9.class Notes of M-2
9.class Notes of M-2
CLASS NOTES
Contents
Differential Equations of First Order and First Degree (Leibnitz linear, Bernoulli’s, Exact),
Differential Equations of First Order and Higher Degree, Higher order differential equations with
constants coefficients, Homogeneous Linear Differential equations, Simultaneous Differential
Equations.
Introduction: Differential equations arise from many problems in oscillations of mechanical and
electrical systems, bending of beams, conduction of heat, velocity of chemical reactions
etc.,and as such play a very important role in all modern scientific and engineering studies.
Definitions:
1. Ordinary Differential Equation: An ordinary differential equation is that in which all the
differential coefficients have reference to a single independent variable.
dy
For example: =x+ 1
dx
dy 2
For example: 1. =x +1 it is first order and first degree.
dx
2
d y dy
2. 2
− =0It is second order and first degree.
d x dx
Part-I: Solution of First order and First degree Ordinary Differential Equation
1
B.Tech , Sem- II, Mathematics -II (BT -202 )
Prerequisite Knowledge
[ I] Variable Separable Form :-
dy f 1 ( x )
=
dx f 2 ( y )
An differential Equation is of the type --------- (1)
can be written as f 2 ( y ) dy =f 1 ( x ) dx
Integrate both sides
∫ f 2 ( y ) dy = ∫ f 1 ( x ) dx +C
F 2 ( y ) =F1 ( x ) dx + C
i.e.
C
Where is the constant of integration .
Which is the required general solution of given equation (1).
dy
x3 −3 y 2=xy 2
Example-1.Solve the differential Equation
dx
Solution: Given equation can be written as
3 dy 2 2
x =xy +3 y
dx
dy
x3 = y 2 ( x+ 3 )
dx
Or
dy
y 2
=
1
x 2( 3
+ 3
x ) dx
It is in variable separable form
Therefore integrate both sides
1 1 3
− + =C
x y 2 x2
2
B.Tech , Sem- II, Mathematics -II (BT -202 )
dy
−x tan ( y−x ) = 1
Example-2. Solve the differential Equation dx
dy dt dy dt
−1= ∴ =1+
dx dx dx dx
Hence the given equation becomes
dt
1+ −x tan t =1
dx
or cot t dt = xdx
Integrate both sides
x2
logsin t = + log c
2
sin t x2 / 2
or =e
c
2
x /2
or sin ( y −x )=c e
[II ] Homogeneous Form :-
dy f 1 ( x , y )
=
differential Equation is of the type
dx f 2( x , y )
A --------- (1)
is called a homogeneous differential Equation of order 1 and degree 1, if
f 1 ( x , y ) and f 2 ( x , y ) be two different homogeneous functions of x and y .
3
B.Tech , Sem- II, Mathematics -II (BT -202 )
Hence the given equation is reduces to variable separable form and we solve them accordingly
y
v=
and we put x in the last step.
dy
x = y +√ x 2+ y 2
Example . Solve the differential equation dx
Solution: Given equation can be written as
dy y+ √ x 2 + y 2
=
dx x
It is a homogeneous differential Equation of order 1 and degree 1.
To solve put,
4
B.Tech , Sem- II, Mathematics -II (BT -202 )
√
2
y y
+ 1+ 2 = c x
x x
y+ √ x + y =cx
2 2 2
A differential equation is said to be Linear if the dependent variable and it’s derivatives appear
only in the first degree and are not multiplied together.
dy
The equation of the type + Py=Q ------- (1) is called a linear differential equation in y
dx
5
B.Tech , Sem- II, Mathematics -II (BT -202 )
dv du
u +v + P uv=Q
dx dx
du dv
[ + Pu¿ v+ u =Q ----------- (3)
dx dx
In (2), one of the two functions u∧v is arbitrary,
du
∴ Let we choose u in such a way that, + Pu=0
dx
du
∴ =−Pdx
u
It is in variable separable form
Integrate both sides
logu=−∫ Pdx
∴ u=e ∫
− Pdx
Or y e∫ =∫ Q e∫ dx + c
Pdx Pdx
2 dy
Example-1: Solvecos x + y =tanx
dx
dy 2 2
Solution: Given equation can be written as + Sec x y=Sec x tanx
dx
dy
It is of the type + Py=Q i.e. it is linear in y
dx
6
B.Tech , Sem- II, Mathematics -II (BT -202 )
y e∫ =∫ Q e∫ dx + c
Pdx Pdx
Put tanx=t
2
∴ Sec x dx=dt
Hence the above equation becomes
y e =∫ t e dt +c
tanx t
tanx t t
ye =t e −e +c
tanx tanx
Or y e =e ( tanx−1 ) +c .
3
Example-2: Solve ydx −xdy +3 x2 y 2 e x dx=0
( y+3 x 2 y 2 e x ) dx=xdy
3
⇒
dy 3
⇒ x = y+ 3 x 2 y 2 e x
dx
dy y 3
⇒ − =3 x y 2 e x
dx x
1 dy 1 3
⇒ 2
− =3 x e x
y dx yx
1 1 dy dz
Put =z ⇒− 2 = , then
y y dx dx
dz z x 3
⇒ + =−3 x e
dx x
∫ 1x dx
I.F.=e =e log x =x . Hence solution is
z ⋅ IF =∫ (−3 x e ) ⋅ IF dx +C
3
x
⇒ zx =−∫ 3 x 2 e x dx+C=−e x + C
3 3
x x 3
⇒ =−e +C
y
7
B.Tech , Sem- II, Mathematics -II (BT -202 )
dx
y ( log y ) + x−log y=0
dy
dx x 1
+ =
dy y ( log y ) y
1 log y
x ⋅ IF =∫ ⋅IFdy + c ⇒ x ⋅log y=∫ dy + c Putlog y=t
y y
2
t2 ( log y )
⇒ x ⋅log y=∫ tdt +c = + c= +c
2 2
dy n
The equation of the type + Py=Q y ------- (1) is called a Non- linear differential equation in
dx
y or Bernoulli’s Equation or Leibnitz’s linear equation. Where P∧Q be some functions of x and
n>1 .
1−n
Put y =t
dy dt−n
∴ ( 1−n ) y =
dx dx
−n dy 1 dt
⇒y =
dx 1−n dx
1 dt
+ Pt=Q
1−n dx
dt
⟹ + ( 1−n ) Pt =( 1−n ) Q
dx
It is linear in t
8
B.Tech , Sem- II, Mathematics -II (BT -202 )
t . I . F .=∫ I . F . ( 1−n ) Q dx +C
Or
y . I . F .=∫ I . F . ( 1−n ) Q dx +C
1−n
dy 3 6
Example-1: Solve x + y= x y ---- (1)
dx
−5
−6 dy 1 2
∴y + y =x ------- (2)
dx x
−5
y =t
−6 dy dt
∴−5 y =
dx dx
−1 dt t 2
+ =x
5 dx x
dt t 2
¿ −5 =−5 x
dx x
It is linear in t
∴I.F. =e ∫ −5 dx
x
=x−5
dx 2 3
⇒ −xy=x y
dy
1 dy y 3
⇒ 2
− =y
x dx x
−1 1 dx dz
Put =z ⇒ 2 =
x x dy dy
dz 3
⇒ + yz= y
dy
z ⋅ IF =∫ y ⋅ IF dy +c
3
2 2
y y y
2
y
2
⇒ z ⋅e =∫ y e dy +c Put e 2 =t ⇒ y e 2 dy=dy
2 3 2
2
y
⇒ z ⋅e =∫ log t dt +c=t ( log t−1 )+ c .
2
( )
2 2
y y 2
−1 2 y
Put the values of z and t , then e =e 2 −1 +c
x 2
The equation of the type Mdx + Ndy=0 ------- (1) is called an exact differential equation of
∂M ∂N
order 1 and degree 1 iff = Where M ∧N be some functions of x and y .i.e. It is an
∂ y ∂x
exact differential of some functions of x and y .
