>> a
Undefined function or variable 'a'.
>> a=2
a=
>> a=2;
>> a=3
a=
>> help save
save - Save workspace variables to file
This MATLAB function saves all variables from the current workspace in a MATLAB
formatted binary file (MAT-file) called filename.
save(filename)
save(filename,variables)
save(filename,variables,fmt)
save(filename,variables,version)
save(filename,variables,'-append')
save filename
Reference page for save
See also clear, hgsave, load, matfile, regexp, saveas, whos
Other uses of save
daq/save, ecoder/save, imaq/save, instrument/save, mbc/Save, opc/save,
slvnv/rmidata.save, simulink/Simulink.Bus.save,
simulink/Simulink.sdi.save
>> save
Error using save
Unable to write file matlab.mat: permission denied.
>> a.mat
Attempt to reference field of non-structure array.
>> save
Error using save
Unable to write file matlab.mat: permission denied.
>> save(a)
Error using save
Argument must contain a string.
>> save
Saving to: D:\asma ilhem borji\matlab.mat
>> save a
>> load('a.mat')
>> clear all
>> a
Undefined function or variable 'a'.
>> load a.mat
>> clear all
>> load a.mat
>> who
Your variables are:
>> what
MAT-files in the current folder D:\asma ilhem borji
a matlab
>> who
Your variables are:
>> clear all
>> A=[1 2 3;4 5 6;7 8 9]
A=
1 2 3
4 5 6
7 8 9
>> size(A)
ans =
3 3
>> A'
ans =
1 4 7
2 5 8
3 6 9
>> A(3,2)
ans =
>> A(:,3)
ans =
>> A(1,:)
ans =
1 2 3
>> inv(A)
Warning: Matrix is close to singular or badly scaled. Results
may be inaccurate. RCOND = 1.541976e-18.
ans =
1.0e+16 *
-0.4504 0.9007 -0.4504
0.9007 -1.8014 0.9007
-0.4504 0.9007 -0.4504
>> det(A)
ans =
6.6613e-16
>> trace(A)
ans =
15
>> eye(4)
ans =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
>> diag(2)
ans =
>> diag([1,2,3])
ans =
1 0 0
0 2 0
0 0 3
>> [V,D]=eig(A)
V=
-0.2320 -0.7858 0.4082
-0.5253 -0.0868 -0.8165
-0.8187 0.6123 0.4082
D=
16.1168 0 0
0 -1.1168 0
0 0 -0.0000
>> randn(2,4)
ans =
0.5377 -2.2588 0.3188 -0.4336
1.8339 0.8622 -1.3077 0.3426
>> vligne=[27,31,40]
vligne =
27 31 40
>> Vcol=[36;88;95]
Vcol =
36
88
95
>> zeros(1,3)
ans =
0 0 0
>> ones(5,2)
ans =
1 1
1 1
1 1
1 1
1 1
>> B=[3 2 5;1 8 4;2 7 3]
B=
3 2 5
1 8 4
2 7 3
>> C=[0 2 9;4 6 1;3 8 5]
C=
0 2 9
4 6 1
3 8 5
>> V=[1;2;3]
V=
>> W=[0;5;2]
W=
>> B*C
ans =
23 58 54
44 82 37
37 70 40
>> B.*C
ans =
0 4 45
4 48 4
6 56 15
>> V.*W
ans =
10
>> F=[B W;1 2 3 4]
F=
3 2 5 0
1 8 4 5
2 7 3 2
1 2 3 4
>> F(2,2)
ans =
8
>> F(:,3)
ans =
>> F(4,:)
ans =
1 2 3 4
>> F(2,[3 4])
ans =
4 5
>> F([3 2 4],[1 3 2])
ans =
2 3 7
1 4 8
1 3 2
p=[3 -5 2]
p=
3 -5 2
>> polyval(p,5)
ans =
52
>> x=[-1:0.1:2]
x=
Columns 1 through 6
-1.0000 -0.9000 -0.8000 -0.7000 -0.6000 -0.5000
Columns 7 through 12
-0.4000 -0.3000 -0.2000 -0.1000 0 0.1000
Columns 13 through 18
0.2000 0.3000 0.4000 0.5000 0.6000 0.7000
Columns 19 through 24
0.8000 0.9000 1.0000 1.1000 1.2000 1.3000
Columns 25 through 30
1.4000 1.5000 1.6000 1.7000 1.8000 1.9000
Column 31
2.0000
>> y=polyval(p,x)
y=
Columns 1 through 6
10.0000 8.9300 7.9200 6.9700 6.0800 5.2500
Columns 7 through 12
4.4800 3.7700 3.1200 2.5300 2.0000 1.5300
Columns 13 through 18
1.1200 0.7700 0.4800 0.2500 0.0800 -0.0300
Columns 19 through 24
-0.0800 -0.0700 0 0.1300 0.3200 0.5700
Columns 25 through 30
0.8800 1.2500 1.6800 2.1700 2.7200 3.3300
Column 31
4.0000
>> racines=roots(p)
racines =
1.0000
0.6667
>> p3=poly([1 -1])
p3 =
1 0 -1
>> conv(p,p3)
ans =
3 -5 -1 5 -2
>> x1=[1 2 3 4]
x1 =
1 2 3 4
>> y1=[1 -1 2 0]
y1 =
1 -1 2 0
>> p4=polyfit(x1,y1,3)
p4 =
-1.6667 12.5000 -27.8333 18.0000
>> z=5*exp(-0.4*x1).*sin(7.5*y1)
z=
3.1438 -2.1074 0.9793 0
x=-2+5i
x=
-2.0000 + 5.0000i
>> a=real(x)
a=
-2
>> b=imag(x)
b=
>> m=abs(x)
m=
5.3852
>> c=conj(x)
c=
-2.0000 - 5.0000i
>> d=angle(x)
d=
1.9513
>> e=sqrt(2)
e=
1.4142
>> f=sign(-5)
f=
-1
>> x=0:0.02:5;
>> y=sin(x.^2);
>> z=cos(x.^2);
>> plot(x,y,'b',x,z,'r');grid;
>> xlabel ('x');
>> ylabel('y et z');
>> title('courbes y=sin(x.^2) et z=cos(x.^2)');
>> legend('y','z');
>>
>> plot(x,y,'b',x,z,'r');grid;
>> xlabel ('x');
>> ylabel('y et z');
>> title('courbes y=sin(x.^2) et z=cos(x.^2)');
>> legend('y','z');
courbes y=sin(x. 2 ) et z=cos(x. 2 )
1
0.8
0.6
0.4
0.2
y et z
-0.2
y
-0.4 z
-0.6
-0.8
-1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x
>> subplot(2,4,3)
>> plot(x,y)
>>
-1
0 5
g=tf([1 1],[1 2 1])
g=
s+1
-------------
s^2 + 2 s + 1
Continuous-time transfer function.
>> h=zpk([],[-1 -2],-10)
h=
-10
-----------
(s+1) (s+2)
Continuous-time zero/pole/gain model.
>> a=[0,1;-4,-4]
a=
0 1
-4 -4
>> b=[0;2]
b=
>> c=[1,0];
>> d=0
d=
>> fs=ss(a,b,c,d)
fs =
a=
x1 x2
x1 0 1
x2 -4 -4
b=
u1
x1 0
x2 2
c=
x1 x2
y1 1 0
d=
u1
y1 0
Continuous-time state-space model.
>> zpk(g)
ans =
(s+1)
-------
(s+1)^2
Continuous-time zero/pole/gain model.
>> tf(h)
ans =
-10
-------------
s^2 + 3 s + 2