685
η= 1 - 3 * (be/h)² + 2 * (be/h)³ = 0,648

F90,d = 0.001 / ( η * kr ) * 13 * Aef0.8 * ft,90,g,d = 18,34 kN

Decisive F90,d,max = MIN(F90,d;F90,d,N;F90,d,Z) = 18,34 kN


Euro-Code 5 Folder: _EC5 Nail

Nail calculation for each shear joint for two different kinds of wood:
two unequal kinds of wood
t1
t2
t1

< dN
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm
t1< t2
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG1= SEL("wood/EC"; SG; ) = S13
ρk1 = TAB("wood/EC"; ρk; SG=SG1) = 380,00 kg/m³
Strength grade SG2= SEL("wood/EC"; SG; ) = MS13
ρk2 = TAB("wood/EC"; ρk; SG=SG2) = 400,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm

Calculation:
pre-drilled:
fh,k1 = 0.082 * ρk1 * (1-0.1*dN) = 29,98 N/mm²
not pre-drilled::
fh,k1 = 0.082 * ρk1 * (10*dN)-0.3 = 20,88 N/mm²

pre-drilled:
fh,k2 = 0.082 * ρk2 * (1-0.1*dN ) = 31,55 N/mm²
not pre-drilled::
fh,k2 = 0.082 * ρk2 * (10*dN)-0.3 = 21,98 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 5264,02 Nmm

fh,d1 = kmod / γM * fh,k1 = 14,46 N/mm²


fh,d2 = kmod / γM * fh,k2 = 15,22 N/mm²

β= fh,d1 / fh,d2 = 0,95

RD1 = 100* fh,d1 * t1 * dN = 2197,92 N


RD2 = 100* 0.5 * fh,d1 * t2 * dN * β = 1044,01 N
√(2*β*(1+β)+4* β*(2+β)*My,d/(fh,d1*103*dN*t1 ²))-β)
RD3 = 110*fh,d1*t1*dN /(2+β)*(√ = 935,89 N
RD4 = √(2*β/(1+β))* √(20*My,d*fh,d1*dN)
1.1*√ = 825,85 N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 0,83 kN


Euro-Code 5 Folder: _EC5 Nail

Nail calculation for each shear joint:


Thick outside plate
t1
t2
t1

dN
System:
Sheet thickness t1 = 0,50 cm
Timber thickness t2 = 4,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
otherwise a different calculation applies

Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 5264,02 Nmm

fh,d = kmod / γM * fh,k = 14,46 N/mm²

RD1 = 100*0.5* fh,d * t2 * dN = 1098,96 N


RD2 = √(20*My,d*fh,d*dN)
1.5*√ = 1140,88 N

RD = 0.001 * MIN(RD1;RD2) = 1,10 kN


Euro-Code 5 Folder: _EC5 Nail

Nail calculation for each shear joint, plate inside:


Plate inside
t1
t2
t1

dN
System:
Timber thickness t1 = 4,00 cm
Sheet thickness t2 = 1,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm

Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 5264,02 Nmm

fh,d = kmod / γM * fh,k = 14,46 N/mm²

RD1 = 100* fh,d * t1 * dN = 2197,92 N


RD2 = √(2+4*My,d/(fh,d*103*dN*t1²))-1)
110*fh,d *t1*dN*(√ = 1200,38 N
RD3 = √(20*My,d*fh,d*dN)
1.5*√ = 1140,88 N

RD = 0.001 * MIN(RD1;RD2;RD3) = 1,14 kN


Euro-Code 5 Folder: _EC5 Nail

Nail calculation for each shear joint:

t1
t2
t1

dN
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm

Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 5264,02 Nmm

fh,d = kmod / γM * fh,k = 14,46 N/mm²

kM = 10*MIN(t1;t2) / √( My,d / ( fh,d *10* dN ) ) = 4,09

RD1 = 100* fh,d * t1 * dN = 2197,92 N


RD2 = 100* 0.5 * fh,d * t2 * dN = 1098,96 N
RD3 = 100*0.367*fh,d *t1*dN*(2*√ √(1+3/kM²)-1) = 945,34 N
RD4 = 155.6 * fh,d * t1 * dN / kM = 836,18 N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 0,84 kN


Euro-Code 5 Folder: _EC5 Nail

Determination of required number of nails

t1
t2
t1

System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm

Materials:
Construction material CM = SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = permanent
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,60
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 42x110
Nail length lN = 12,00 cm
Nail diameter dN = 0,42 cm

Load:
Fsd = 16,00 kN

Calculation:
Minimum timber thickness adhered to according to 6.3.1.2(11):
(MAX(7*dN;(13*dN -30)*ρk/400))/(MIN(t1;t2)) = 0,73 < 1
Minimum driving depth according to 6.3.1.2(4):
(8*dN)/MIN(t1;t2) = 0,84 < 1
Minimum nail distances according to Tab.6.3.1.2:
a1 = 10* dN = 4,20 cm
a2 = 5 * dN = 2,10 cm
a3,t = 15* dN = 6,30 cm
a4,t = 5 * dN = 2,10 cm

pre-drilled fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,85 N/mm²


not pre-drilled fh,k = 0.082 * ρk * (10*dN) -0.3 = 20,26 N/mm²
fh,d = kmod / γM * fh,k = 9,35 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN )2.6 / γS = 10242,81 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 6828,54 Nmm

kM = 10*MIN(t1 ;t2) / √( My,d / ( fh,d *10* dN ) ) = 3,03


Euro-Code 5 Folder: _EC5 Nail

RD1 = 100* fh,d * t1 * dN = 1570,80 N


RD2 = 100* 0.5 * fh,d * t2 * dN = 785,40 N
RD3 = 36.7 * fh,d * t1 * dN * ( 2 * √(1 + 3 / kM ²) - 1 ) = 751,57 N
RD4 = 155.6 * fh,d * t1 * dN / kM = 806,66 N