Verification: If the equation of the type Mdx + Ndy=0 ------- (1) is called an exact differential
of order 1 and degree 1.
Then Mdx + Ndy=du , Where ube some functions of x and y .
∂u ∂u
But du= dx+ dy
∂x ∂y
10
B.Tech , Sem- II, Mathematics -II (BT -202 )
∂u ∂u
Hence, Mdx + Ndy= dx+ dy
∂x ∂y
∂u ∂u
i.e. M = , N=
∂x ∂y
2 2
∂M ∂u ∂N ∂ u
∴ = , =
∂ y ∂ y ∂x ∂ x ∂ x ∂ y
2 2
∂u ∂ u
But, we know that , =
∂ y∂ x ∂x ∂ y
∂M ∂N
Hence from above = .
∂ y ∂x
Hence proved
∴ M =2 x +3 y , N=3 x + y−1
3
∂M ∂N
=3 , =3
∂y ∂x
∂M ∂N
Hence, = Therefore ,it is an exact differential equation.
∂ y ∂x
The general solution is
4 2
x y
⟹2 +3 xy+ − y=C .
4 2
Example-2: S h ow t h at t h e equation ( y 2 e x y + 4 x 3 ) dx + ( 2 xy e x y −3 y 2) dy=0is exact. Find it’ s
2 2
general solution .
11
B.Tech , Sem- II, Mathematics -II (BT -202 )
∴ M =( y e +4 x )And N=2 xy e x y −3 y 2 ,
2 2
2 xy 3
∂M xy 2
3 xy ∂N
2
xy 2
3 xy 2
Hence , =2 y e + 2 x y e and =2 y e +2 x y e .
∂y ∂x
∂M ∂N
Here, we have = , i.e. Equation is exact differential equation. Hence the general
∂ y ∂x
solution is
⇒ e x y + x 4 − y 3=c .
When the equation is of the type Mdx + Ndy=0 is not exact. Then, we multiply this equation
by some function of x and y or by a suitable factor so that the equation becomes exact. Then
this factor is called I.F. i.e. Integrating factor.
Rule-1 of I.F.:--When the equation is of the type Mdx + Ndy=0 is not exact and if M ∧N be
1
homogeneous functions of x and y and M x + Ny ≠ 0 , Then I . F .=
Mx+ Ny
∴ M =x y −2 x y , N=−( x −3 x y )
2 2 3 2
∂M 2 ∂N 2
=x −4 xy , =−3 x + 6 xy
∂y ∂x
1 1
Now, Mx + Ny=x 2 y 2 ≠ 0 hence I . F .= =
Mx + Ny x 2 y 2
Therefore, multiply given equation by this I.F
12
B.Tech , Sem- II, Mathematics -II (BT -202 )
x
⟹ −2 logx+3 logy=C .
y
Rule-2 of I.F.:-- When the equation is of the type Mdx + Ndy=0 is not Exact and if it is of the
1
type f 1 ( x , y ) ydx + f 2 ( x , y ) xdy=0and Mx−Ny ≠0 , Then I . F .=
Mx−Ny
∴ M =2 x y + y , N=x +2 x y −x y
2 2 4 3
∂M ∂N 3 3
=4 xy +1 , =1+ 4 xy−4 x y
∂y ∂x
We get,
2
(
2
x y x y
3
1 1
) (
2
)
+ 4 3 dx + 3 4 + 2 3 −1/ y dy=0 is an exact equation.
x y x y
Hence , the general solution is
⟹∫
( x 2y + x 1y ) dx
3 2 4 3
Keeping y constant
+∫ −( 1/ y ) dy=C
1 1
⟹− 22
− 3 3 −logy=C .
x y 3x y
13
B.Tech , Sem- II, Mathematics -II (BT -202 )
Rule-3 of I.F.:-- When the equation is of the type Mdx + Ndy=0 is not exact
∂ M ∂N
−
If ∂ y ∂x then, I.F. =e∫ f ( x ) dx.
=f ( x )
N
Rule-4 of I.F.:-- When the equation is of the type Mdx + Ndy=0 is not exact
∂N ∂M
−
If ∂x ∂ y then, I.F. =e∫ g ( y )dy
=g ( y )
M
∴ M =x + y + x , N=xy
2 2
∂M ∂N
=2 y , =y
∂y ∂x
∂ M ∂N
− 1
Now, ∂ y ∂ x 2 y− y 1 Hence, I.F. =e∫ f ( x ) dx =e∫ x dx =x
= = =f ( x )
N xy x
4 2 2 3
x x y x
⟹ + + =C .
4 2 3
14
B.Tech , Sem- II, Mathematics -II (BT -202 )
∴ M =x y + y , N=2 ( x y + x + y )
3 2 2 4
∂M 2 ∂N 2
=3 x y +1 , =4 x y + 2
∂y ∂x
2 4 2 6
x y xy y
⟹ + + =C .
2 1 3
Part-II: Differential Equations of First Order and Higher Degree
The most general form of a differential equation of the first order and of higher degree say of
nth degree can be written as
( )
dy n
( ) ( )
n−1 n−2
dy dy
+a1 ( x , y ) +a2 ( x , y ) + .. . . ..
dx dx dx
dy
+ an−1 ( x , y ) + a ( x , y )=0
… … … dx n
or pn+a1pn-1+a2pn-2+ …….+an-1 p+an= 0 (2.1)
dy
p=
Where dx and a1, a2, . . , an area functions of x and y.
(2.1) can be written as
F(x, y, p) = 0 (2.2)
[I] First-Order differential Equation of Higher Degree solvable for p
15
B.Tech , Sem- II, Mathematics -II (BT -202 )
Example1. Solve
xy ( )
dy 2
dx
dy
+( x 2 + y 2 ) +xy=0
dx (2.5)
16
B.Tech , Sem- II, Mathematics -II (BT -202 )
Let the differential equation given by (2.2) be solvable for y. Then y can be expressed as a
function x and p, that is,
y= f ( x , p ) (2.9)
Differentiating (2.9) with respect to x we get
dy ∂ f ∂ f dp
= + .
dx ∂ x ∂ p dx (2.10)
(2.10) is a first order differential equation of first degree in x and p. It may be solved. Let
solution be expressed in the form
ϕ( x , p , c )=0 (2.11)
The solution of equation (2.9) is obtained by eliminating p between (2.9) and (2.11). If
elimination of p is not possible then (2.9) and (2.11) together may be considered parametric
equations of the solutions of (2.9) with p as a parameter.
Example 2: Solve y2-1-p2=o
y= √1+ p2 (2.12)
or
[
p 1−
1
√ 1+ p ]
dp
2 dx
=0
(2.13)
17
B.Tech , Sem- II, Mathematics -II (BT -202 )
Example 3. Solve
x ( )
dy 3
dx
dy
−12 −8=0
dx
dy
p= , then
Solution: Let dx
xp3-12p-8=0
It is solvable for x, that is,
12 p +8 12 8
x= = 2+ 3
p3 p p … (2.18)
Differentiating (2.18) with respect to y, we get
dx 12 dp 8 dp
=−2 3 −3 4
dy p dy p dy
1 24 dp 24 dp
or =− 3 − 4
p p dy p dy
or dy= −
( 24 24
2
p p
− 3 dp
)
… (2.19)
(2.18) and (2.19) constitute parametric equations of solution of the given differential equation.
[ IV] Differential Equation of First-Order and Higher Degree in x and y – Lagrange’s i.e.
Clairaut’s Form.
Let Equation (2.2) be of the first degree in x and y, then
y = x1(p) + 2 (p) … (2.20)
Equation (2.20) is known as Lagrange’s equation.
