0% found this document useful (0 votes)
144 views4 pages

Factor Classroom Sheet

The document contains a series of mathematical problems related to factors, including finding total factors, odd and even factors, and sums of divisors for various numbers. It also includes answer keys for the problems presented. The problems are aimed at enhancing understanding of factorization and divisor calculations.

Uploaded by

jnpsti99
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
144 views4 pages

Factor Classroom Sheet

The document contains a series of mathematical problems related to factors, including finding total factors, odd and even factors, and sums of divisors for various numbers. It also includes answer keys for the problems presented. The problems are aimed at enhancing understanding of factorization and divisor calculations.

Uploaded by

jnpsti99
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Join Telegram- Maths by Aditya Ranjan Factor

1. Find the total number of factor of 1540. 9. Find the number of odd factors of 7200.
1540 esa dqy xq.ku•aMksa dh la[;k Kkr dhft,\ 7200 ds fo"ke xq.ku[kaMksa dh la[;k Kkr djsaA
UPSI 17/11/2021 (Shift-01) (a) 4 (b) 9
(a) 20 (b) 24
(c) 54 (d) 45
(c) 22 (d) 23
10. Find the number of even factors of 10500.
2. Find the total number of factor of 3600.
10500 ds le xq.ku[kaMksa dh la[;k Kkr djsaA
3600 ds dqy xq.ku[k.Mksa dh la[;k Kkr djsaA

r
(a) 48 (b) 16
SSC CGL TIER-II 12 /09/2019

si
(a) 45 (b) 44 (c) 32 (d) 46
11. Consider the number N = 126 × 38 × 53.

an by
(c) 43 (d) 42
3. Find the total number of factor of 52900. l a[;k N = 126 × 38 × 53 i j fopkj djsaA
Which of the following statements is/are

n
52900 esa dqy xq.ku[kaMksa dh la[;k Kkr dhft,A
correct?
UPSI 24/11/2021 (Shift-01)
fuEufyf•r esa ls dkSu lk@ls dFku lgh gS@gSa\

ja
(a) 27 (b) 31
R s 1. The number of odd factors of N is 60.
(c) 33 (d) 29
N d s fo"ke xq.ku•.Mksa dh la[;k 60 gSA
a th
4. What is the number of factors of 243 – 163 – 83?
243 – 163 – 83 ds xq.ku[kaMksa dh la[;k D;k gS\ 2. The number of even factors of N is 720.
UPSC CDS-I 13/04/2025 N d s le xq.ku•aMksa dh la[;k 720 gSA
(a) 33 (b) 30 Select the correct answer using the code given
ty a

(c) 28 (d) 24 below :


4 6 uhps fn, x, dksM dk mi;ksx djds lgh mÙkj pqusa%
di M

5. If N = 4 + 6 , then find the number of factors


of N. [CDS - 2022 (II)]

N ds xq.ku[kaMksa dh la[;k Kkr djsaA(a) Only 1


; fn N = 44 + 66 gS] rks (b) Only 2
(a) 28 (b) 56 (c) Both 1 and 2 (d) Neither 1 nor 2
(c) 14 (d) 7 12. The sum of all factors of 19600 is :
6. 11 12 13 14
If N = 4 + 4 + 4 + 4 , then how many 19600 ds lHkh xq.ku[kaMksa dk ;ksxiQy Kkr djsaA
positive factors of N are there? (a) 5428 (b) 54777
; fn N = 411 + 412 + 413 + 414 r ksN ds dqy fdrus (c) 33667 (d) None of these
èkukRed xq.ku[kaM gksaxs\ 13. Consider the following statements in respect
(a) 92 (b) 48 of all factors of 360:
(c) 50 (d) 51 360 ds lHkh xq.ku[kaMksa ds lanHkZ esa fuEufyf[kr dF
A

7. Find the proper factors of 2940.


fopkj dhft,%
2940 dk leqfpr xq.ku[kaMksa dh la[;k Kkr djsaA 1. The number of factors is 24.
(a) 34 (b) 36
xq.ku[kaMksa dh la[;k 24 gSA
(c) 24 (d) 32
2. The sum of all factors is 1170.
8. What is the total number of factors of the
number 720 except 1 and the number itself? l Hkh xq.ku[kaMksa dk ;ksxiQy 1170 gSA
l a[;k 720 ds (1 vkSj 720 dks NksM+dj) dqy xq.ku[kaMksa dh [CDS - 2023 (I)]

la[;k fdruh gS\ Which of the above statements is/are correct?


SSC CHSL 10/03/2023 (Shift-04) mijksÙkQ esa ls dkSu lk@ls dFku lgh gS@gSa\
(a) 29 (b) 27 (a) 1 only (b) 2 only
(c) 32 (d) 28 (c) Both 1 and 2 (d) Neither 1 nor 2