RD = 0.001 * MIN(RD1 ;RD2;RD3;RD4) = 0,75 kN

required number of nails n = Fsd/(2*RD) = 10,7

selected: 2x6 nails 42x120 DIN 1151


Euro-Code 5 Folder: _EC5 Nail

Determination of required number of nails

t1
t2
t1
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm
Timber width b = 8,00 cm

Materials:
Construction material CM = SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = permanent
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,60
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 42x110
Nail length lN = 6,50 cm
Nail diameter dN = 0,28 cm

Load:
Fsd = 16,00 kN

Calculation:
t3 = (lN - t1) = 2,50 cm
Checking the lapped joint length according to 6.3.1.2(10):
4 * dN / (t2 - t3) = 0,75 < 1
Minimum timber thickness adhered to according to 6.3.1.2(11):
(MAX(7*dN;(13*dN-30)*ρk/400))/(MIN(t1;t2 )) = 0,49 < 1
Minimum driving depth according to 6.3.1.2(4):
(8*dN)/MIN(t1;t2;t3) = 0,90 < 1
Minimum nail distances according to Tab.6.3.1.2:
a1 = 10* dN = 2,80 cm
a2 = 5 * dN = 1,40 cm
a3,t = 15* dN = 4,20 cm
a4,t = 5 * dN = 1,40 cm

pre-drilled fh,k = 0.082 * ρk * (1-0.1*dN ) = 30,29 N/mm²


not pre-drilled fh,k = 0.082 * ρk * (10*dN) -0.3 = 22,88 N/mm²
fh,d = kmod / γM * fh,k = 10,56 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 3569,29 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 2379,53 Nmm

kt = MAX(t1;t2;t3)/MIN(t1;t2;t3) = 1,60
kM = 10*MIN(t1;t2;t3) / √( My,d / ( fh,d * 10*dN ) ) = 2,79
Euro-Code 5 Folder: _EC5 Nail

RD1 = 100* fh,d * MIN(t1;t2;t3) * dN = 739,20 N


RD2 = 100*0.5*fh,d *MIN(t1;t2;t3)*dN*(√ √( 3 * kt² + 2 * kt + 3 ) - kt -1 ) = 416,02 N
RD3 = 36.7 * fh,d * MIN(t1;t2;t3) * dN * ( 2 * √(1 + 3 / kM²) - 1 ) = 367,34 N
RD4 = 155.6 * fh,d * MIN(t1;t2;t3) * dN / kM = 412,26 N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 0,37 kN

required number of nails n = Fsd/RD = 43,2

selected: 2x3x8=48 nails 28x65 DIN 1151


Euro-Code 5 Folder: _EC5 Nail

Attachment of roof boarding/sheathing


Fld,d
Fax,d

t1

t2

System:
Timber thickness t1 = 2,80 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 7,50 cm
Nail diameter dN = 0,40 cm

Load:
Wind suction Fax,d = 0,55 kN CLD: short term
Roof shear Load scheme g Fla,d1 = 0,25 kN CLD: permanent
Roof shear Load scheme g+s Fla,d2 = 0,45 kN CLD: short term

Calculation:
Load-bearing capacity under shear load:
pre-drilled fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,91 N/mm²
not pre-drilled fh,k = 0.082 * ρk * (10*dN )-0.3 = 20,56 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 9022,50 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 6015,00 Nmm

decisive load scheme:


Class of load duration CLD= SEL("wood/kmod"; CLD; ) = permanent
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod1 = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,60
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod2 = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90

Fla,d1*kmod2/(Fla,d2*kmod1) = 0,83 < 1


⇒ Load scheme g+s decisive
Euro-Code 5 Folder: _EC5 Nail

fh,d = kmod2 / γM * fh,k =14,23


N/mm²
t2 = (lN - t1) = 4,70 mm
kt = MAX(t1;t2)/MIN(t1;t2) = 1,68
kM = 10*MIN(t1;t2) / √( My,d / ( fh,d *10* dN ) ) = 2,72
RD1 = 100* fh,d * t1 * dN = 1593,76 N
RD2 = 100* 0.5 * fh,d * t2 * dN = 1337,62 N
RD3 = 100*0.367*fh,d * t1 * dN * ( 2 * √(1 + 3 / kM²) - 1 ) = 801,95 N
RD4 = 155.6 * fh,d * t1 * dN / kM = 911,72 N
RD = 0.001 * MIN(RD1 ;RD2;RD3;RD4) = 0,80 kN

Fla,d2/RD = 0,56 < 1

Pullout capacity:
according to DIN 1052-2 Section 6.3.1
f1,d = 40*10 -6*ρk²*kmod2/γM = 4,00 N/mm²
f2,d = 600*10-6 *ρk²*kmod2/γγM =59,98
N/mm²
Rd1 = 100* f1,d * dN * t2 = 752,00 N
Rd2 = 100* f2,d * dN² = 959,68 N
Rd = MIN(Rd1 ;Rd2)/1000 = 0,75 kN

Fax,d/Rd = 0,73 < 1

Combined loads:

(Fax,d/Rd)²+(Fla,d2/RD)² = 0,85 < 1


Euro-Code 5 Folder: _EC5 Nail

Nail calculation for a shear joint (thick plate)


Wood-metal connection with plate t1 > 0.5 d

t1
t2

dN
System:
Sheet thickness t1 = 0,50 cm
Timber thickness t2 = 4,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm

Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 5264,02 Nmm

fh,d = kmod / γM * fh,k = 14,46 N/mm²

RD1 = √(2+4*My,d/(fh,d*10 3*dN*t2²))-1)


100*1.1*fh,d*t2*dN*(√ = 1200 N
RD2 = √(20*My,d*fh,d*dN)
1.5*√ = 1141 N
RD3 = 100*fh,d *t2*dN = 2198 N

RD = 0.001 * MIN(RD1;RD2;RD3) = 1,14 kN


Euro-Code 5 Folder: _EC5 Nail

Nail calculation for a shear joint (thin plate) :


Wood-metal connection with plate t1 > 0.5 d

t1
t2

dN
System:
Sheet thickness t1 = 0,15 cm
Timber thickness t2 = 4,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm
t1 / dN = 0,39 < 0,5
otherwise a different calculation applies
Calculation:
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN ) = 29,98 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 5264,02 Nmm

fh,d = kmod / γM * fh,k = 14,46 N/mm²

RD1 = 100* ( √(2)-1)*fh,d * t2 * dN = 910,4 N


RD2 = √(20*My,d*fh,d*dN)
1.1*√ = 836,6 N

RD = 0.001 * MIN(RD1;RD2) = 0,84 kN


Euro-Code 5 Folder: _EC5 Nail

Nail calculation for a shear joint:

t1
t2

dN
System:
Timber thickness t1 = 4,00 cm
Timber thickness t2 = 4,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 38x100
Nail length lN = 10,00 cm
Nail diameter dN = 0,38 cm

Calculation:
pre-drilled:
fh,k = 0.08 * ρk * (1-0.1*dN) = 29,24 N/mm²
not pre-drilled::
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,88 N/mm²

Characteristic value for yield moment of square nails


My,d = 270 * (10*dN)2.6 / γS = 7896,02 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (dN*10)2.6 / γS = 5264,02 Nmm

fh,d = kmod / γM * fh,k = 14,46 N/mm²

kt = MAX(t1;t2)/MIN(t1;t2) = 1,00
kM = 10*MIN(t1 ;t2) / √( My,d / ( fh,d *10* dN ) ) = 4,09

RD1 = 100* fh,d * MIN(t1;t2) * dN = 2197,92 N


RD2 = √(3*kt²+2*kt+3)-kt-1)
100* 0.5*fh,d *MIN(t1;t2)*dN*(√ = 910,41 N
RD3 = 100* 0.367 * fh,d * MIN(t1;t2) * dN * ( 2 * √(1 + 3 / kM²) - 1 ) = 945,34 N
RD4 = 100* 1.556 * fh,d * MIN(t1;t2) * dN / kM = 836,18 N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 0,84 kN


Euro-Code 5 Folder: _EC5 Nail

Tie rod connection


h2
b t 1 t 2 t1
F
d
α

s h1

System:
Timber thickness t1 = 3,80 cm
Timber thickness t2 = 3,80 cm
Timber height h1 = 14,00 cm
Timber height h2 = 10,00 cm
Nail distance s = 3,50 cm
Nail distance b = 2,50 cm
Nail rows a = 3
Nail columns v = 3

Load:
Fd = 15 kN

Materials:
Construction material CM = SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
γM = 1,30
γS = 1,10
Nails: 42x110
Nail length lN = 11,00 cm
Nail diameter dN = 0,42 cm

Calculation:
t3 = (lN - t1 - t2 ) = 3,40 cm
pre-drilled:
fh,k = 0.082 * ρk * (1-0.1*dN) = 29,85 N/mm²
not pre-drilled::Imposed Load:
fh,k = 0.082 * ρk * (10*dN)-0.3 = 20,26 N/mm²
Characteristic value for yield moment of square nails
My,d = 270 * (10*dN)2.6 / γS = 10242,81 Nmm
Characteristic value for yield moment of round nails
My,d = 180 * (10*dN)2.6 / γS = 6828,54 Nmm

fh,d = kmod / γM * fh,k = 12,47 N/mm²


kt = MAX(t1;t2)/MIN(t1;t2;t3) = 1,12
kM = 10*MIN(t1;t2;t3) / √( My,d / ( fh,d *10* dN ) ) = 2,98
Euro-Code 5 Folder: _EC5 Nail

RD1 = 100* fh,d * MIN(t1;t2;t3) * dN = 1780,72 N


RD2 = 100* 0.5 * fh,d * MIN(t1;t2;t3) * dN = 890,36 N
RD3 = 36.7 * fh,d * MIN(t1;t2;t3) * dN * ( 2 * √(1 + 3 / kM²) - 1 ) = 858,26 N
RD4 = 155.6 * fh,d * MIN(t1;t2;t3) * dN / kM = 929,80 N

RD = 0.001 * MIN(RD1;RD2;RD3;RD4) = 0,86 kN

required number of nails n = Fd/(2*RD) = 8,7

selected: 3x3=9 nails 42x110 DIN 1151


Euro-Code 5 Folder: _EC5 Nail

Wind brace connection:

a4 a2 a4
h

h
ß
F
t s b
System:
Beam thickness h = 16,00 cm
Driving depth t = 11,40 cm
Sheet thickness s = 0,60 cm
Angle of tensile force β = 45,00 °
Tensile force Fd = 23,54 kN

Materials: Post
Construction material CM = SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD = SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS14h
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
γM = 1,30
Screws: 4 Sr ∅ 12*120 DIN 571
Screw diameter d = 1,20 cm
fu,k = 300,00 N/mm²
γS = 1,10