If 1(p) = p then the equation
18
B.Tech , Sem- II, Mathematics -II (BT -202 )
y = xp + 2 (p) .. (2.21)
is known as Clairaut’s equation
By differentiating (2.20) with respect to x, we get
dy dp dp
=ϕ ( p)+ xϕ ' ( p ) +ϕ ' ( p )
dx 1 1 dx 2 dx
dp
p−ϕ 1 ( p)=( xϕ 1' ( p )+ ϕ '2 ( p))
or dx … (2.22)
From (2.22) we get
dp
( x+ ϕ '2 ( p )) =0
dx for 1(p)=p
This gives
dp
=0 '
dx or x+2 (p) =0
dp
=0
dx gives p = c and
by putting this value in (2.21) we get
y=cx+2(c)
This is a general solution of Clairaut’s equation.
'
The elimination of p between x+2 (p) = 0 and (2.21) gives a singular solution.
If 1(p) p for any p, then we observe from (2.22) that
dp
≠0
dx every where. Division by
dp
[ p−ϕ 1 ( p )]
dx in (2.22) gives
dx ϕ '1 ϕ '2 ( p )
− x
dp p−ϕ1 ( p ) p−ϕ 1 ( p )
=
which is a linear equation of first order in x and thus can be solved for x as a function of
p, which together with (2.20) will form a parametric representation of the general solution of
(2.20)
( dy
Example 4 . Solve dx
−1 )( y−x )=
dy dy
dx dx
dy
p=
Solution: Let dx then,
(p-1) (y-xp)= p
This equation can be written as
p
y=xp +
p−1
19
B.Tech , Sem- II, Mathematics -II (BT -202 )
A differential equation is said to be Linear if the dependent variable and it’s derivatives occur
only in the first degree and are not multiplied together.
Thus, the general linear differential equation of the nth order with constant coefficients is of
the form
n n−1 n−2
d y d y d y dy
n
+a 1 n−1 +a2 n−2
+−−−−−a n−1 + an y=X … … … … (1)
dx dx dx dx
d
Or (Dn +a 1 Dn−1 +a 2 Dn−2 +−−−−−an−1 D+ an ) y =X Since D ≡
dx
Or f ( D )y = X ………………………………………. (1)
Where f ( D )=Dn +a1 Dn−1 +a2 Dn−2+−−−−−a n−1 D+a n
If X =0 , then equation (1) is called a homogeneous linear differential equation of the n th order
with constant coefficients.
If X ≠ 0 , then equation (1) is called a Non-homogeneous linear differential equation of the
n th order with constant coefficients.
Now, the general solution of equation (1) consists of two parts.
i.e. y=C . F .+ P . I .… … … … … … … … .(2)
20
B.Tech , Sem- II, Mathematics -II (BT -202 )
Method of finding C.F.(Complementary function ):-- The Complementary function can written
on the basis of nature of roots of auxiliary equation[ A.E.] of (1) as
f ( D=m )=0
n n−1 n−2
i.e. m +a1 m + a2 m +−−−−−an −1 m+ an =0 ……………………… (3)
X
is P.I. ¿
f ( D)
Case-1: When X =e ax
In this case
21
B.Tech , Sem- II, Mathematics -II (BT -202 )
ax ax
e e
[i] P.I. ¿ = , providedf ( a ) ≠ 0
f D f (a )
( )
ax ax
e e '
[ii] If f ( a ) =0 then P.I. ¿ =x , provided f ( a ) ≠ 0
f ( D) '
f (a )
ax ax
e 2 e ''
'
Again If f ( a )=0then P.I. ¿ =x , provided f ( a ) ≠ 0
(
f D ) ''
f ( a)
Case-2 : When X =cosax
In this case
cosax cosax
, providedf ( −a ) ≠ 0
2
[i] P.I. ¿ =
f ( D ) f (−a )
2 2
cosax cosax
, provided f (−a ) ≠ 0
' 2
[ii] If f (−a2 )=0then P.I. ¿ =x '
f (D )2
f (−a ) 2
cosax 2 cosax
, provided f ( −a ) ≠ 0
'' 2
Again if f ' (−a2 )=0 then P.I. ¿ =x ' '
f (D ) 2
f ( −a ) 2
Sinax Sinax
, provided f (−a ) ≠ 0
' 2
[ii] If f (−a2 )=0then P.I. ¿ =x '
f (D )2
f ( −a ) 2
Sinax 2 Sinax
, provided f (−a ) ≠ 0
'' 2
Again if f ' (−a2 )=0 then P.I. ¿ =x ' '
f (D ) 2
f (−a ) 2
m
Case-4 : When X =x , w h ere mis a positive integer .
In this case ,
m
x
P.I. ¿
f ( D)
Take out the lowest degree term common from f ( D )to make the first term unity.The
remaining factor will be of the form ( 1−∅ ( D ) ).Now ,take this factor in the numerator i.e.
( 1−∅ ( D ) )−1. Expand ( 1−∅ ( D ) )−1 in ascending powers of D as far as the term containing Dm and
then operate on x m term by term.
Note:-
1.( 1−x )−1 =1+ x+ x 2 + x 3+ … … … .
2. ( 1−x )−2 =1+ 2 x +3 x 2+ 4 x 3 +… … … .
In this case ,
ax
e V ax V
P.I. ¿ =e
f ( D) f ( D+a )
Case-6 : When X =xV where V =f ( x )
22
B.Tech , Sem- II, Mathematics -II (BT -202 )
In this case ,
'
xV V f ( D)
P.I. ¿ =x − V
f ( D) f ( D ) ( f (D) )2
X
Case-7 : =∫ Xdx
( D)
X
=e ∫ X e dx
ax −ax
Case-8 :
( D−a )
x 3x x 3x
y=C . F .+ P . I .=c 1 e + c2 e +0=c 1 e +c 2 e
2x
Hence C.F. = ( c 1 +c 2 x ) e
[
8 ( e 2 x + sin 2 x + x 2 )
]
2x 2
X e sin 2 x x
∴P.I. = = =8 + +
f ( D) ( D−2 )2 ( D−2 )2 ( D−2 )2 ( D−2 )2
¿ 8 [P . I 1 + P . I 2 + P . I 3 ]…..(1)
23
B.Tech , Sem- II, Mathematics -II (BT -202 )
2x 2x 2x
e e e
Now, P . I 1= 2
= 2
= Hence, this method fails
( D−2 ) ( 2−2 ) 0
2x 2x 2x 2x
e e 2 e 2e
∴ P . I 1= =x =x =x
( D−2 )2 2 ( D−2 ) 2.1 2
sin 2 x sin 2 x sin 2 x sin 2 x 1
P . I 2= = 2 = 2
( D−2 ) D −4 D+4 −2 −4. D+4 −4. D −4
2
= = ∫ sin 2 x dx
1
∴ P . I 2= cos 2 x
8
( )
2 −2 2
x 1 D 2 1 D D 2
P . I 3= 2
= 1− x = [1+ 2 + 3 + … … ..]x
( D−2 ) 4 2 4 2 4
2
1 D D 2
= [1 x2 +2 x 2+3 x + … … ..]