Aditya Ranjan (Excise Inspector) Selected gaS


Selection fnyk,axs 1
Join Telegram- Maths by Aditya Ranjan Factor
14. The sum of the odd divisors of 216 is: 23. Which of the following numbers is greater
216 ds fo"ke Hkktdksa dk ;ksx fdruk gS\ than the sum of all the prime factors of 1560?
SSC CPO 11/11/2022 (Shift-01) fuEufyf•r esa ls dkSu lh la[;k 1560 ds lHkh vHkkT; xq.ku•aMk
(a) 16 (b) 14
ds ;ksx ls vfèkd gS\
DP CONSTABLE 29/11/2023 (Shift- 03)
(c) 40 (d) 600 (a) 22 (b) 23
15. The sum of even divisors of 4096 is : (c) 21 (d) 41
4096 ds Lke xq.ku[kaMksa dk ;ksxiQy Kkr djsaA 24. What are distinct prime factors of the number
(a) 6144 (b) 8190 26381?
(c) 8192 (d) 6142 la[;k 26381 ds fof'k"V vHkkT; xq.ku•aM D;k gSa\
16. The sum of even factors of 1800 is : [CDS - 2021 (II)]

1800 ds Lke xq.ku[kaMksa dk ;ksxiQy Kkr djsaA (a) 29, 17, 37 (b) 31, 17, 47
(c) 19, 37, 13 (d) 23, 31, 37
(a) 403 (b) 6045
25. A 4-digit number N has exactly 15 distinct
(c) 6448 (d) 5642
divisors. What is the total number of distinct

r
17. What is the sum of reciprocal of all factors of divisors of N2?
number 360.

si
,d 4&vadh; la[;k N ds Bhd 15 fHkUu HkktdNgSaA
2
ds
la[;k 360 ds LkHkh xq.ku[kaM ds O;qRØeksa dk ;ksx D;kfHkUu
gS\ Hkktdksa dh dqy la[;k D;k gS\

an by
(a) 2.65 (b) 3.25 UPSC CDS-II 01/09/2024
(c) 3.48 (d) 4.20 (a) 16 (b) 30

n
18. Find the product of all factors of 544? (c) 45 (d) 225
544 ds lHkh xq.ku[kaMksa dk xq.kuiQy Kkr djsaA 26. What is the sum of the divisors of 484 that are

ja
perfect squares?
R s 3
(a) 12 (b) 544 2 484 ds mu Hkktdksa dk ;ksx fdruk gS tks iw.kZ oxZ gSa\
a th
(c) 558 (d) 544 6 SSC CGL 20/07/2023 (Shift-01)
(a) 125 (b) 35
19. Find the product of all factors of 1800?
(c) 610 (d) 13
1800 ds lHkh xq.ku[kaMksa dk xq.kuiQy Kkr djsaA
27. The number of factors of 196 which are
ty a

(a) 180018 (b) 18008 divisible by 4 is:


(c) 90018 (d) 9008 196 ds fdrus xq.ku[kaM 4 ls foHkkT; gSa\
di M

20. If 847 × 385 × 675 × 3025 = 3a × 5b × 7c × 11d, SSC CPO 09/11/2022 (Shift-02)
then the value of ab – cd is: (a) 228 (b) 4
;fn 847 × 385 × 675 × 3025 = 3a × 5b × 7c × 11d rks (c) 57 (d) 3
ab – cd dk eku D;k gksxk% 28. How many factors of 14,400 are divisible by 18
SSC CGL MAINS 29/01/2022
but not by 36?
(a) 4 (b) 5 14]400 ds fdrus xq.ku[kaM 18 ls foHkkT; gSa] ysfdu 36 ls ugh
SSC CHSL 05/07/2024 (Shift-04)
(c) 1 (d) 7
(a) 5 (b) 2
21. Find the number of prime factors in the (c) 4 (d) 3
product (30)5 × (24)5.
29. Find the ways to express 240 as product of two
(30)5 × (24)5 ds vHkkT; xq.ku[kaMksa dh la[;k Kkr djsaA factors.
A

SSC CGL TIER-II (18/11/2020)


240 dks nks xq.k[k.Mksa ds xq.kuiQy ds :i esa O;Dr dju
(a) 45 (b) 35
ds rjhdksa dh la[;k Kkr djsaA
(c) 10 (d) 30
(a) 10 (b) 11
22. The numbers are in 323
(c) 64 (d) 20
la[;k 323 esa gSa 30. Find the ways to express 11025 as product of
UP CONSTABLE 18/02/2024 (Shift-01) two factors.
(a) No prime factors/dksbZ vHkkT; xq.ku•aM ugha
11025 dks nks xq.k[k.Mksa ds xq.kuiQy ds :i esa O;Dr dj
(b) Four prime factors/pkjvHkkT; xq.ku•aM ds rjhdksa dh la[;k Kkr djsaA
(c) Two prime factors/nks vHkkT; xq.ku•aM (a) 13 (b) 14
(d) Three prime factors/rhu vHkkT; xq.ku•aM (c) 27 (d) 30

Aditya Ranjan (Excise Inspector) Selected gaS


Selection fnyk,axs 2
Join Telegram- Maths by Aditya Ranjan Factor

ANSWER KEY
1. (b) 2. (a) 3. (a) 4. (a) 5. (c) 6. (a) 7. (a) 8. (d) 9. (b) 10. (c)
11. (c) 12. (b) 13. (c) 14. (c) 15. (b) 16. (d) 17. (b) 18. (d) 19. (a) 20. (b)
21. (b) 22. (c) 23. (d) 24. (d) 25. (c) 26. (c) 27. (d) 28. (d) 29. (a) 30. (b)

CALCULATION
TECHNIQUES

r
si
an by
n
ja
R s
a th
ty a
di M
A

Aditya Ranjan (Excise Inspector) Selected gaS


Selection fnyk,ax
s 3

You might also like