Minimum distances Rod1 according to Tab.6.23:


a1 = 7* d = 8,40 cm
a2 = 4*d = 4,80 cm
a4,t = 3*d = 3,60 cm

Design value of bearing stress resistance:


fh,d = 0.082 * ρk * (1-0.1*d)*kmod /γM = 20,48 N/mm²
0.8/d = 0,67 < 1
⇒ calculation as for pins:
(0.6*(t+s)+4*d)/t = 1,05 > 1
⇒ def = 9 *d = 10,80 mm
My,d = 0.8*fu,k *def³/(6*γS) = 45807,71 Nmm
s/(d/2) = 1,00 < 1
⇒ thin plate
RD1 = ( √(2)-1)*fh,d*(t-1.5*d)*d*100 = 9772,52 N
RD2 = √(20* My,d * fh,d *d)
1.1 *√ = 5219,54 N

RD = 0.001 * MIN(RD1;RD2) = 5,22 kN


Euro-Code 5 Folder: _EC5 Nail

Design value for pullout:


f3,d = kmod/γM*(1.5+6*d)*√ √(ρk) = 121,96 N/mm²
Rd = f3,d * (0.6*(t+s)-d)*0.01 = 7,32 kN

Combined loads:

(Fd*SIN(β)/(4*Rd))²+(Fd*COS(β)/(4*RD))² = 0,96 < 1


Euro-Code 5 Folder: _EC5 Shrinkage

Shrinkage
Shrinkage and swelling of wood:

b
System:
The only appreciable stress is generated ⊥ to the fibre.
Width b = 32,00 cm
Height h = 12,00 cm
Coefficient for the degree of shrinkage and swelling β90 = 0,24 %

Strength grade SG= SEL("wood/EC"; SG; ) = S10


E90,mean = TAB("wood/EC"; E90.mean; SG=SG) = 370,00 N/mm²

Timber moisture before w1 = 10,00 %


Timber moisture after w2 = 15,00 %

Stress:
σc,90= E90,mean*β90*(w2-w1)/200 = 2,22 N/mm²

Total force:
Fσ,90 = σc,90 * b * h = 852,48 N
Euro-Code 5 Folder: _EC5 spec dowel

spec dowel
Diagonal tie connection with special dowels:

a2

h
a2

ß
a

h1

d1 d d1
System:
Distance a = 8,00 cm
Distance a2 = 9,00 cm
System angle β = 40,00 °
Beam height h = 30,00 cm
Beam thickness d = 16,00 cm
Strut height h1 = 18,00 cm
Strut thickness d1 = 8,00 cm
Number of rows nz = 2
Tensile force Ft,d = 165,00 kN

Construction material CM= SEL("wood/kmod"; CM; ) = solid wood


Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80

Transition to DIN 1052-2


Fd = Ft,d/1.35 = 122,22 kN
Selection of dowel: Split ring connector Type D according to DIN 1052-2, Table 4, 6 or 7 and
8
Dowel ∅ 65 - A with 6 * M12 + 12 * washers 58/6
Number of dowels selected per cut n = 6
per.Nc = 11,00 kN
Dowel height hc = 2,70 cm
Dowel diameter dc = 6,50 cm
Minimum wood dimensions of the beam from b/a = 110/40
Minimum wood dimensions of the strut from b/a = 100/40
Distance a1 = 14,00 cm
a2.1 = dc+hc/2 = 7,85 cm
a3,t = 14,00 cm
a4,strut = 10/2 = 5,00 cm
a4,beam = 11/2 = 5,50 cm
l= a2/SIN(β) = 14,00 cm
a1/l = 1,00 < 1
a2.1/a2 = 0,87 < 1
a4,beam/(h/2-a2 ) = 0,92 < 1
a4,strut/((h1-a)/2) = 1,00 < 1

nef = MIN( 2 + ( 1- n/nz / 20) * ( n/nz - 2 );6) = 2,85

Structural verification:
Fd/(2*nz*nef*per.Nc) = 0,97 < 1
Euro-Code 5 Folder: _EC5 spec dowel

Tensile splice with special dowels:

a1 a1
a a a

t1
t2
t1
System:
Distance a = 22,00 cm
Distance a1 = 6,00 cm
Thickness t1= 8,00 cm
Thickness t2 = 10,00 cm
Cut surfaces nz = 2
Tensile force Ft,d = 95,00 kN

Construction material CM= SEL("wood/kmod"; CM; ) = solid wood


Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80

Transition to DIN 1052-2


Fd = Ft,d/1.35 = 70,370 kN
Selection of dowel: Split ring connector Type A according to DIN 1052-2, Table 4, 6 or 7
Dowel ∅ 95 - A with 2 * M12 + 4 * washers 58/6
Number of dowels selected per cut n = 3
zul.Nc = 17,00 kN
bmin= 12,00 cm
amin= 22,00 cm
amin4= bmin/2 = 6,00 cm
a/amin = 1,00 < 1
a1/amin4 = 1,00 < 1

nef = MIN(2 + ( 1- n / 20) * ( n - 2 );6) = 2,85

Structural verification:
Fd/(nz*nef*zul.Nc ) = 0,73 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

Stress analysis
Arched beam:

Fd

t α

d
System:
Cutting depth t = 12,00 cm
Support length d = 24,00 cm
Beam width b = 16,00 cm
Support angle α = 55,00 °

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS14k
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
Rectangular shear fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 27,50 N/mm²
Rectangular shear fc,90,k = TAB("wood/EC"; fc,90.k; SG=SG) = 5,50 N/mm²
γM = 1,30