4 2 4
1 2 2x 2
= [ x +2 +3 +0 … … ..+0]
4 2 4
1 2 3
= [ x +2x+ ]
4 2
∴P.I.¿ 8 [P . I 1 + P . I 2 + P . I 3 ]
2x
e 1 1 2 3
=8 [ x 2 + Co 2 x+ ( x + 2 x + ) ¿
2 8 4 2
2x
2x e 1
2 1 2 3
y=C . F .+ P . I .=( c 1 +c 2 x ) e +8[ x + cos 2 x + ( x +2 x+ )]
2 8 4 2
2 x
∴ f ( D )= D −2 D+ 1, X =x e Sinx
x
Hence C.F. = ( c 1 +c 2 x ) e
x
X e x Sinx x x Sinx x x Sinx x x Sinx
∴P.I. ¿ = =e =e =e 2 =
f ( D) f ( D) f ( D+1 ) 2
(D+1) −2(D+1)+ 1 (D)
24
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 x 1
=e
x
∫ x Sinx dx=e [−xcosx+ sinx ] =e x [ −∫ x cosx dx+∫ Sinx dx ]=e x [−xsinx−2 cosx ]
D D
2x x
y=C . F .+ P . I =( c1 +c 2 x ) e +e [−xsinx−2 cosx]
P.I. ¿
X x Sinx 1
[ Sinx 1
]
= 2 = x− 2 2 D 2 =¿ x− 2 2 D
f ( D) D +4 D +4 D +4 D +4
Sinx
−1+ 4 [ ]
[
¿ x−
1
D +4
2D
2
3
=
]
Sinx xSinx
3
1
− 2 2D
D +4
Sinx xSinx
3
=
3
1
− 2 2
D +4
cosx xSinx 2
3
=
3
−
1 cosx
3 (−1+4 ) 1
xSinx 2
P.I. = − cosx
3 9
Hence the complete general solution is
xSinx 2
y=C . F .+ P . I =( c1 cos 2 x+ c 2 sin 2 x )+ − cosx .
3 9
2 x
∴ f ( D )= D −4 , X=2
25
B.Tech , Sem- II, Mathematics -II (BT -202 )
x
−2 x 2x 2
y=C . F .+ P . I =c 1 e +c 2 e +
( lo 2 )2−4
Example-6: Solvethe equation ( D2−3 D+2 ) y =x+ e x
( )
−1
1
PI = 2
( x +e x )= 1 1− 3 D+ 1 D2 x+ 2
1
e
x
D −3 D+ 2 2 2 2 D −3 D+2
1 3 1 x 1 3 x
¿ x− + x e = x− −x e
2 4 2 D−3 2 4
x 2x 1 3 x
y=CF + PI =c 1 e +c 2 e + x− −x e .
2 4
There are two types of homogeneous linear differential equations, which can be reduced to the
linear differential equations with constant coefficient by convenient substitutions.
n n−1 n −2
n d y n−1 d y n−2 d y
x n
+ a1 x n −1
+ a2 x n −2
+−−−−+a n y= X … … … …(1)
dx dx dx
26
B.Tech , Sem- II, Mathematics -II (BT -202 )
Steps to solve: Equation (1) can be reduced to a linear differential equation with constant
Coefficients by using the following steps:
z 1 dz
Step 1: Put x=e so t h at logx=z =≫ =
x dx
dy dy dz 1 dy
Now = =
dx dz dx x dz
dy dy d
∴x = =Dy w h ere D ≡
dx dz dz
2
2 d y
Similarly x 2
=D ( D−1 ) y ,
dx
3 n
d y
3 nd y
x 3
=D ( D−1 ) ( D−2 ) y∧so on x n
=D ( D−1 ) ( D−2 ) … . ( D−n+1 ) y
dx dx
Step 2 : Putting all the values in equation (1) then it will reduces into linear differential equation
with constant Coefficients in terms of z .
Step 3: Find the complete general solution is y=C . F .+ P . I
Step 4: Finally, we replace z by logx .
n n−1 n−2
n d y n−1 d y n−2 d y
(ax +b) n
+a1 (ax+ b) n−1
+a2 (ax+ b) n−2
+−−−−+ an y=X … … … … (1)
dx dx dx
Steps to solve: Equation (1) can be reduced to a linear differential equation with constant
Coefficients by using the following steps:
z a dz
Step 1: Put :a x +b=e so t h at log ( a x +b)=z=≫ =
a x +b dx
dy dy dz a dy
Now = =
dx dz dx a x +b dz
dy dy d
∴ ( a x +b ) =a =a Dy w h ere D ≡
dx dz dz
27
B.Tech , Sem- II, Mathematics -II (BT -202 )
2
2 d y 2 (
Similarly (a x +b) 2
=a D D−1 ) y ,
dx
3 n
3d y 3 ( nd y n
(a x +b) 3
=a D D−1 ) ( D−2 ) y∧so on (a x +b) n
=a D ( D−1 ) ( D−2 ) … . ( D−n+1 ) y
dx dx
Step 2 : Putting all the values in equation (1) then it will reduces into linear differential
equation with constant Coefficients in terms of z .
Step 3: Find the complete general solution is y=C . F .+ P . I
Step 4: Finally, we replace z by log (ax +b).
2
2 d y dy
Example-1 : Solvet h e equation x 2
−x + y =2logx
dx dx
2
2 d y dy
x 2
−x + y =2logx … …. (1)
dx dx
z 1 dz
Now to solve, Put x=e so t h at logx=z =≫∴ =
x dx
dy dy dz 1 dy
= =
dx dz dx x dz
dy dy d
∴x = =Dy w h ere D ≡
dx dz dz
2
d y
2
Similarly x 2
=D ( D−1 ) y ,
dx
Hence, the equation (1) becomes
z
Hence C.F. = ( c 1 +c 2 z ) e
28
B.Tech , Sem- II, Mathematics -II (BT -202 )
Z 2z
∴P.I.¿ =
f ( D ) (D¿¿ 2−2 D+1)=2[1−(2 D−D2 )]−1 z ¿
=2 [ 1+ ( 2 D−D2 ) +… . ] z
= 2 [ z+ ( 2 Dz−D2 z ) +… . ]
= 2 [ z +2−0. ]
= 2 z+ 4
z
y=C . F .+ P . I =( c1 +c 2 z ) e + 2 z + 4= ( c 1+ c 2 logx ) x +2logx +4
2
2 d y dy
(2 x+ 1) 2
−2 (2 x +1 ) −12 y=6 x
dx dx
2
d y 2 dy
(2 x+ 1)
2
−2 (2 x +1 ) −12 y=6 x−−−(1)
dx dx
z 2 dz
Put :2 x+1=e so t h at log (2 x +1)=z=≫ =
2 x +1 dx
dy dy dz 2 dy
Now = =
dx dz dx 2 x +1 dz
dy dy d
∴ ( 2 x +1 ) =2 =2 Dy w h ere D ≡
dx dz dz
2
d y
=4 D ( D−1 ) y =4 ( D −D ) y
2 2
Similarly (2 x+ 1) 2
dx
29
B.Tech , Sem- II, Mathematics -II (BT -202 )
3 z
¿ ≫ ( D −2 D−3 ) y= (e −1)---------(2)
2
4
It is reduce into linear differential equation with constant Coefficients in terms of z .
[ { ( )} ]
−1
Z 3 ( e −1 )
z
3 e
z
1
2
D 2
P.I.¿ = = − 1− − D 1
f ( D ) 4 ( D 2−2 D−3 ) 4 ( D2−2 D−3 ) (−3 ) −3 3
[ ]
z
3 e 1
‘’ = + .1
4 ( 1 −2.1−3 ) ( 3 )
2
‘’=
[
3 −e z 1
+ .
4 4 (3 ) ]
Hence the complete general solution is
[ ]
z
−z 3 −e 1
3z
y=C . F .+ P . I =c 1 e + c2 e + + .
