MATH 151 – Calculus I
Lecture 8: The Derivative as a Function
Date: September 19, 2024
Goals for Today:
               •       Understand the derivative as a function
               •       Practice computing derivatives from definition
               •       Graphical interpretation of the derivative
Quick Review:
              •     Definition of derivative at a point:
        f′(a)=limh→0f(a+h)−f(a)hf'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}
        {h}f′(a)=limh→0hf(a+h)−f(a)
               •       This gives us the instantaneous rate of change of fff at aaa
Now: Derivative as a Function
We now look at:
f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}f′
(x)=h→0limhf(x+h)−f(x)
This defines a new function f′(x)f'(x)f′(x) that tells us the slope of the tangent line at every point
xxx in the domain of fff.
Example 1:
Let f(x)=x2f(x) = x^2f(x)=x2
Then:
f′
(x)=limh→0(x+h)2−x2h=limh→0x2+2xh+h2−x2h=limh→02xh+h2h=limh→0
(2x+h)=2xf'(x) = \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} = \lim_{h \to 0} \
frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \
lim_{h \to 0} (2x + h) = 2xf′(x)=h→0limh(x+h)2−x2=h→0lim
hx2+2xh+h2−x2=h→0limh2xh+h2=h→0lim(2x+h)=2x
So f′(x)=2xf'(x) = 2xf′(x)=2x
Graphical Interpretation:
               •      f′(x)f'(x)f′(x) gives us the slope of the tangent line to f(x)f(x)f(x) at each
       point
               •      If f(x)f(x)f(x) is increasing, f′(x)>0f'(x) > 0f′(x)>0
               •      If f(x)f(x)f(x) is decreasing, f′(x)<0f'(x) < 0f′(x)<0
               •      Critical points where f′(x)=0f'(x) = 0f′(x)=0 may be local max/min
Example 2:
Let f(x)=1xf(x) = \frac{1}{x}f(x)=x1
Using the limit definition:
f′(x)=limh→01x+h−1xh=limh→0x−(x+h)h(x)
(x+h)=limh→0−hhx(x+h)=−1x2f'(x) = \lim_{h \to 0} \frac{\frac{1}{x + h} -
\frac{1}{x}}{h} = \lim_{h \to 0} \frac{x - (x + h)}{h(x)(x + h)} = \lim_{h \
to 0} \frac{-h}{h x (x + h)} = \frac{-1}{x^2}f′(x)=h→0limhx+h1−x1
=h→0limh(x)(x+h)x−(x+h)=h→0limhx(x+h)−h=x2−1
So f′(x)=−1x2f'(x) = -\frac{1}{x^2}f′(x)=−x21
Conceptual Takeaways:
               •      The derivative is itself a function.
               •      We can graph f′(x)f'(x)f′(x) alongside f(x)f(x)f(x) to analyze behavior.
               •      Slope tells us about increasing/decreasing trends and concavity.
Homework:
•   Complete Problems 3–15 odd from Section 2.3
•   Quiz Friday: Derivatives from first principles
•   Optional: Watch Prof. Gross’s video on tangent line intuition