Load:
Fd = 300,00 kN

Calculation:
fc,0,d = fc,0,k * kmod / γM = 16,92 N/mm²
fc,90,d = fc,90,k * kmod / γM = 3,38 N/mm²
Vertical supporting force:
β= 90 - α = 35,00 °
kc,ββ = 1 /((fc,0,d/fc,90,d)*(SIN( β))²+(COS(β
β ))²) = 0,431
Vd,max = 100* b*d*kc,β*fc,0,d*0.001 = 280,03 kN
Horizontal supporting force:
kc,αα= α))²+(COS(α
1 /((fc,0,d/fc,90,d)*(SIN(α α))²) = 0,271
Hd,max = 100* b*d*kc,α*fc,0,d*0.001 = 176,08 kN

Fd,h = Fd * COS(αα) = 172,07 kN


Fd,v = α)
Fd * SIN(α = 245,75 kN

Structural verifications:
Fd,h / Hd,max = 0,98 < 1
Fd,v / Vd,max = 0,88 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

Centre purlin with 2-axis deflection:


Fd

b
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S10
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30

Load:
Loading moments as a result of the sloping load
My,d = 20,00 kNm
Mz,d = 5,00 kNm

Calculation:
fm,d = fm,k * kmod / γM = 16,62 N/mm²
Approximation W y,req = 1000*(My,d + Mz,d) / fm,d = 1504,21 cm³

selected: Cross section:


b= 16,00 cm
h= 24,00 cm
Wy = b * h² / 6 = 1536,00 cm³
Wz = h * b² / 6 = 1024,00 cm³

Structural verification:
km = 0,70 for rectangular cross section
otherwise km = 1.0
(My,d/W y*1000+km*Mz,d/W z*1000)/fm,d = 0,99 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

Compression member connection

1 1

Fd
System:
Cross-sectional width in cut 1-1 b = 8,00 cm
Cross-sectional in cut 1-1 h = 16,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
Rectangular shear fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 21,00 N/mm²
γM = 1,30

Load:
Fd = 112,00 kN

Calculation:
A= b*h = 128,00 cm²
fc,0.d = fc,0,k * kmod / γM = 12,92 N/mm²

σc,0.d = Fd * 10 / A = 8,75 N/mm²

Structural verification:
σc,0.d / fc,0.d = 0,68 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

Structural analysis of deflection in two directions and pressure:


qd
qd α

Nd
h

l b
System:
Beam width b = 18,00 cm
Beam height h = 24,00 cm
Beam length l = 3,50 m
Load angle α = 75,00 °

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
Rectangular shear fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 21,00 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30

Load:
qd = 13,21 kN/m
Nd = 94,50 kN

Calculation:
qd,y = qd * SIN(α) = 12,76 kN/m
qd,z = qd * COS(α) = 3,42 kN/m
My,d = qd,y * l² / 8 = 19,54 Nmm
Mz,d = qd,z * l² / 8 = 5,24 Nmm

fc,0,d = fc,0,k * kmod / γM = 12,92 N/mm²


fm,d = fm,k * kmod / γM = 14,77 N/mm²

Wy = b * h² / 6 = 1728,00 cm³
Wz = h * b² / 6 = 1296,00 cm³
A= b*h/1 = 432,00 cm²

km = 0,70 for rectangular cross section


otherwise km = 1.0
σc,0,d = 10 * Nd / A = 2,19 N/mm²

Structural verifications:
(σc,0,d/fc,0,d)²+(My,d/W y*1000+km*Mz,d/W z*1000)/fm,d = 0,99 < 1
(σc,0,d/fc,0,d)²+(km*My,d/W y*1000+Mz,d/W z*1000)/fm,d = 0,84 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

Structural analysis of deflection in two directions and tension:


qd qd
α

Nd h

l b
System:
Beam width b = 18,00 cm
Beam height h = 24,00 cm
Beam length l = 3,50 m
Load angle α = 75,00 m

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
ft,0,k = TAB("wood/EC"; ft.0.k; SG=SG) = 14,00 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30

Load:
qd = 10,21 kN/m
Nd = 47,50 kN

Calculation:
qd,y = qd * SIN(α) = 9,86 kN/m
qd,z = qd * COS(α) = 2,64 kN/m
My,d = qd,y * l² / 8 = 15,10 Nmm
Mz,d = qd,z * l² / 8 = 4,04 Nmm

ft,0,d = ft,0,k * kmod / γM = 8,62 N/mm²


fm,d = fm,k * kmod / γM = 14,77 N/mm²

Wy = b * h² / 6 = 1728,00 cm³
Wz = h * b² / 6 = 1296,00 cm³
A= b*h/1 = 432,00 cm²

km = 0,70 for rectangular cross section


otherwise km = 1.0

Structural verification:
10*Nd/A/ft,0,d+(My,d/W y*1000+km*Mz,d/W z*1000)/fm,d = 0,87 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

End support of a laminated timber beam

Vd
d
System:
Width of laminated timber beam b = 18,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
Rectangular shear fc,90,k = TAB("wood/EC"; fc,90.k; SG=SG) = 5,50 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30

Load:
Vd = 98,00 kN

Calculation:
fc,90,d = fc,90,k * kmod / γM = 3,38 N/mm²
Assumption: l > 150 mm otherwise kc,90 according to Tab. 5.1.5
⇒ kc,90 = 1,00
erf_A = Vd *10 / ( fc,90,d * kc,90) = 289,94 cm²

erf_d = erf_A / b = 16,11 cm

sel. d = 17,00 cm

Structural verification:
erf_d / d = 0,95 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

Stress analysis of shear force and torsion:

Td
h

Vd b
System:
Support width b = 30,00 cm
Support depth h = 14,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS16k
fv,g,k = TAB("wood/EC"; fv.k; SG=SG) = 2,70 N/mm²
γM = 1,30

