Karnaugh Map POS Minimization: Example
Karnaugh Map POS Minimization: Example
00 01 11 10
CD CD CD CD CD
AB
00 AB 0 0
01 AB A+ B +C + D
11 AB 0 0 A+ B +C + D
10 AB 0
Out = A( B + C ) C C
AC + AB = A( B + C )
Review Questions:
1. Use a Karnaugh map to minimize the POS expression:
55
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
( B + C + D)( A + B + C + D)( A + B + C + D)( A + B + C + D)( A + B + C + D)
2. Map the following SOP expression on a karnaugh map:
BC + AB + AB C + ABC D + ABCD + ABCD
3. What is the difference in mapping a POS expression and an SOP expression?
4. What is the standard sum term for a 0 in cell 1011?
5. What is the standard product term for a 1 in cell 0010?
6. Determine the minimum expression for each K-map in figure below:
CD CD CD CD CD CD CD CD
AB 1 1 1 1 AB 1 0 1 1
AB 1 1 0 0 AB 1 0 0 1
AB 0 0 0 1 AB 0 0 0 0
AB 0 1 1 0 AB 1 0 1 1
(b) AC [ B + B ( B + C )] Ans : AC
(c) DE F + DE F + D E F Ans : D F + E F
8. Reduce the function specified in the truth table in figure below to its
minimum SOP form by using K-map. A B C X
0 0 0 1
0 0 1 1
Ans: B + C
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1
56
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
AND A
B
X= AB + CDE X
C
D
OR E
57
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
AND A
B X
NOT
OR C
D
X= AB (C D + EF ) C D + EF
E
AND F
A
B
58
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
1 0 1 0
The logic gates required to implement this
1 1 0 0 expression are as follows:
Three inverters to form the A, B and C
1 1 1 0
variables; two 3-input AND gates to form
the term ABC and ABC ; and one 2-input
OR gate
Example: Reduce the combinational logic to form
circuit in the finalbelow
Figure output.to a minimum
form: A ABC A
A BC
B B X
X
C C
X = ( A + B + C )C + A + B + C + D
= AC + BC + CC + A + B + C + D = AC + BC + C + A + B + C + D
= C ( A + B + 1 + 1) + A + B + D = A + B + C + D
Hence, the simplified circuit is a 4-input OR gate.
Universal Property of NAND and NOR Gates:
Up to this point, combinational circuits implemented with AND gates, OR
gates and inverters have been studied. In this section, the universal property of the
NAND gate and the NOR gate is introduced. the universality of the NAND gate
means that it can be used as an inverter and that combinations of NAND gates can
be used to implement the AND, OR and NOR operations. Similarly, the NOR gate
can be used to implement the inverter, AND, OR and NAND operations.
1- Using NAND Gate:
A A
A
AB
B
A 59
A+ B
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
A A
A
A+ B
B
A
AB
B
A
AB
B
OR Gate
A
B
X
C
D
AND Gate
60
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
After eliminating
double inversion
A
B
X
C
D
B Z
A A+ B
B
Z
C
A+C
61
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
Example: Implement the following expression with NAND gates only:
ABC + DE
OR Gate
A A
B B
C C
X X
D D
E E
AND Gate
C C+D
D X
B
A
62
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
12. Design a logic circuit to implement the operation specified in the truth table
indicated by Table (a):
13. Minimize the combinational logic circuit shown in Fig. (a):
14. Implement the logic circuit in Fig. (b) using only NAND gates. Repeat the
design using only NOR gates.
Table (a)
A
Input Output
B
A B C X C
A
0 0 0 0 B
0 0 1 0 C
D
X
0 1 0 0 A
B
0 1 1 1 C
1 0 0 0 D Fig. (a)
A
1 0 1 1 B
1 1 0 1 C
D
1 1 1 0
A
B
X
C
Fig. (b)
15. Show how the following expression can be implemented as stated using only
NAND gates:
(a) X = ABC (b) X = ABC
(c) X = A + B (d) X = A + B + C
(e) X = AB + CD (f) X = ( A + B)(C + D)
63
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
17. Minimize the gates required to implement the function in SOP form:
(a) X = AB + AB (b) X = ABC + B( EF + G )
Basic Adders:
Adders are important not only in computers, but in many types of digital
systems in which numerical data are processed. An understanding of the basic
adder operation is fundamental to the study of digital systems. In this section, the
half-adder and the full-adder are introduced.
3- The Half-Adder (H.A):
Recall the basic rules for binary addition as stated in the previous lectures:
64
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
00 0
These operations are performed by a logic circuit called a
0 1 1 half-adder. The half-adder accepts two binary digits on its
1 0 1 inputs and produces two binary digits on its outputs, a Sum bit
1 1 10 and a Carry bit.
A B Cout S
A S Sum
0 0 0 0
H.A
0 1 0 1
B Cout Carry
1 0 0 1
1 1 1 0
Sum
S A B
Cout AB
A
Carry
B
4- The Full-Adder(F.A):
The second basic category of adder is the Full-adder. The full-adder accepts
three inputs including an input carry and generates a Sum output and output
carry.
A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
65
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
1 0 0 0 1
A S Sum
B
1 0 1 1 0
F.A 1 1 0 1 0
Carry in Cin Cout Carry out 1 1 1 1 1
B
Sum (S)
Cin
Carry (Cout)
66
University of Anbar Subject / Digital Techniques
College of Engineering Second Stage / 1st Semester
Dept. of Electrical Engineering (2017 – 2018)
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
Example: Arrange two half-adders to form full-adder.
A A B Sum (S)
H.A H.A
B
( A B) Cin
Input Carry
AB Carry (Cout)
A2 B2 A1 B1
A2A1
+ B 2B 1
Σ3 Σ2 Σ1 F.A F.A
(MSB)Σ3 Σ2 Σ1 (LSB)
67