0% found this document useful (0 votes)
25 views8 pages

Conique 1

The document appears to contain mathematical expressions and symbols, possibly related to set theory or calculus, but lacks coherent sentences or context. It includes various equations and inequalities involving variables and constants. Overall, the content is highly technical and abstract, making it difficult to summarize its purpose or findings clearly.

Uploaded by

hansifarel
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
25 views8 pages

Conique 1

The document appears to contain mathematical expressions and symbols, possibly related to set theory or calculus, but lacks coherent sentences or context. It includes various equations and inequalities involving variables and constants. Overall, the content is highly technical and abstract, making it difficult to summarize its purpose or findings clearly.

Uploaded by

hansifarel
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

!

" # $ % # # #
+ = & # ∈ '+ ≥

= θ
# θ ∈ )−π # π (
= θ
*

+ "
# # ,# , #
% , -# % , -
. -# . -

/ 0 "

! " $ % # #
− = & # ∈ '+

= =−
/ ≥1 # ∈ / ≤1 # ∈
= =
*
± =1
+ "
! " #
% , ! - &

2 % , 343 = #
! " $ # $
- # = λ %λ ∈ '

"

! " $ % # #
= 5 ∈ '
6 &

=
# ∈
=
*

+ "
% ! - "
# $ "

7
7
8 9 ! - $
+ γ + + + + = 1#
& % #γ # # # # ∈ :
% #γ # ≠ %1#1#1
# # $
;

8 $ =% # #
α
8 , = % ,# ,# , $ 9 β

! # = # #
% # 4 % ,# ,
# #
8 ∈ # # ,
,

!
α
9 = β
+ # # ,
,
# #

# !
%α + # ,+ # , + γ %α + # ,+ # , %β + # ,+ # , + %β + # ,+ # ,
+ %α + # ,+ # , + %β + # ,+ # , + =1
7 =4# & ! & " "
"
# ! !
% ! " & $ !# $ "
= # , 343 + + =1

/ $ !

8 # =% # # $
# &# $
! + γ + + + + =1 & % # γ # ≠ %1#1#1
9 $ ! ! !

7 =4# ! - $ # !
! # %Ω# # & # % # #
& %9 # #
! # , 343 = # #
= 1
1
# , ,
# #

! ! ; # % # #
# % # % # -"
; # ! !
9 θ∈ ! ! !
θ − θ
# ! $ % # # &
θ θ
% # 4% #
=% θ −% θ
8 % # % # !#
=% θ +% θ
7 ! !
% θ− θ + γ% θ− θ % θ+ θ
+ % θ+ θ + =1
2 − θ θ+ θ + γ% θ
θ− θ
γ % θ +% − % θ =1
8 = # θ= π
>

<
γ γ
8 ≠ # θ % θ = # - θ=
− −

8 # - $
! + + + + =1 & % # ≠ %1#1

? & !

8
8 $ # - $ =% # #
! + + + + =1 & % # ≠ %1#1
• ≠1
! ! % + + % + + = 1#
& ∈ %
# $ %Ω# # # 5 Ω=− − #
+ + =1
9 $
3 8 >1 4 3 # > 1# > 1
8 > 1# =∅
8 = 1# = {Ω}
8 <1# ! α
+ β = # 5 α # β ∈ '+ #
% & # α<β# %Ω# # & !
!
3 8 <1 4 3 # > 1# < 1
8 =1# ! ! % − % + = 1#
- Ω - - $
8 ≠1
8 >1# ! ! α
−β =
8 <1# ! ! −α + β =
- # " % # $
-$ & ! ! " !
%Ω# #
• $
=1
@ 4 A % # # # = 1# ≠ 1
9 # ∀% # ∈ # + + + = % + [ + + ] #
& ∈ #
7 ! ! % + + + =1
3 8 =1
8 >1# =∅
8 =1# ! =−

>
8 <1# - $ !
=− ± −
3 8 ≠ 1# ! ! % − 1 =− % − 1

7 $ % # # & = 1 + 1 # ! =− #
"

# &
0 " # % 4
"

∅# # # - $

* $
8 # ∈ '+
8 ={ ∈ # = × = % # }% 5 =

3 8 ∈ ]1# [ # % ! # -
4
3 8 ∈ ] #+∞[ # " ! - & 4

3 8 = # " ! - 4
7
8 =% # # $ ! - % #
4 %

- ∈ ∈ # # % #1 % #1 % 5
=
− −
# % # #
1
7 = ⇔% − + = % −
⇔ % − + % − + = −
• 8 ≠ # − =1 % "
% # # % #− − = − = % − % & ≠1
= =1 ∈

B
= ⇔ % − + = −
⇔ + % −
= & =

7 ∈ ]1# [ " ! + =
8 -
= # = % − = − = =
∈ ] #+∞[ # " " ! − =
8 - & #
= # = % − = − = =
• 8 = # " = ⇔ % − + = −
9 # =−
= ⇔ =>
9 " " ! = ⇔ = & = # -

* $
8 =% # # $
* $
8 ! ! + = & >
- - ∈ ]1# [ - % # !
! ={ ∈ # = × }
9

= − # = % =
% #1 =
, %− #1 , =−
+ "
9 ! - ! # # # # ! %
4
* $
8 ! " ! − =
- - ∈ ] #+∞[ - % #
={ ∈ # = × }
9

:
= + # = % = =
% #1 =
, %− #1 , =−
2 & " ; !
* $ <
8 " ! =
- % # ={ ∈ # = }
9

% #1 =−
9 # "
7
8 % ! ! + = & >
$ =% # #
8 $ # % # & # 4
! - # 4 -
% #1 # =
C # $ # ! " ∈
= D &
= − # = =
" -& # & &
&
$ <# ;

! "
* $
8 - # > ,
={ ∈ # + ,= } . -
* $
8 - # 1< < ,
={ ∈ # − ,= } " ! .
-
7 - $
8 # # 9 = ,
% 8 > # ! # # . - # #
# + ,= % + , = ,= =
8 1< < # ! " # . -
# ∈ # − ,= % − , = %± , =±
%± "

# # $ % E ⊂
% C !
F 3 $ =% # #
) , ( , =
# ∈ % # $
− , = − , =% − , ⋅% + , = , ⋅ = −>
! # ε #ε , - {− # }
− , = %ε − %ε , , = %ε −ε, , %ε +ε, ,
7
ε +ε, ,=
ε +ε, ,=
ε −ε, ,= −>

ε = −
% − + =% −
7! 5# $
ε +ε, ,= + −
=
7
3 7 > # ε = ε ,= # & + ,= ∈
3 < # ε = #ε ,= − ε = − #ε , = # &
− ,= ∈

G
2 $ ! = ,# " %

You might also like