0% found this document useful (0 votes)
23 views17 pages

Mod 4 and 5 Cont

Uploaded by

Nikhitha Niki
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
23 views17 pages

Mod 4 and 5 Cont

Uploaded by

Nikhitha Niki
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

Suond Cad hangues

homsgngs Recnene Reabon


ho Corside a sulaon
n>9

Ohe c , Co- and Cn-g au Sua! Constnts hG+o.


Aonelabeo g Hha hpe öcalled a Suord ofde inea homogensuy
usno aelahon oH Constan G-ffiint.
Cnk?
Thus an Ckn o Boluhon He guacbati
equahon (s ).
Thás guaabahe gahion
choatoske ezuahon fot Hhe orelabien ())
Case I The hoo noot; kl and ko egation (8) coe Saa
and esnct. Tan 9e
voe fake,
a, Ak,"+8k
Lohene A and & ae Condlanty as tha geno!
Hhe sulotion ().
Case 2 The
ond uoJ,9h k as He ommon Vale
Then oe take
= (A+Bn)k"-)
Sual Constante
ohene A and B c9e obilbany
Soluben
cguabions( )ou Conpee
KI and ks
(ase 3: Tke too sobs ohen, s Hhat
Then kl and ka each
Compler Conjegata
KË=pt i hen ky =P-ig and oe take
an=((A Cosne +BSinne )
oho A and B ae anbibay Complex Contne
He gnea
he guelatoo()

hten
1, Solve the necusor ene 9,given Hhat a =,
a,-6an- t9an-O fot n
a, =l
The choateshes equator fo the given elahion
-6k +9 =0 (k-3)°= o
Ashese noots k, = k = 3,
(A+ 6o)3h
Thogot
an
A9he A ond 8 ae
5- A and
Cond'tons a, -5 and a,=13 hCgaton, 9e ge 8-
Sofrg Hese Hoe ge A=5 cnd 8-)
1a = 3(A+ 6)
puttig an -(5-n)3
This he boluhor the given selakon, Uhe ha givn
Conen
he necueno nulabion
ebli
) Solvirg an = (n- an-), fot n>

Hhal ansl and a,-9


Gafren tguabon
sakon, he cheatoihie
&olubioo : Fa He gieo
k-k+9=0

K= (a+-&)=ti

Therjele
L9h A and B ce Consant!
r= lHil=Ja, aun tano =l,-T

Ustng He given fntial Condehond a, -| aned a,- 9 1oe gel


l=A nd
= A+B

A=1,B =l puttrg Hess voles Aand B


an
4
eabon Undo he gven
Condehens
,ay= 4 ane a, - 37 Sahsty he Gecoenle
3) 4 ao= 0, a,=l nzo
ulaton an+t ban+ t(an O aelbo
Conskants b aned c anl huo bolve he
Determine Hhe

and nl, the given slbhion,


ag tba, t Ca,=0 and a,t ba, +ca, =o
cund
9e 4 +btozD and 37 +4b+C=o
=] b-, and c=-) Suioene relaß
and c, Hhe given uuorenle
L9th hede Vales of b
ala,=o Bof no
ant9

n
The cheoatohe
Lshee rcots ard kg=-3
an= Ax 7n+8K (-3)h
Aand &oou anlibncoy Constanb.
Hhe gen Condlbos a,=0 ,a=l ina his 9e
0- At B ,l=7A -3B
=) A=-B =L
,anL[-c 3)
Q) An age a Mongo and an erge coe lo be
a bonno a

fon aoys 8, Bs Bs , Bu, The boys B, &B, do


hot sh to bave appe , Hh boy B, clos pol ant banana 6)
boy eBargl
dEbibubon Can be macle no
boy
Bi B Ba Bu
A
B
M

rly,x)= |+3x
l,x) = Cu, x),9 (Co, X) (G3,x)
= (tSx) l+ax) CI+x)

= ((+4*rh*) (Hx)
(It 4 x + x x + h x x )