Load:
relevant shear force Vd = 18,00 kN
relevant torsional moment Td = 1,74 kNm

Calculation:
A= b*h = 420,00 cm²
η= 1+0.6/(b/h) = 1,28
τtor,d = 3000*Td*η/(b*h²) ?? = 1,14 N/mm²
τv,d = 30*Vd/(2*A) = 0,64 N/mm²
fv,d = kmod * fv,g,k / γM = 1,87 N/mm²

Structural verifications:
Shear: τv,d / fv,d = 0,34 < 1
Torsion: τtor,d / fv,d = 0,61 < 1
Combination: τtor,d / fv,d+(τv,d / fv,d)² ?? = 0,73 < 1
Euro-Code 5 Folder: _EC5 Stress analysis

Stud:

a l l1 l
Fc,d Fc,d

h
System:
Length of wood beam projection a = 6,00 cm
Support length l = 6,00 cm
Support depth d = 12,00 cm
clear distance between studs l1 = 34,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = S10
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
fm,k = TAB("wood/EC"; fm.k; SG=SG) = 24,00 N/mm²
γM = 1,30

Load:
Fc,d = 20,00 kN

Calculation:
fc,90.d = kmod * fc,90,k / γM = 3,46 N/mm²
for: 15 / l1 = 0,44 < 1
and: l / 15 = 0,40 < 1
⇒according to Tab. 5.1.5 kc,90 = 1+a*(150-10*l)/1700 = 1,32
A= l*d = 72,00 cm²
σc,90.d = 10 * Fc,d / A = 2,78 N/mm²

Structural verification:
σc,90.d / ( kc,90 * fc,90.d ) = 0,61 < 1
Euro-Code 5 Folder: _EC5 System

System

Acceptable force of a double shoulder joint:

β /2
β /2 N1 N2
1
α
t v1 t v2
h

l v1
l v2
System:
Beam height h = 22,00 cm
Beam width b = 14,00 cm
Length of wood beam projection lv1 = 22,00 cm
Length of wood beam projection lv2 = 30,00 cm
Shoulder depth tv1 = 3,50 cm
Shoulder depth tv = 4,50 cm
Angle α = 45,00 °
Comply with structural rules for shoulder depth and length of wood beam projection.
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ρk = TAB("wood/EC"; ρk; SG=SG) = 380,00 kg/m³
fv,k = TAB("wood/EC"; fv.k; SG=SG) = 2,50 N/mm²
fc,0,k = TAB("wood/EC"; fc,0.k; SG=SG) = 23,00 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
γM = 1,30

Load:
Nd = 86,00 kN

Calculation:
fv,d = kmod * fv,k / γM = 1,54 N/mm²
fc,0,d = kmod * fc,0,k / γM = 14,15 N/mm²
fc,90,d = kmod * fc,90,k / γM = 3,08 N/mm²

with approximation:
kF = 1 / ((fc,0,d/fc,90,d)*(SIN(α))²*COS(α)+COS(α)³) = 0,51
ks = 4 / ((fc,0,d/fc,90,d)*(SIN(α))²+(COS(α))²+2*COS(α)+1) = 0,77

lv1,min = 10*Nd/2 *COS(α)/(b * fv,d) = 14,10 cm


lv1,1 = 8* tv = 36,00 cm
lv1,min / lv1,1 = 0,39 < 1
lv1,min / lv1 = 0,64 < 1
Euro-Code 5 Folder: _EC5 System

lv2,min = 10*Nd/2 *COS(α)/(b * fv,d) = 14,10 cm


lv2,1 = 8* tv = 36,00 cm
lv2,min / lv2,1 = 0,39 < 1
lv2,min / lv2 = 0,47 < 1

RF,d = b * tv * fc,0,d * kF / 10 = 45,46 kN


RS,d = b * tv * fc,0,d * ks / 10 = 68,64 kN

detailed calculation:
kc,α = 1 / ((fc,0,d/fc,90,d) * (SIN(α))² + (COS(α))² ) = 0,358
RF,d = kc,α * fc,0,d * b * tv / COS(α)/10 = 45,13 kN

kc,α = 1 / ((fc,0,d/fc,90,d) * (SIN(α/2))² + (COS(α/2))² ) = 0,655


fc,0,5α,d = kc,α * fc,0,d = 9,27 N/mm²

RS,d = fc,0,5α,d * α * b / ( (COS(α/2))²)/100 = 68,42 kN

Structural verification:
Nd / (RF,d+RS,d) = 0,76 < 1
Euro-Code 5 Folder: _EC5 System

Acceptable force of a face staggered joint:

N
β /2
β /2 α
N1

h tv

lv
System:
Beam height h = 22,00 cm
Beam width b = 14,00 cm
Length of wood beam projection lv = 22,00 cm
Shoulder depth tv = 4,50 cm
Angle α = 45,00 °

Comply with structural rules for shoulder depth and length of wood beam projection.
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
fv,k = TAB("wood/EC"; fv.k; SG=SG) = 2,50 N/mm²
fc,0,k = TAB("wood/EC"; fc.0.k; SG=SG) = 23,00 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
γM = 1,30

Load:
Nd = 63,00 kN

Calculation:
fv,d = kmod * fv,k / γM = 1,54 N/mm²
fc,0,d = kmod * fc,0,k / γM = 14,15 N/mm²
fc,90,d = kmod * fc,90,k / γM = 3,08 N/mm²

with approximation:
ks = 4 / ((fc,0,d/fc,90,d)*(SIN(α))²+(COS(α))²+2*COS(α)+1) = 0,77
lv,min = 10*Nd *COS(α)/(b * fv,d) = 20,66 cm
lv,1 = 8* tv = 36,00 cm
lv,min / lv,1 = 0,57 < 1
lv,min / lv = 0,94 < 1