4 4 ( 3)
−1 3 3 1
Or y=c1 ( 2 x+1 ) + c2 ( 2 x +1 ) − ( 2 x +1 ) +
16 4
2
2 d y ( dy
Example-3 : Solvet h e equation ( 1+ x ) 2
+ 1+ x ) + y=2 sin [log ( 1+ x ) ]
dx dx
2
2 d y ( dy
Solution: Given equation is( 1+ x ) 2
+ 1+ x ) + y=2 sin [log ( 1+ x ) ]… … .(1)
dx dx
2
dy dy 2d y
Put 1+ x=e , i.e. t=log (1+ x), so that
t
( 1+ x ) = =Dy and ( 1+ x ) =D ( D−1 ) y , where
dx dt dx
2
d
D≡ .
dt
30
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 2
And PI = 2 sint=t sin t=−t cos t
2
D +1 2D
⇒ y =CF+ PI =c 1 cos t+ c2 sin t−t cos t=c1 cos [ log ( 1+ x ) ] +c 2 sin [ log ( 1+ x ) ] − [ log (1+ x ) ] cos [ log ( 1+ x ) ]
Important Ordinary Differential Equations arise at times in which there are two or more
dependent variables and a single independent variable, usually the time t. We consider here
only a system of linear differential equations with constant coefficients, the solutions of which
can be obtained by reducing to the solution of one or more separate equations,just analogous
to algebraic system of linear equations. The method is well explained by the following examples
dx dy
+ + 2 x + y=0
dt dt
dy
+5 x +3 y=0
dt
Also find the particular solution satisfying the conditions x=1 , y=2 w h en t=0.
( D+2 ) x+ ( D+ 1 ) y =0 … … ..(1)
d
5 x+ ( D+ 3 ) y=0 … … ..(2)where D ≡
dt
Now operating equation (1) by ( D+3 ) and (2) by ( D+1 ) and then subtracting them, we get
( D2 +1 ) x=0………….(3)
Now the
Auxiliary equation is m2 +1=0=¿ m=± i
0
Hence C.F. = ( c 1 cost +c 2 sint ) and P.I.¿ =0
f ( D)
31
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 3
We get , y= Dx+ x
2 2
1 3
¿> y= D ( c 1 cost +c 2 sint )+ ( c 1 cost+ c 2 sint )
2 2
1 3
¿> y= (−c 1 Sint +c 2 cost ) + ( c 1 cost+ c 2 sint )
2 2
−1 1
¿> y= ( c +3 c 2) Sint + 2 ( c 2−3 c 1 ) cost … … … .(5)
2 1
dx dy
+5 x−2 y=t ; +2 x + y=0
dt dt
Also find the particular solution satisfying the conditions x= y =0 w h en t=0.
d
2 x+ ( D+ 1 ) y =0 … … .. ( 2 ) where D ≡
dt
−3 t
Hence C.F. = ( c 1 +c 2 t ) e
32
B.Tech , Sem- II, Mathematics -II (BT -202 )
( ) ( )
−2
−2 t −2t −2 D −2 D −2 4
∴P.I.¿ = = 1+ t= 1−2 + … . t= t+
( )
f D ( D+ 3 ) 2
9 3 9 3 9 27
Now to find x , either eliminate from (1) and (2) and solve the resulting equation or substitute
the value of y in (2).
From (4)
[ 2
Dy=D ( c 1 +c 2 t ) e−3 t− t+
9 27
4
]
= c2 e−3 t + ( c1 +c 2 t ) (−3 ) e−3 t −
2
9
[( 1
2 ) ] t 1
x= c 1− c 2 + c 2 t e−3 t + +
9 27
………………….(5)
−1 1 −2 2
x= ( 1+6 t ) e−3 t + ( 1+3 t ) ∧ y= ( 2+3 t ) e−3 t + ( 2−3 t )
27 27 27 27
Contents
Second order linear differential equations with variable coefficients, Method of variation of
parameters, Power series solutions; Legendre polynomials, Bessel functions of the first kind and
their properties.
33
B.Tech , Sem- II, Mathematics -II (BT -202 )
Method-I: [Inspection Method] Complete solution in terms of one known integral belonging to the
complementary function :-
2 1−P+Q=0 u=e
−x
3 2
a + aP+Q=0 u=e
ax
4 P+Qx=0 u=x
5 2
2+2 Px+Q x =0 u=x
2
6 2
m(m−1)+ Pmx +Q x =0 u=x where m=1 , 2 ,3 … … .
m
If an integral say uof C.F is given in the question, then this step is omitted .
Step-3: Now, assume that the complete solution of the given equation is
y=uv … … … … ( 2 )
Where u has been obtained in step (2). Then the given equation reduces to
( )
2
d v 2 du dv R
2
+ P+ = −−−−−−(3)
dx u dx dx u
2
dv d v dq
Step-4: Take =q so t h at 2
= ,∴Substituting this in (3),it will reduce to first order and
dx d x dx
first degree and we solve it for q as usual.
34
B.Tech , Sem- II, Mathematics -II (BT -202 )
dv
Step-5: Now ,we replace q by and separate the variables v∧x . Integrate and determine
dx
v . Put this value of v in (2). We get the complete solution of the given equation.
( ) ( )
2
d y 1 dy 1
2
− 2− + 1− y=0 … … … .(1)
dx x dx x
1 1
( )
∴ P=−(2− ) ,Q= 1− , R=0
x x
( )
2
d v 2 du dv R
Now , we know that v is defined by 2
+ P+ =
dx u dx dx u
( )
2 x
d v 1 2 d e dv
∴ 2
+ −2+ + x =0
dx x e dx dx
()
2
d v 1 dv
¿> 2
+ =0 … … … … … ..(4 )
dx x dx
2
dv d v dq
Now to solve the above equation, Put =q so t h at 2
=
dx d x dx
dq q
()dq −q
+ =0=¿ =
dx x dx x
35
B.Tech , Sem- II, Mathematics -II (BT -202 )
dq −dx
¿ =
q x
Integrate both sides
logq=−logx+ log c 1
Or
logq=−logx+ log c 1
log qx=log c 1
Or qx=c1
dv c 1
=
dx x
c1
¿> dv = dx
x
Integrate both sides,We get
v=c 1 logx+ c 2
() ( )
2
d y 1 dy 1
2
+ − 2 y=0 … … … .(1)
dx x dx x
1 1
( )
∴ P=( ) ,Q=− 2 , R=0
x x
1
Here it is given that y=u=x + …………………..(2)
x
is a part of C.F. of solution of (1).
36
B.Tech , Sem- II, Mathematics -II (BT -202 )
y=uv … … … … ( 3 )
( )
2
d v 2 du dv R
Now , we know that v is defined by 2
+ P+ =
dx u dx dx u
( ( )
x ) dx
d2 v 1 2 1 dv
∴ 2+ + 1− =0
( x)
2
dx x 1
x+
¿>
d2 v
dx
2
+
(
3 x 2−1 dv
x ( x 2+1 ) dx
=0
)
2
dv d v dq
Now to solve the above equation, Put =q so t h at 2
=
dx d x dx
+
(
dq 3 x 2−1
dx x ( x2 +1 )
q=0
)
Or
dq −1
q
+
(
+ 2
4x
x ( x +1 )
dx =0
)
Integrate both sides, We get
log q−logx+2 log ( x 2 +1 )=log c 1
c1 x
Or q= 2
( x 2+1 )
dv c1 x
∴ =
dx ( x 2 +1 )2
c1 x
¿> dv= 2
dx
( x 2+1 )
∴Integrate both sides,We get
−c1
v= + c2
2 ( x 2 +1 )
y=uv = x + ( )( 2( x +1) +c )
1
x
−c 1
2 2
37
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 2 1 dP R
Where I =Q− P − , S=
4 2 dx u
Now , the above equation can be solved by usual methods and we get v .
( )
2
d y dy
2
+ y cotx+2( + y tanx)=secx
dx dx
Solution: Given equations can be written as
2
d y dy
+2 tanx + ( 1+2 tan x ) y=secx tanx … … … .(1)
2
2
dx dx
Now to remove the first order derivative, we chooseu=e−∫ ( 2 ) Pdx =e−∫ ( 2 ) 2tanx dx =cosx
1 1
38
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 2 1 dP 1 1
=( 1+ 2 tan x ) − 4 tan x − 2 sec x=0 ,
2 2 2
Where I =Q− P −
4 2 dx 4 2
R 2
S= =sec xtanx
u
Hence the equation (3) becomes
2
d v 2
2
=sec xtanx
dx
1
v= tanx+c 1 x + c2
2
Thus the complete general solution is
1
y=uv =cosx ( tanx+ c 1 x +c 2).
