CLASS - 10
INTRODUCTION TO
TRIGONOMETRY
WHAT WILL YOU GET?
• Premium Lectures
• Notes (Telegram)
• Practice of Most Important Questions
CHAPTER ANALYSIS
1 Marks - 3
2 Marks - 1 (with option)
3 Marks - 1
TOTAL - 8
Introduction to Trigonometry
Trigonometry is all about triangles
The triangle of most interest is a right angled triangle.
Six Trigonometric ratios
Sin𝜃 = P/H
Cos𝜃 = B/H
Tan𝜃 = Sin𝜃/Cos𝜃 = P/B
Cosec𝜃 = H/P
Sec𝜃 = H/B
Cot𝜃 = Cos𝜃/SIn𝜃 = B/P
Trigonometric Angle ratio table
Trigonometric Identities
2 2 2
P +B =H
2 2 2 2
P /H + B /H = 1
2 2
(P/H) + (B/H) = 1
2 2
(Sin𝜃) + (Cos𝜃) = 1
Let’s Solve Some Important Questions!!!
1. If sec θ + tan θ = p, then tan θ is
2
(A) (p + 1)/2p
2
(B) (p - 1)/2p
(C) (p2 − 1)/(p2 + 1)
2 2
(D) (p + 1)/(p - 1)
2. If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2 – q 2 =
2 2
(A) 𝑎 − 𝑏
2 2
(B) 𝑏 − 𝑎
(C) 𝑎2 + 𝑏2
(D) 𝑏 − a
2 2
3. Given that cos θ – sin θ = 3/4 then cos θ =
(A) √3/2
(B) 1/2
(C) √7/2
(D) √(⅞)
4. In △ABC right angled at B, SinA = 7/25, then the value of Cos C is:
(A) 7/25
(B) 24/25
(C) 7/24
(D) 24/7
2 2
5. If x = 2 sin θ and y = 2 cos θ + 1, then find the value of x + y
6. If θ is an acute angle and tanθ + cotθ =2, then the value of sin3θ + cos3θ is:
(A) 1
(B) ½
(C) √2/2
(D) √2
0
7. If sinθ + cosθ = √2cosθ , (θ ≠ 90 ) then the value of tanθ is:
8. Show that tan4θ +tan2θ = sec4θ - sec2θ .
9. Prove that (sin 𝜃 + 𝑐𝑜𝑠𝑒𝑐 𝜃) 2 + (cos 𝜃 + sec 𝜃) 2 = 7 + 𝑡𝑎𝑛2𝜃 + 𝑐𝑜t2𝜃.
10. Prove that
11. If 4 tan𝜃 = 3, evaluate
12. Prove that: = tanA
13. Prove that
2 2
14. If cosec A + cot A = m, show that (𝑚 −1) / (𝑚 +1) = cos 𝐴.
THANK YOU