Suond Cad hangues
homsgngs Recnene Reabon
          ho      Corside a                       sulaon
                                                    n>9
 Ohe c , Co- and Cn-g au Sua! Constnts                       hG+o.
   Aonelabeo g Hha hpe öcalled a Suord ofde inea homogensuy
    usno aelahon oH Constan G-ffiint.
         Cnk?
  Thus          an Ckn       o Boluhon                          He guacbati
equahon (s ).
     Thás guaabahe gahion
 choatoske ezuahon fot Hhe orelabien ())
  Case I         The hoo noot; kl and ko            egation (8) coe Saa
  and esnct. Tan 9e
                 voe fake,
                 a,    Ak,"+8k
  Lohene A and & ae                                Condlanty as tha geno!
                      Hhe sulotion ().
Case 2          The
  ond uoJ,9h k as He ommon Vale
  Then      oe take
                      = (A+Bn)k"-)
                                            Sual Constante
    ohene        A and B c9e     obilbany
Soluben
                               cguabions( )ou Conpee
                                  KI and ks
(ase 3: Tke too sobs                     ohen, s Hhat
Then kl and ka                     each
                               Compler Conjegata
    KË=pt i hen ky =P-ig and oe take
         an=((A Cosne +BSinne         )
   oho          A and B ae         anbibay Complex Contne
                                                           He gnea
     he guelatoo()
                         hten
1, Solve the necusor ene            9,given Hhat a =,
         a,-6an-  t9an-O      fot n
 a, =l
                The        choateshes equator fo           the given elahion
                -6k +9 =0                 (k-3)°= o
Ashese noots                k, = k = 3,
                                (A+ 6o)3h
                                         Thogot
                      an
A9he A ond 8 ae
                                          5- A and
Cond'tons a, -5 and a,=13 hCgaton, 9e ge 8-
               Sofrg Hese Hoe ge A=5 cnd    8-)
1a = 3(A+ 6)
          puttig           an   -(5-n)3
         This         he boluhor           the given selakon, Uhe ha givn
           Conen
                   he       necueno       nulabion
                                          ebli
 ) Solvirg       an = (n-   an-), fot                 n>
          Hhal ansl and a,-9
   Gafren                                                       tguabon
                      sakon, he cheatoihie
&olubioo : Fa He gieo
         k-k+9=0
                                K= (a+-&)=ti
Therjele
   L9h    A and B ce                    Consant!
              r= lHil=Ja, aun           tano =l,-T
   Ustng He given fntial Condehond a, -| aned a,- 9 1oe gel
 l=A nd
                         = A+B
     A=1,B =l puttrg Hess voles                Aand B
                  an
                                   4
                                               eabon Undo he gven
 Condehens
                  ,ay= 4   ane a,  - 37 Sahsty he Gecoenle
3) 4 ao= 0, a,=l                  nzo
 ulaton an+t ban+ t(an O                          aelbo
             Conskants b aned c anl huo bolve he
  Determine Hhe
                           and nl, the given slbhion,
              ag tba, t Ca,=0 and a,t ba, +ca, =o
                                                       cund
  9e                   4 +btozD and 37 +4b+C=o
                          =] b-, and c=-)  Suioene            relaß
                          and c, Hhe given  uuorenle
   L9th   hede Vales of b
                                 ala,=o       Bof no
                  ant9
                                          n
   The cheoatohe
Lshee rcots                 ard kg=-3
    an= Ax 7n+8K (-3)h
Aand &oou anlibncoy Constanb.