2
Example-2 : Solvet h e differential equation
( ) ( )( )
2
d y 2 dy 2 x
2
− + 1+ 2 y=x e …………………..(1)
dx x dx x
Solution: On comparing the above with
2
d y dy
2
+ P +Qy=R
dx dx
−2 Q=1+ 2 , R=x e x
∴ P= , 2
x x
Now to remove the first order derivative, we chooseu=e−∫ ( 2 ) Pdx =e−∫ ( 2 ) x dx=x
1 1 2
39
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 2 1 dP
Where I =Q− P −
4 2 dx
2
x( ) ( ) ( )
= 1+ 2 −
1 4
4 x 2
−
1 2
2 x2
=1 ,
R x
S= =e
u
Hence the equation (3) becomes
2
d v
+ v=e =¿ ( D +1 ) v=e …………..(4)
x 2 x
2
dx
x
e
v=C . F .+ P . I .=c1 cosx +c 2 sinx +
2
( )
x
e
y=uv =x c 1 cosx + c 2 sinx+ .
2
Step-2: Now ,we assume a following relation between the new independent variable z and the
old independent variable x as
( )
2
dz
=+Q
dx
Note: Carefully that ,we omit -ve sign of Q
40
B.Tech , Sem- II, Mathematics -II (BT -202 )
Step-3: With the help of above relation (2),We transform the equation (1) as
2
d y dy
2
+ P1 +Q 1 y =R 1 … … … … … .¿)
dz dz
Where
2
d z dz
+P Q R
dx
2
dx Q1= R 1=
( ) ( )
2 2
P 1= , dz , dz
( )
2
dz
dx dx
dx
Step-4: After solving equation (3) by usual methods,the variable z is replaced by relation(2) .
Example-1 : Solvet h e differential equation
( ) ( )
2
d y dy 2 4
2
+ tanx −2cos x y=2 cos x …………………..(1)
dx dx
Solution: On comparing the above with
2
d y dy
2
+ P +Qy=R
dx dx
Now , we assume a following relation between the new independent variable z and the old
independent variable x as
( ) ( )
2 2
dz dz dz
=2 cos x=¿ =√ 2 cosx
2
=+Q 0r
dx dx dx
¿> dz=√ 2 cosx dx
Integrate both sides, We get
41
B.Tech , Sem- II, Mathematics -II (BT -202 )
Where
2
d z dz
+P Q R z
2
dx
2
dx Q 1= =−1 R = =1−
( )
1
( )
2
P 1= =0, dz , dz
2
2 =
( )
2
dz
dx dx
dx
2 2
d y z
¿> 2
− y=1−
dz 2
2
z
¿> ( D −1 ) y=1− ……………….(4)
2
2
Hence C.F. = ( c1 e + c2 e )
z −z
2
z
1−
∴P.I. Z 2
¿ = 2
f ( D ) D −1
( )
2
2 −1 z
¿−( 1−D ) 1−
2
¿−[ 1+ D + D +… ] (1− )
2
2 4 z
2
[ ]
2 2
z ( z
P . I .=− 1− + 0−1 ) =
2 2
The complete general solution of (4) is
2
z
2
( √ 2 sinx )
y=C . F .+ P . I .=( c1 e +c 2 e ) + =( c1 e
z −z √2 sinx
+ c2 e− √ 2 sinx
)+ 2
2
Example-2 : Solvet h e differential equation
( ) ( )
2
d y 1 dy 2 2 2
2
− −4 x y=8 x sin x …………………..(1)
dx x dx
Solution: On comparing the above with
2
d y dy
2
+ P +Qy=R
dx dx
42
B.Tech , Sem- II, Mathematics -II (BT -202 )
−1
∴ P= ,Q=−4 x 2 , R=8 x 2 sin x 2
x
Now , we assume a following relation between the new independent variable z and the old
independent variable x as
( ) ( )
2 2
dz dz 2 dz
=+Q 0r =4 x =¿ =2 x
dx dx dx
¿> dz=2 x dx
Integrate both sides, We get
2
d y
¿> 2 − y=2 sinz
dz
¿> ( D2−1 ) y=2 sinz ……………….(4)
Hence C.F. = ( c1 e + c2 e )
z −z
Z 2 sinz 2 sinz
∴P.I.¿ = 2 = =−sinz
f ( D ) D −1 −1−1
The complete general solution of (4) is
43
B.Tech , Sem- II, Mathematics -II (BT -202 )
,when the complementary function [C.F.] is known.Where , P , Q∧R be the some functions of
independent variable x
Let the C.F. be C.F.=( c 1 y 1+ c 2 y 2 ) … … … … …(2)
Where, y 1∧ y 2be the some functions of independent variable x .
Now according to this P.I. = A y 1 +B y 2 …………(3)
Where, A∧B be the some functions of independent variable x are given by
| |
y1 y2
y2 y1
A=−∫ R dx and B=∫ R dx with W = d y 1 d y2 ≠ 0
W W
dx dx
−1
Example -1: Solve by variation of parameters method ( D2−1 ) y =2 ( 1−e−2 x ) 2 .
y2 X y1 X −1
P.I.¿− y 1∫ dx + y 2∫ dx , where y =e x , y =e− x , X =2 ( 1−e−2 x ) 2 and
W W 1 2
| |
x −x
e e
W= x −x =−2
e −e
−1 −1
e 2 ( 1−e ) e 2 ( 1−e )
−x −2 x 2 x −2 x 2 x −x
∫ ∫ dx = e I 1 +e I 2
x −x
⟹ P.I.=−e dx +e
−2 −2
−1
dt
⟹ I 1 =∫ =sin t=sin ( e )
−1 −1 −x
√ 1−t 2
−1
44
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 dt
∫ =√ t=√ e −1. Hence P.I.=e x ⋅sin−1 ( e− x )+ e−x ⋅ √ e2 x −1
2x
⇒ I 2=
2 √t
2
d y x dy 1
− + y=( x−1 ) … … … (1)
d x (x−1) dx (x−1)
2
−x 1
∴ P= ,Q= , R=( x−1 )
( x−1 ) ( x−1 )
∴ 1+ P+Q=0 P+Qx=0 ,Hence , y 1=e x , y 2=x be the integrals of C.F. of equation (1).
x
i.e. C.F. =c 1 y 1+ c2 y 2=c 1 e + c 2 x
| ||
y1 y2
We have W = d y 1
dx
ex x
d y2 = x
dx
e 1 |
=e x −x e x =(1−x)e x ≠0
y2 x
A=−∫ R dx=−∫ x
( x−1 ) dx=∫ x e−x dx=[−x e−x −e−x ]
W (1−x)e
and
x
e
B=∫ x
( x−1 ) dx=−∫ 1 dx=−x
(1−x)e
45
B.Tech , Sem- II, Mathematics -II (BT -202 )
y=C . F .+ P . I =c 1 e x + c 2 x−( x 2 + x +1 ) .
am ( x x0 )m = a0 + a1 ( x x0 ) + a2 ( x x0 )2 + . . .
x0 is a constant (center)
Taylor's Formula
f(x) = m + RN (x x0)
If (x x0) is sufficiently small, RN (x x0) 0 as N , then, we say f(x) is analytic at x0, and
Examples: ex = = 1 + x + + + . . .
sin x =
cos x =
In the previous discussion, the linear differential equations with constant coefficients were
solved and shown to have solution for
46
B.Tech , Sem- II, Mathematics -II (BT -202 )
But, exponential, sine and cosine functions can be expressed in terms of Maclaurin series or
Taylor series expanded around zero.
