0% found this document useful (0 votes)
21 views10 pages

LPP2

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
21 views10 pages

LPP2

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 10

X1 X2 X3 X4 MAX VALUE

COEFF 20 15 18 10
VALUES 0 27 0 35.25 757.5
LHS SIGN RHS
CONST 1 4 -3 10 4 60 <= 60
CONST 2 1 1 1 0 27 = 27
CONST 3 0 -1 4 7 219.75 >= 35
2X1 + 4X2 >= -12 MULTIPLY BOTH SIDES WITH -1 -2X1 - 4X2 <= 12

X1 X2 X3 MIN VALUE
COEFF 2 -3 6
VALUE 6.2 11.6 0 -22.4
LHS SIGN RHS
CONST 1 3 -1 2 7 <= 7
CONST 2 -2 -4 0 -58.8 <= 12
CONST 3 -4 3 8 10 <= 10
Microsoft Excel 14.0 Answer Report
Worksheet: [LPP2.xlsx]QUES 3
Report Created: 10/16/2023 4:24:14 PM
Result: Solver found a solution. All Constraints and optimality conditions are satisfied.
Solver Engine
Engine: Simplex LP
Solution Time: 0.016 Seconds.
Iterations: 2 Subproblems: 0
Solver Options
Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)


Cell Name Original Value Final Value
$D$12 VALUE MAX VALUE 0 1500

Variable Cells
Cell Name Original Value Final Value Integer
$B$12 VALUE X 0 50 Contin
$C$12 VALUE Y 0 0 Contin

Constraints
Cell Name Cell Value Formula Status Slack
$D$14 M1 CONST LHS 200 $D$14<=$F$14 Binding 0
$D$15 M2 CONST LHS 250 $D$15<=$F$15 Not Binding 150
Microsoft Excel 14.0 Sensitivity Report
Worksheet: [LPP2.xlsx]QUES 3
Report Created: 10/16/2023 4:24:14 PM

Variable Cells
Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease
$B$12 VALUE X 50 0 30 1E+030 7.1428571429
$C$12 VALUE Y 0 -12.5 40 12.5 1E+030

Constraints
Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease
$D$14 M1 CONST LHS 200 7.5 200 120 200
$D$15 M2 CONST LHS 250 0 400 1E+030 150
LET THE NUMBER OF CHAIRS BE X
LET THE NUMBER OF TABLES BE Y

MAX Z= 30X+40Y
STC: 4X + 7Y <= 200
5X + 5Y <= 400
X, Y >= 0

X Y MAX VALUE
COEFF 30 40
VALUE 50 0 1500
LHS SIGN RHS
M1 CONST 4 7 200 <= 200
M2 CONST 5 5 250 <= 400

PRODUCER SHOULD PRODUCE 50 CHAIRS AND 0 TABLES AND THE MAXIMUM PROFIT WILL BE Rs. 1500.

MACHINE 2 IS UNDERUTILIZED BY 150 Hrs. AND THE SHADOW PRICE FOR MACHINE 1 IS Rs. 7.5.
UM PROFIT WILL BE Rs. 1500.

MACHINE 1 IS Rs. 7.5.


Microsoft Excel 14.0 Answer Report
Worksheet: [LPP2.xlsx]QUES 4
Report Created: 10/16/2023 4:35:11 PM
Result: Solver found a solution. All Constraints and optimality conditions are satisfied.
Solver Engine
Engine: Simplex LP
Solution Time: 0.016 Seconds.
Iterations: 2 Subproblems: 0
Solver Options
Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)


Cell Name Original Value Final Value
$E$12 VALUE MAX VALUE 0 668000

Variable Cells
Cell Name Original Value Final Value Integer
$B$12 VALUE X 0 12 Contin
$C$12 VALUE Y 0 0 Contin
$D$12 VALUE Z 0 124 Contin

Constraints
Cell Name Cell Value Formula Status Slack
$E$14 LABOUR CONST LHS 1260 $E$14<=$G$14 Binding 0
$E$15 WOOD CONST LHS 2248 $E$15<=$G$15 Not Binding 16760
$E$16 SCREWS CONST LHS 396 $E$16<=$G$16 Binding 0
Microsoft Excel 14.0 Sensitivity Report
Worksheet: [LPP2.xlsx]QUES 4
Report Created: 10/16/2023 4:35:11 PM

Variable Cells
Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease
$B$12 VALUE X 12 0 4000 2666.6666667 666.66666667
$C$12 VALUE Y 0 -4111.1111111 2000 4111.1111111 1E+030
$D$12 VALUE Z 124 0 5000 1000 2000

Constraints
Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease
$E$14 LABOUR CONST LHS 1260 111.11111111 1260 1116 72
$E$15 WOOD CONST LHS 2248 0 19008 1E+030 16760
$E$16 SCREWS CONST LHS 396 1333.3333333 396 24 186
LET THE NUMBER OF TYPE 1 BOAT BE X
LET THE NUMBER OF TYPE 2 BOAT BE Y
LET THE NUMBER OF TYPE 3 BOAT BE Z

MAX Z = 4000X + 2000Y + 5000Z


STC: 12X + 7Y + 9Z <= 1260
22X + 18Y + 16Z <= 19008
2X + 4Y + 3Z <= 396

X Y Z MAX VALUE
COEFF 4000 2000 5000
VALUE 12 0 124 668000
LHS SIGN RHS
LABOUR C 12 7 9 1260 <= 1260
WOOD CON 22 18 16 2248 <= 19008
SCREWS C 2 4 3 396 <= 396

THE PRODUCER SHOULD PRODUCE 12 TYPE 1 BOATS, 0 TYPE 2 BOATS AND 124 TYPE 3 BOATS AND THE MAXIMUM

HERE WOOD IS UNDERUTILIZED BY 16760 (sq. feet) AND THE SHADOW PRICE FOR LABOUR IS 111.111111111111 A
3 BOATS AND THE MAXIMUM REVENUE GENERATED WILL BE EQUAL TO Rs. 668000.

BOUR IS 111.111111111111 AND FOR SCREWS IS 1333.33333333333.

You might also like