   Hhe gen Condlbos a,=0 ,a=l ina his 9e
            0- At B ,l=7A -3B
            =) A=-B =L
            ,anL[-c 3)
Q) An age             a Mongo and an erge coe lo be
                      a bonno         a
             fon aoys 8, Bs Bs , Bu, The boys B, &B, do
hot sh to bave appe , Hh boy B, clos pol ant banana 6)
         boy            eBargl
dEbibubon       Can    be   macle                no
                                                      boy
                 Bi    B Ba      Bu
          A
            B
        M
                                          rly,x)= |+3x
                l,x) = Cu, x),9 (Co, X)  (G3,x)
                     = (tSx) l+ax) CI+x)
                                = ((+4*rh*) (Hx)
                                 (It 4 x + x x + h x x )
   OKT,         Rask polynamal              ü given by
  Compooig
      Forbiden
                                       by             Hene n= H
                               S, = (H-)! xr, = 3<x5= 30
                               So = (u- a)! xr, = S<x8=16
                                 S, = (4-3)!xr,   = 1!x4 =H
                 6', N =94 -30 +I6-H -/67
               P,B.e e. koho auve lab  fon o alionen
J) Foun þosons
           fine that              pive kables
                               one chai al each g
pany
                                                                  an
P. oill hot sit ot Te oe Ts Find Pha numben y way they
            he Vacant chan
Can cccupy
                               beloo ,upd  enhra  thu
&ol": Constdo
The   &hade
              the bocmd shonon
                               fockat  Hhat       pepsusoionl., T&T
                                             tbles Ti6T
      Tica,)= lt31+                         'r(c9,x) = tHX+3x
        Nos, by Proet fetnua,
                                río,x)
                      (I+3x+x) (l+4X+3x²)
                 = |+4x+ 16 X4 3 x343xt
         Raok poynomfal a
                N=    -S+S-&+s
       So =5) =l9o
           ('n=s)              `, = (S-)! X,=,X7= )68
                            S = (s-a)! xr =3] xI6= 94
                N= t90 -168 +96-96 +3 -5
       t The number y eys ohich Hhe fou         þersons Can
          the    chain
3) Eve teaches TT,T,TS, T,,Tss ane bh be mace cast
 teaches fer Bive cassu G aksCu Cs, Gne teache fot caek
dass                 cdo not osh to belome cass eahes
                                   cund
                         teaches beury asind the sotk
 hos many boys Can fheHe tahos
L9fHhet dipleasig..       teatas
                           s
         FP
     beane     c has
 r(ci,x) = lthX+2x?,r(a,X) =)+?x+lo+9x
     . rCGx) = Y(o,x) Y(gx)
                = (It4+3)(+x+10°ax)
                = l+4* +lox°+9x+x+ 92 x HoxxH+ 9x
                 = l+ilx     4ox+ s6x³4 92xt+       y5
                            8, = (6-1),   =5X)= 139o
   S, = n)   =6!=790
                           d, = (6-9)!    = H! XHo96O
                            Sz =( 6-3)!   = 3 XS6    33
                            +46o-336 +56-4
                                             =6
         N=790-13      90
                                                         Colaas
4) Agi'al shueat has
                                                            . Foidays
                           Dcps Can she
                            Mocdule- 5
                     Tnboroeechen to
 Bincey opena bon:
                      en-empty
           L! G be a non                     A unchon ti6x6
                                        Set, A                      G
                   ©penaforn   a
            Anon-empy Bet eguiped
bpenahord bcalleJ algebraa sbuuhot
     The      agbraut staho Conkisbirg g aset G and
binay openahon                     G a diokd by la,4,-)
 Quasi GYep 1 Greupotd :                                operakons
           A nen
                   -emply Sel cuipped oith chigo binoay
   Calle!                 e)
 Examplesi (N,t))(z,+) , (a,) ,(2,-) o              a
                    A
                    Quasi         in
  axkeakve          Called Seni gop
            all
 (i) (P(N) ),(P(N),0).(P(N),a) all aoe bernl greup.
(ai) (a),(z,) n nol semi group.
Asociasve birsy penbion
      A binay opoahon                  caleod atoahve
           ,C EG     at (b*c)= (atb)c.
  Cenpnutahve Bircoy poakoni
            * be a bincoy opeakon
                                                   taibcG
Cenmubabve           and orny          anb =b*
  i.e cach         ament         G    Commutes 9h each othen
"Idohty Elemeot                           a bincoy opeahon
      Let 6 be a hen-emply Set and     be              xc6.
                       ecG  buch  thot  *e  =  e*  =X
Gn G.TBen the ement
 Then
 nespet to t
                               (e *) b datl o be menel                  i!
      Monsidi      Abem? cPoup
has                  Jaroent
                  & monoi      iH
  I, (N, )                              o.
             menoi 9tth  tdlnkt, alemnt O.
 2. (2,+) öa
             rmonod   oith  tantt elemat ,
 3, (R,) ö
      Lnvense Elerment:
                                                      sel G an          e
            Let        be a bircoy
                            biray opoahon
                                        opeatian              The
 be he tdenbty  elamunt in G  fe  biray
lement a'es &baid b be an nveoke g atS ÷ a*a ra'ta e
         A    menoid  n cheh eah ement   has frvorse
  Greup
                               hen
                                     epby sel and x io aUnd
                                                        oporabien on G
 (funchon Bom GXx6) , Hen G Galled a
perabon *                 Gondekons hdd:
      akbeG fot all a,bcG Chat &
      ) (a*b) * c =qk (bkc) fot all a,b,c EG, (That io,* b asloahve).