Example. y'' + y = 0
Solution. Assume
y = am xm = a0 + a1 x + a2 x2 + . . .
y' = m am xm-1 = a1 + 2 a2 x + 3 a3 x2 + . . .
Since y'' + y = 0
2a2 + a0 = 0 coefficients of x0
6a3 + a1 = 0 coefficients of x1
12a4 + a2 = 0 coefficients of x2
where a0 and a1 are arbitrary constants. After solving the above simultaneous
equations, we have
a2 = =
a3 = =
a4 = . . . = ; ...
thus y = a0 + a1
= a0 cos x + a1 sin x
47
B.Tech , Sem- II, Mathematics -II (BT -202 )
Since every linear differential equation with constant coefficients always possesses a
valid series solution, it is natural to expect the linear differential equations with
variable coefficients to have series solutions too.
Also, since the majority of series cannot be summed and written in a function form,
it is to be expected that some solutions must be left in series form.
y'' + p(x) y' + q(x) y = 0
We assume
y = am xm = a0 + a1 x + a2 x2 + . . .
y' = m am xm-1 = a1 + 2 a2 x + . . .
2.1 Introduction
Power Series:
S(x) = am ( x x0 )m = a0 + a1 ( x x0 ) + a2 ( x x0 )2 + . . . (1)
Partial Sum:
Sn(x) = a0 + a1 ( x x0 ) + a2 ( x x0 )2 + . . . + an ( x x0 )n (2)
Remainder:
Note that Rn = S Sn or | Sn S | = | R n |
Convergence:
48
B.Tech , Sem- II, Mathematics -II (BT -202 )
Definition 1
Definition 2
If the series converges, then for every given positive number (no matter how small,
but not zero), we can find a number N such that
R =
or R = (Ratio Test)
Ratio Test
= lim
= lim
if > 1 divergent
49
B.Tech , Sem- II, Mathematics -II (BT -202 )
< 1 convergent
lim< 1
Example: ex = 1 + x + + . . . =
= lim= lim
= lim= 0 < 1
R = , i.e.,
Example: xm = 1 + x + x 2 + x3 + . . .
= lim= lim| x | = | x |
|x|< R =
= lim= = x ( m + 1 ) = 1
50
B.Tech , Sem- II, Mathematics -II (BT -202 )
Example: x3m
= lim=
1 or |t| 8 or
i.e., |x|2
(2) Two power series may be added term by term (Term-wise Addition).
(3) Two power series may be multiplied term by term (Term-wise Multiplication).
f(x) g(x) = m
if f(x) = am ( x x0 )m = 0
51
B.Tech , Sem- II, Mathematics -II (BT -202 )
am = 0 for all m.
Let's ask ourselves a question: Can all linear second-order variable coefficient
differential equations be solved by power series method? Let us answer this question
by the following illustration:
x2 y'' + a x y' + b y = 0
where (i) a = 2, b = 2
(ii) a = 1, b = 1
(iii) a = 1, b = 1
Solution: we assume
y = cm xm ; y' = m cm xm-1;
y'' = m ( m 1 ) cm xm-2
x2 y'' + a x y' + b y =
[m ( m 1 ) + a m + b ] cm xm = 0
Case (i) a = 2, b = 2
( m2 3 m + 2 ) cm xm = 0
or ( m2 3 m + 2 ) c m = 0
or ( m 2 ) ( m 1 ) cm = 0
cm = 0 for all m 1 or 2
y = c1 x + c2 x2
52
B.Tech , Sem- II, Mathematics -II (BT -202 )
Case (ii) a = 1, b = 1
( m2 2 m + 1 ) cm xm = 0
( m 1 )2 c m = 0
cm = 0 for all m 1
y = c1 x
x3 u'' + x2 u' = 0
u = c ln|x|
y = A x + B x ln|x|
Case (iii) a = 1, b = 1
( m2 + 1 ) c m = 0
cm = 0 for all m
y = A cos(ln|x|) + B sin(ln|x|)
53
B.Tech , Sem- II, Mathematics -II (BT -202 )
If the function p, q, r in
are analytic at , then every solution y(x) of the above equation is analytic at
and can be represented by a power series of x - x0 with radius of
convergence , i.e. y = am ( x x0 )m
y'' + y' + y = 0
x = 0 is a singular point!
y = c m xm
m ( m 1 ) cm xm-1 = ( k + 1 ) k ck+1 xk
2 m cm xm-1 = 2 ( k + 1 ) ck+1 xk
= 2 c1 + 2 ( k + 1 ) ck+1 xk
54
B.Tech , Sem- II, Mathematics -II (BT -202 )
cm xm+1 = ck-1 xk
Thus we have
2 c1 + {[ ( k + 1) k + 2 ( k + 1 )] ck+1 + ck-1 } xk = 0
or 2 c1 + { ( k + 1 ) ( k + 2 ) ck+1 + ck-1 } xk = 0
c1 = 0
ck+1 = for k 1
c3 = c5 = c7 = . . . = 0
c2 = c4 =
∴ y = c 0 = c0
Only one solution is obtained! The other linearly independent solution can be
obtained by the method of reduction of order:
y2 = u
y2 = (Exercise!)
y = A+B
Note that
= x-1
3 Frobenius Method
55
B.Tech , Sem- II, Mathematics -II (BT -202 )
y = am x m
For x = 0 is a singular point, rewrite the differential equation in the following form:
y'' + y' + y = 0
regular singular point, at least one solution exist with the following form
y = xr am xm
where r is a parameter which need to be determined. It can be positive or negative.
y'' + y' + y = 0
b(x) = b0 + b1 x + b2 x2 + . . .
c(x) = c0 + c1 x + c2 x2 + . . .
56
B.Tech , Sem- II, Mathematics -II (BT -202 )
We let y = xr am xm =
y'' = ( m + r ) ( m + r 1 ) am xm+r-2
= xr-2 [ r ( r 1 ) a0 + ( r + 1 ) r a1 x + . . . ]
Put y, y', y'', b(x), c(x) into the differential equation and collect terms of x p, we have (for
xr terms)
[ r ( r 1 ) + b 0 r + c 0 ] a0 = 0
Since a0 0, we have
one r for y1 = xr am xm
y1 = x
y2 = x
Case 2: r1 = r2 = r, r =
y 1 = x r ( a 0 + a1 x + a 2 x 2 + . . . )
y2 = y1 ln x + xr (A1 x + A2 x2 + . . . )
y1 = x
y2 = k y1 ln x + x
57
B.Tech , Sem- II, Mathematics -II (BT -202 )
Solution. y = xr ( a0 + a1 x + a2 x2 + . . . ) = xr am xm = am xm+r
y' = . . .
y'' = . . .
am xr+m-2 = 0
For m = 0, am 0 ( )
r(r1)+ r + = 0
For r =, we have
y1 = x1/4 (a0 + a1 x + a2 x2 + . . . )
or am x= 0
or amx= 0
Thus, we have
58
B.Tech , Sem- II, Mathematics -II (BT -202 )
but for m = 1, 2, … am = 0
y1 = a0 x1/4
( by setting y2 = x1/2 ( A0 + A1 x + A2 x2 + A3 x3 + . . . , )
y2 = A0 x1/2
y = a0 x1/4 + A0 x1/2
am xr+m-2 = 0
r ( r 1 ) + r + 1 = r2 + 1 = 0
For r = i
am xi+m-2 = 0
or am [ ( i + m ) 2 + 1 ] = 0
or am m ( m + 2 i ) = 0
m0 am = 0
y1 = a0 xi = a0 [ cos(lnx) + i sin(lnx) ]
59
B.Tech , Sem- II, Mathematics -II (BT -202 )
Since the linear combinations of solutions are also solutions of the linear
differential equation, thus,
y1* = = cos(lnx)
y2* = = sin(lnx)
y = c1 cos(lnx) + c2 sin(lnx)
am ( r + m ) ( r + m - 1 ) xr+m-2 + am ( r + m ) xr+m-1
+ am xr+m-2 = 0
= am-1 ( r + m 1 ) xr+m-2
a0 xr-2 +
xr+m-2 = 0
r ( r 1 ) + = 0 or = 0
or r1 = r 2 = r =
For r =
x= 0
or x= 0
60
B.Tech , Sem- II, Mathematics -II (BT -202 )
Hence
a1 = , a 2 = ,...