RS,d = b * tv * fc,0,d * ks / 10 = 68,64 kN

detailed calculation:
kc,α = 1 / ((fc,0,d/fc,90,d) * (SIN(α/2))² + (COS(α/2))² ) = 0,655
fc,0,5α,d = kc,α * fc,0,d = 9,27 N/mm²

RS,d = fc,0,5α,d * α * b / ( (COS(α/2))²)/100 = 68,42 kN

Structural verification:
Nd / RS,d = 0,92 < 1
Euro-Code 5 Folder: _EC5 System

Acceptable force of a heel staggered joint:

N2
α

h tv

lv
System:
Beam height h = 22,00 cm
Beam width b = 14,00 cm
Length of wood beam projection lv = 22,00 cm
Shoulder depth tv = 4,50 cm
Angle α = 45,00 °
Comply with structural rules for shoulder depth and length of wood beam projection.
Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
fv,k = TAB("wood/EC"; fv.k; SG=SG) = 2,50 N/mm²
fc,0,k = TAB("wood/EC"; fc.0.k; SG=SG) = 23,00 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,00 N/mm²
γM = 1,30

Load:
Nd = 43,00 kN

Calculation:
fv,d = kmod * fv,k / γM = 1,54 N/mm²
fc,0,d = kmod * fc,0,k / γM = 14,15 N/mm²
fc,90,d = kmod * fc,90,k / γM = 3,08 N/mm²

with approximation:
kF = 1 / ((fc,0,d/fc,90,d)*(SIN(α))²*COS(α)+COS(α)³) = 0,51
lv,min = 10*Nd *COS(α)/(b * fv,d) = 14,10 cm
lv,1 = 8* tv = 36,00 cm
lv,min / lv,1 = 0,39 < 1

lv,min / lv = 0,64 < 1

RF,d = b * tv * fc,0,d * kF / 10 = 45,46 kN

detailed calculation:
kc,α = 1 / ((fc,0,d/fc,90,d) * (SIN(α))² + (COS(α))² ) = 0,358
Rd = kc,α * fc,0,d * b * tv / COS(α)/10 = 45,13 kN

Structural verification:
N d / Rd = 0,95 < 1
Euro-Code 5 Folder: _EC5 System

Connection of a binding joist to a support:

s1 s

h1
c

h1
c

h1
Schlitzblech

b1b1
System:
Centroidal distance s = 16,00 cm
Centroidal distance s1 = 5,00 cm
Dowel distance b1 = 5,00 cm
Dowel distance h1 = 8,00 cm
Thickness of slotted plate m = 1,00 cm
Width of binding joist b = 16,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
γM = 1,30
γS = 1,10

Load at tie point:


Vc,d = 34,60 kN
Mc,d = 0,01*Vc,d * (s1+s) = 7,27 kNm

Geometric values:
r1 = √(b1²+(h1/2)²) = 6,4 cm
r2 = √(b1²+(h1*1,5)²) = 13,0 cm
αM = ATAN(b1/(h1*1,5)) = 22,62 °

Calculation:
Drift pin forces:
as the result of shear force FV,d = Vc,d / 8 = 4,33 kN
as the result of moment FM,d = 100*Mc,d*r2/(4*(r1²+r2²)) = 11,25 kN

Components:
FM2,d,V = FM,d * SIN(αM) = 4,33 kN
FM2,d,H = FM,d * COS(αM) = 10,38 kN

Fd,max = √((FM2,d,V+FV,d)²+FM2,d,H²) = 13,52 kN


α= ATAN((FM2,d,V+FV,d)/FM2,d,H) = 39,84 °
Euro-Code 5 Folder: _EC5 System

selected: Dowel DPin ∅ 16mm


d= 1,60 cm
fu,k = 360,0 N/mm²

My,d = 0,8*fu,k*d³/(6*γS) = 178,7 kNmm


fh,0,d = 0,082 * ρk * (1-0,1*d)*kmod/γM = 17,38 N/mm²
k90 = 1,35 + 0,15 * d = 1,59
fh,1,d = fh,0,d/(k90*(SIN(α))²+(COS(α))²) = 13,99 N/mm²
t1 = (b-m)/2 = 7,50 cm

RD1 = 100*fh,1,d * t1 * d = 16788 N


RD2 = 110*fh,1,d* t1*d*(√√(2+4*My,d/(fh,1,d*d* t1²))-1) = 11124,52 N
RD3 = √(2*My,d*fh,1,d*d)
150*√ = 13416,44 N

RD = 0,001 * MIN(RD1;RD2;RD3) = 11,12 kN

Structural verification:
Fd,max / ( 2 * RD) = 0,61 < 1
Euro-Code 5 Folder: _EC5 System

Joist hanger:
B'

F1,d
hN
h H
H'

s
h1
h1

System:
Height of principal beam hH = 32,00 cm
Height of short-tie beam hN = 24,00 cm
Joist hanger distance h1 = 6,00 cm
Nail distance s = 15,20 cm
Load:
F1,d = 12,00 kN

Materials:
Principal beam: 120mm*380mm
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
ft,90,g,k = TAB("wood/EC"; ft.90.k; SG=SG) = 0,45 N/mm²
γM = 1,30
Short-tie beam: 140mm*240mm NH S 10

selected: GH joist hanger 04 140*160 with 14 RNä 4.0x60


Horizontal distance between centroidal axis of nails B' = 18,60 cm
Vertical Nail distance H' = 12,00 cm
Joist hanger thickness db = 0,20 cm
Nail diameter dN = 0,40 cm
Nail length lN = 6,00 cm
Number of nails nN = 14
According to manufacturer's table R0.d = 16,40 kN
f= 1/(1-0.93*(s+h1)/hH) = 2,61
tef = MIN(12*dN ;lN-db) = 4,80 cm
ft,90.d = kmod /γM*ft,90,g,k = 0,28 N/mm²