OKT, Rask polynamal ü given by

Compooig
Forbiden
by Hene n= H

S, = (H-)! xr, = 3<x5= 30


So = (u- a)! xr, = S<x8=16
S, = (4-3)!xr, = 1!x4 =H
6', N =94 -30 +I6-H -/67

P,B.e e. koho auve lab fon o alionen


J) Foun þosons
fine that pive kables
one chai al each g
pany
an

P. oill hot sit ot Te oe Ts Find Pha numben y way they


he Vacant chan
Can cccupy
beloo ,upd enhra thu
&ol": Constdo
The &hade
the bocmd shonon
fockat Hhat pepsusoionl., T&T
tbles Ti6T

Tica,)= lt31+ 'r(c9,x) = tHX+3x


Nos, by Proet fetnua,
río,x)
(I+3x+x) (l+4X+3x²)

= |+4x+ 16 X4 3 x343xt
Raok poynomfal a

N= -S+S-&+s
So =5) =l9o
('n=s) `, = (S-)! X,=,X7= )68
S = (s-a)! xr =3] xI6= 94

N= t90 -168 +96-96 +3 -5

t The number y eys ohich Hhe fou þersons Can


the chain

3) Eve teaches TT,T,TS, T,,Tss ane bh be mace cast


teaches fer Bive cassu G aksCu Cs, Gne teache fot caek
dass cdo not osh to belome cass eahes
cund
teaches beury asind the sotk
hos many boys Can fheHe tahos
L9fHhet dipleasig.. teatas
s
FP
beane c has

r(ci,x) = lthX+2x?,r(a,X) =)+?x+lo+9x


. rCGx) = Y(o,x) Y(gx)
= (It4+3)(+x+10°ax)
= l+4* +lox°+9x+x+ 92 x HoxxH+ 9x

= l+ilx 4ox+ s6x³4 92xt+ y5

8, = (6-1), =5X)= 139o


S, = n) =6!=790
d, = (6-9)! = H! XHo96O
Sz =( 6-3)! = 3 XS6 33

+46o-336 +56-4
=6
N=790-13 90
Colaas
4) Agi'al shueat has

. Foidays
Dcps Can she
Mocdule- 5
Tnboroeechen to
Bincey opena bon:
en-empty
L! G be a non A unchon ti6x6
Set, A G
©penaforn a

Anon-empy Bet eguiped


bpenahord bcalleJ algebraa sbuuhot
The agbraut staho Conkisbirg g aset G and
binay openahon G a diokd by la,4,-)
Quasi GYep 1 Greupotd : operakons
A nen
-emply Sel cuipped oith chigo binoay
Calle! e)

Examplesi (N,t))(z,+) , (a,) ,(2,-) o a

A
Quasi in

axkeakve Called Seni gop

all
(i) (P(N) ),(P(N),0).(P(N),a) all aoe bernl greup.
(ai) (a),(z,) n nol semi group.
Asociasve birsy penbion
A binay opoahon caleod atoahve
,C EG at (b*c)= (atb)c.
Cenpnutahve Bircoy poakoni
* be a bincoy opeakon
taibcG
Cenmubabve and orny anb =b*
i.e cach ament G Commutes 9h each othen

"Idohty Elemeot a bincoy opeahon


Let 6 be a hen-emply Set and be xc6.
ecG buch thot *e = e* =X
Gn G.TBen the ement
Then
nespet to t
(e *) b datl o be menel i!
Monsidi Abem? cPoup
has Jaroent

& monoi iH
I, (N, ) o.
menoi 9tth tdlnkt, alemnt O.
2. (2,+) öa
rmonod oith tantt elemat ,
3, (R,) ö

Lnvense Elerment:
sel G an e
Let be a bircoy
biray opoahon
opeatian The
be he tdenbty elamunt in G fe biray
lement a'es &baid b be an nveoke g atS ÷ a*a ra'ta e

A menoid n cheh eah ement has frvorse


Greup
hen
epby sel and x io aUnd
oporabien on G
(funchon Bom GXx6) , Hen G Galled a
perabon * Gondekons hdd:
akbeG fot all a,bcG Chat &
) (a*b) * c =qk (bkc) fot all a,b,c EG, (That io,* b asloahve).
(3) Thou
(Heoe e i called an alla6G,,
(4) Fea ewey aEG , the ç an eG Such that
=aka = e, (Hene at Caly un inVese