(3) Thou
  (Heoe e i called an                                                 alla6G,,
(4) Fea ewey aEG , the               ç an                eG Such that
             =aka = e, (Hene at              Caly     un inVese
  ALelan neup
                 gioup in lhich biran       opeahon io Cornmulohe
(ot)
  Ageup      G        bod o be Coromutatve (a) abelian            a*b=bta
                         a baid to lbe a finle   gpreup  q ohls n
            AGroup (G,*)                     19e     olBe D(G)=n,
                                               Then
                                                      fotte seB, b calle
            The nunber       olament ina fntte pronp
               Hhe
Eranples fot Groups
 ) Peve      Hhat (zt)
 fngintte abelin      gop
  sol      Th Syslm <z,+), oh                  Z---. -3,-2,-,0, , 43
    and                   bircoy Gomyposihen in2,                    kao intg
                                a,                       (:
   () dosuou Axion; y .béz =) atbE2 S
                                    : )
        i) Asseichve laus: atlbtc)= (atb)tc fa,b cEZ,
G)Exstne                        eist         olament oeZ,
(iv) Exsteno Tovede :
           4 aez, Hhe exaat an          nent -a¬zGuch hat
  at La)=0-(-a) +a
           Thus <z,t}    b
 (v) Gornmutahve lau:
             t   a,bez , atb =bta
                                    abelan
  vi) Sine the numbe
                             inginie sel.
           Heno lz, +)          infinite abekan yop.
 ) Poase Hhat es,x)
 are the cube ools                             Pale obelan
       The &yshm   (s, x), oher
      8-i, 3,    osh ,w,
 and Hus              | cnd 'x'           He binaauy openabion o 8,
 i) Close Aion
             and      ox       =       les,
            LX (Ox) = lo)= Ix=1
      an
           1hus
                  Assoakve Laus bolels
                       Tlankh,
             Undn                                  idanbly cund leS
             Idohty edmen!
(iv) Exstene               nvese
                   |xl=|=la]
      Sino         wxw=lho.
                                                      ?nvense
      SinG
                                          ',       he ?nVerde
                           3
                                       ament g 8 esals
                                   a
(V)        Gommubakve auo
   No                                (. eah-w )
                                        each)
        an
               Commutalve lavs bdds
        Thus         s,x)
                       x}             abelan
               Sine
   Hena g, *)                          Aotte obean group
                                      fintte
              (s, x), dhey 8 bo Se
J) Prove Hhat <8,
               i.e    $- fl, -l,, -ij
Sln: The                                  Aohero g-f1, -1, i,-i}
        and xx'& the binay operahen on .
                                          1i= icS
                      |x-)=-1 es,          (-)xi- -ics
                      |X(-?):-i¬S
                       ) X-)=ieS,
                             Josed
(i)Asoiahve Las
               X -1xi)= lx-i-i,
                                     (-)Xi=,
               (!x (-) ))xi =
Simf la                cny
               Asoahe Lauo holeh.
  (ii) Exsbne
                                                           Cunl le S .
                              elument i.e
 Sinco     |XI =1 =|                         in Vese      1.
         ()x -) = | =(-)X-)                                       -l
                                                  Hhe nvoe
                              lnent
            Hena    s, x>
3) 9a Hhe bet        humbens R
                             a, beR-i} by aeb =ats -ab.
    biray opercken * foi all
                         a
Sol:() doa Asorn                      e R-fi
     t a b e k - t i ,thn anb= atb-ab
    ü) Asoale Lao.
          L ab,c eR-li
    y Then         (arb)*C=   (at b-ab)* c
                              at b-ab +c- (atb-ab)
                              atb-abtc-a-btabc
                               a+b+c - a b - b c - a c t a b r
         Cnd tas (bec) = at (btc-be)
                        = q+(btc-bc)albtc-bc)
                                atbtc-be-ab-actabr
                                 atbtc-ab -be~ac+abr
                        (axbc= alb*c)
                                                                 such tat
                               3 an elnent 0e R-
                                                  sheo 0¬ R-ti}.
(iw) Eteno          Iede i            aeR-i         3 +a
                                                      Q-)
   Such      Hat
                    a-l
                           -aey)-o
                           =at
             Q-1                a-l          a) =o,
          Thus            a-l          a
       a-)
                                           ohee       ER-    Ca)
       Ihus
(v) Commutel've Lau:
                                 bta-ba=ba
          Qxb =ath-ab =
                   Gomnutahve Lousbol
           Thus      R-i is an abeln
              heoten
      lat Ca be a frste gpop and Hbe a Subgroup g G.
Then o(H) dtes ol6).
         t     & be a       pnite g
                      bor
 Let a,4 =H aH ,.... . auH be Hhe diskinct byt Cosets
  H
      Then     G= a,H UagHu,.. UaH
               olG) = ZlaH|
                            aieG
   But          hoo    dgt cosets         HPn G have bame humbe
  elements
     Sine Hto obo a det olets Hin G ,it gollad Hd
each yt Coset q Hin G has oCH) numben amene
             &o, ol6) =            otH)
                             =k ou)
note! ConVede