Rt,90.d = 0.0055*f*(10*tef )0.8*(10*hH+4*√


√(100*B'*H'))0.8*ft,90.d = 20,86 kN
Rd = MIN(Rt,90.d ;R0.d) = 16,40 kN

Structural verification:
F1,d/Rd = 0,73 < 1
Euro-Code 5 Folder: _EC5 System

Notch joist

qd

he h
ε

d Fd
x l
System:
Cross-sectional width b = 14,00 cm
Support length d = 18,00 cm
Cross sectional height h = 88,00 cm
Cross sectional height at footing he = 78,00 cm
Notch distance x = 13,00 cm
Notch length l = 20,00 cm
Beam length l1 = 850,00 cm

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 2
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS14k
ρk = TAB("wood/EC"; ρk; SG=SG) = 410,00 kg/m³
fv,g,k = TAB("wood/EC"; fv.k; SG=SG) = 2,70 N/mm²
fc,90,k = TAB("wood/EC"; fc.90.k; SG=SG) = 5,50 N/mm²
for solid wood kn = IF(CM="Glulam";6,5;5) = 6,50
γM = 1,30

Load:
Supporting force Fd = 95,30 kN
Line load qd = 2,80 kN/m

Calculation for splintering:


Maximum design shear force:
for uniformly distributed load kr = 1-2*h/l1 = 0,79
Fd,b = k r * Fd = 75,29 kN
for individual load kF =(0.5-h/l1)*e/h with e the distance of the force from footing k
and Fb,d =kF * Fd
fv,d = kmod * fv,g,k / γM = 1,87 N/mm²
l=MAX(l;0.01)
ε= ATAN((h - he )/l) = 26,57 °
kε = 1+(1.1*(TAN(ε ))-1.5)/(√
√(h*10)) = 1,10
α= he / h = 0,89
k90 = √(h*10)*(√
kn/(√ √(1/α−α²)))
√(α*(1-α))+0,8*(x/h)*√ = 0,575
kv = MIN(1;k90*kε) = 0,63

Structural verification:
(1500*Fd,b/(100*b*he))/(kv*fv,d) = 0,88 < 1
Euro-Code 5 Folder: _EC5 System

Calculation of bearing pressure:


fc,90,d = fc,90,k * kmod / γM = 3,81 N/mm²
Assumption: Support length t > 150 mm otherwise kc,90 according to Tab. 5.1.5
⇒ kc,90 = 1,0
erf_A = Fd *10 / ( fc,90,d * kc,90) = 250,13 N/mm²
erf_d = erf_A / b = 17,87 mm

Structural verification:
erf_d / d = 0,99 < 1
Euro-Code 5 Folder: _EC5 System

Rail post:
Hd

h1
h3h2
h

System:
Post distance l = 1,70 m
Rail height h1 = 100,00 cm
Dowel distance h2 = 5,00 cm
Dowel distance h3 = 23,00 cm
γQ = 1,50

Load: according to DIN 1055-3


H' = 1,00 kN/m
Hd = γQ * l * H' = 2,55 kN/m

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = Glulam
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = short term
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,90
Strength grade SG= SEL("wood/EC"; SG; ) = BS11
ft,90.g,k = TAB("wood/EC"; ft,90.k; SG=SG) = 0,45 N/mm²
γM = 1,30

Calculation:
Mc,d = 0,01*Hd*(h1+h2+h3/2) = 2,97 kNm
F1,d = Hd/2+Mc,d/(h3*0,01) = 14,19 kN
F2,d = Mc,d/(h3*0,01)-Hd/2 = 11,64 kN

Transition to DIN 1052-2:


F1 = MAX(F1,d;F2,d)/1,4 = 10,14 kN

selected: 2 DPin ∅ 85 - D

mit zul_Nc = 14,50 kN

Structural verification:
F1/ zul_Nc = 0,70 < 1
Euro-Code 5 Folder: _EC5 System

Suspender:

t t

Ft,d
α
Fc,d Fc,d
System:
Height of diagonal brace h = 14,00 cm
Width of diagonal brace b = 14,00 cm
Height of suspender hH = 18,00 cm
Width of suspender bH = 14,00 cm
Shoulder depth tv = 3,00 cm
Diameter of pin d = 1,20 cm
Angle α = 45,00 °
Comply with structural rules for shoulder depth and length of wood beam projection.

Materials:
Construction material CM= SEL("wood/kmod"; CM; ) = solid wood
Class of load duration CLD= SEL("wood/kmod"; CLD; ) = normal
Utility class UC= SEL("wood/kmod"; UC; ) = 1
⇒ kmod = TAB("wood/kmod"; kmod; CM=CM; CLD=CLD; UC=UC) = 0,80
Strength grade SG= SEL("wood/EC"; SG; ) = S13
ft,0,k = TAB("wood/EC"; ft.0.k; SG=SG) = 18,00 N/mm²
γM = 1,30

Calculation:
Aw,v = 2*b*tv = 84,00 cm²
Aw,bo = (d+1)*(hH-2*tv) = 26,40 cm²
Aw = bH*hH-MAX(Aw,bo;Aw,v) = 168,00 cm²
ft,0,d = kmod * ft,0,k / γM = 11,08 N/mm²
Maximum force to be accepted by the construction:
Ft,d,max = ft,0,d*Aw*0,1 = 186,14 kN

You might also like