ALelan neup
gioup in lhich biran opeahon io Cornmulohe
(ot)
Ageup G bod o be Coromutatve (a) abelian a*b=bta

a baid to lbe a finle gpreup q ohls n


AGroup (G,*) 19e olBe D(G)=n,
Then
fotte seB, b calle

The nunber olament ina fntte pronp


Hhe

Eranples fot Groups


) Peve Hhat (zt)
fngintte abelin gop
sol Th Syslm <z,+), oh Z---. -3,-2,-,0, , 43
and bircoy Gomyposihen in2, kao intg
a, (:
() dosuou Axion; y .béz =) atbE2 S
: )
i) Asseichve laus: atlbtc)= (atb)tc fa,b cEZ,
G)Exstne eist olament oeZ,

(iv) Exsteno Tovede :


4 aez, Hhe exaat an nent -a¬zGuch hat
at La)=0-(-a) +a
Thus <z,t} b
(v) Gornmutahve lau:
t a,bez , atb =bta
abelan
vi) Sine the numbe
inginie sel.
Heno lz, +) infinite abekan yop.
) Poase Hhat es,x)
are the cube ools Pale obelan
The &yshm (s, x), oher
8-i, 3, osh ,w,
and Hus | cnd 'x' He binaauy openabion o 8,
i) Close Aion

and ox = les,

LX (Ox) = lo)= Ix=1


an
1hus
Assoakve Laus bolels

Tlankh,
Undn idanbly cund leS
Idohty edmen!
(iv) Exstene nvese
|xl=|=la]

Sino wxw=lho.
?nvense
SinG
', he ?nVerde

3
ament g 8 esals
a

(V) Gommubakve auo


No (. eah-w )
each)
an
Commutalve lavs bdds
Thus s,x)
x} abelan
Sine
Hena g, *) Aotte obean group
fintte
(s, x), dhey 8 bo Se
J) Prove Hhat <8,
i.e $- fl, -l,, -ij
Sln: The Aohero g-f1, -1, i,-i}
and xx'& the binay operahen on .
1i= icS
|x-)=-1 es, (-)xi- -ics
|X(-?):-i¬S

) X-)=ieS,

Josed
(i)Asoiahve Las
X -1xi)= lx-i-i,
(-)Xi=,
(!x (-) ))xi =

Simf la cny
Asoahe Lauo holeh.
(ii) Exsbne
Cunl le S .
elument i.e
Sinco |XI =1 =| in Vese 1.
()x -) = | =(-)X-) -l

Hhe nvoe
lnent
Hena s, x>

3) 9a Hhe bet humbens R


a, beR-i} by aeb =ats -ab.
biray opercken * foi all
a

Sol:() doa Asorn e R-fi


t a b e k - t i ,thn anb= atb-ab

ü) Asoale Lao.
L ab,c eR-li
y Then (arb)*C= (at b-ab)* c
at b-ab +c- (atb-ab)
atb-abtc-a-btabc

a+b+c - a b - b c - a c t a b r

Cnd tas (bec) = at (btc-be)


= q+(btc-bc)albtc-bc)
atbtc-be-ab-actabr

atbtc-ab -be~ac+abr

(axbc= alb*c)

such tat
3 an elnent 0e R-
sheo 0¬ R-ti}.
(iw) Eteno Iede i aeR-i 3 +a
Q-)

Such Hat
a-l
-aey)-o
=at

Q-1 a-l a) =o,


Thus a-l a

a-)
ohee ER- Ca)

Ihus

(v) Commutel've Lau:


bta-ba=ba
Qxb =ath-ab =
Gomnutahve Lousbol

Thus R-i is an abeln


heoten
lat Ca be a frste gpop and Hbe a Subgroup g G.
Then o(H) dtes ol6).
t & be a pnite g
bor

Let a,4 =H aH ,.... . auH be Hhe diskinct byt Cosets


H
Then G= a,H UagHu,.. UaH
olG) = ZlaH|
aieG

But hoo dgt cosets HPn G have bame humbe


elements
Sine Hto obo a det olets Hin G ,it gollad Hd
each yt Coset q Hin G has oCH) numben amene
&o, ol6) = otH)
=k ou)

note! ConVede

You might also like