and y1 = a0 x
= x1/2 , x0
Approach 1
y2 = y1 lnx + x
Approach 2
We can also use the method of reduction of order to produce the second linearly
independent solution, y2, by letting
y2 = u y 1
= 2 1 = . . . (long division) = – + . . .
i.e., ln u' = ln x + . . .
or u' = exp = . . .
u = ln x + . . .
y2 = y1 u = y 1
= y1 ln x +
61
B.Tech , Sem- II, Mathematics -II (BT -202 )
am ( r + m ) ( r + m 1 ) xr+m-2 + am ( r + m ) xr+m-2
am xr+m-2 + am xr+m = 0
After substituting am-2 xr+m-2 for the last term of the lhs of the above equation,
we have
a0 xr-2
+ a1 xr-1
+ xr+m-2
= 0
r(r1)+r= 0
or r1 = r2 =
For r1 =
2 a1 x-1/2 + x = 0
a1 = 0 and am = for m 2
62
B.Tech , Sem- II, Mathematics -II (BT -202 )
y1 =
x= 0
am = –
y2 =
y = A + B
Solution. Letting y = xr am xm
we have
+ ( am ( ( r + m ) ( r + m 1 ) + ( r + m ) 1 ) am-2 ) xr+m-2
= 0
r ( r 1 ) + r 1 = r2 1 = 0
or
63
B.Tech , Sem- II, Mathematics -II (BT -202 )
For r = 1, we have
3 a1 + ( am ( m2 + 2 m ) + am-2 ) xm-1 = 0
a1 = 0 and
am = for m 2
y1(x) = x
For r = 1, we have
a1 = 0 and
Thus we can not obtain the second linearly independent solution by setting
y = xr am xm
with r = 1.
Approach 1
From the theorem, we need to directly assume that the second solution is of the
form:
y2 = k y1 lnx + x
= y1 ln x x-1 + + . . . (Exercise!)
Approach 2
Note that the second linearly independent solution can also be obtained by the
method of reduction of order (Exercise!):
y2 = u y 1
= = + + ...
or ln u' = 3 ln x + + . . .
64
B.Tech , Sem- II, Mathematics -II (BT -202 )
or u = – x- 2 + ln x + . . .
J = sin x , J = cos x
1/2 -1/2
65
B.Tech , Sem- II, Mathematics -II (BT -202 )
4 Legendre's Equation
( 1 x2 ) y'' 2 x y' + n ( n + 1 ) y = 0
y'' y' + y = 0
But = 1 + x2 + x 4 + . . .
y = am xm
Recurrence formula
am+2 = am , m = 0, 1, . . .
or a2 = a 0 a3 = a 1
a4 = a 0
a5 = a 1
...
where
66
B.Tech , Sem- II, Mathematics -II (BT -202 )
y = c1 Pn(x) + c2 Qn(x)
Qn (1) = unbounded (This is due to the fact that the Legendre equation is not
analytic at x=+1 and x=-1)
Since for m = 0, 1, . . .
am+2 = 0 for m = n
These polynomials, multiplied by an appropriate constant, are called the Legendre polynomials
Pn(x), which have the value Pn(1) = 1. In other words, let
an = 1 if n = 0
an = ; if n = 1, 2, . . .
67
B.Tech , Sem- II, Mathematics -II (BT -202 )
an-2 = =
...
an-2m = (1)m
Pn(x) = ( 1 )m xn-2m
where M =
Example:
68
B.Tech , Sem- II, Mathematics -II (BT -202 )
Pn(1) = 1
Pn(1) = (1)n
69
B.Tech , Sem- II, Mathematics -II (BT -202 )
Pn(x) = [ ( x2 1 )n ]
= Pn(x) tn
(i) = n = 0, 1, . . .
70
B.Tech , Sem- II, Mathematics -II (BT -202 )
Contents
Formulation of Partial Differential equations, Linear and Non-Linear Partial Differential
Equations, Homogeneous Linear Partial Differential Equations with Constants Coefficients.
An equation containing the dependent and independent variables and one or more
partial derivatives of the dependent variable is called a partial differential equation. In general
involving several independent variables x,y,.....,an unknown function u of these variables and
the partial derivatives ux, uy,......,uxx, uxy, uyy ........of the function. is considered in a suitable
subset D of Rn. For the sake of convenience we confine our discussion for n=2. However
Here as in the case of ordinary differential equations, we define the order of a partial
differential equation to be the order of the derivative of highest order occurring in the
equation. The power of the highest order derivative in a differential equation is called the
∂u ∂u
Example: (a) x ∂ x + y ∂ y =0 is a first-order equation in two variables with variable coefficients.
71
B.Tech , Sem- II, Mathematics -II (BT -202 )
∂u ∂u
(b) a ∂ x + b ∂ y =c; where x,y are independent variables, a and b are constants; is partial
∂u ∂u
(c) ∂ x + ∂ y -(x+y) u=0 is a partial differential equation of first-order.
∂2 u ∂2 u ∂2 u ∂u ∂u
2
a(x) ∂ x +2b(x) ∂ x ∂ y +c(x) ∂ y =x+y+u+ ∂ x + ∂ y is a partial differential equation of
2
(d)
second-order.
∂2 u ∂2 u ∂2 u ∂u ∂u
2
a(x) ∂ x +2b(x) ∂ x ∂ y +c(x) ∂ y = f(x,y,u, ∂ x , ∂ y )
2
(e)
∂u ∂u
where a(x), b(x) and c(x) are functions of x and f(..,..,.,.,.) is a function of x,y,u, ∂ x and ∂ y
∂2 u ∂u
(f) u ∂ x ∂ y + ∂ x =y is a partial differential equation of second-order.
∂2 u ∂2 u ∂2 u
(g) ∂ x 2 + 2y ∂ x ∂ y + 3x ∂ y 2 = 4 sin x is a partial differential equation of second-order and
degree one.
∂2 u ∂2 u
(h) ∂ x 2 = ∂ y 2 is a partial differential of second-order.
72
B.Tech , Sem- II, Mathematics -II (BT -202 )
( ) ( )
2
∂ u 2 ∂u
(i) ∂ x + ∂ y = 1 is a partial differential equation of first-order and second degree.
we understand functions u=(x,y) which satisfy identically in D, that is, if we put values of
all linearly independent solutions of the equation with as many arbitrary functions as the order
of the equation; a partial differential equation of order 2 has 2 arbitrary functions. A particular
solution of a differential equation is one that does not contain arbitrary functions or constants.
Homogeneous linear partial differential equation has an interesting property that if u is its
solution then a scalar multiple of u, that is, cu, where c is a constant, is also its solution. Any
equation of the type F(x,y,u,c1,c2)=0, where c1 and c2 are arbitrary constants, which is a solution
integral of that equation. An equation F(,)=0 involving arbitrary function. F connecting two
known functions and of x, y and u, and providing a solution of a first order differential
Let φ ( x , y . z . a . b )=0…(i)
73
B.Tech , Sem- II, Mathematics -II (BT -202 )
Where a and b are arbitrary constants, x and y are independent variables and z is
dependent variable.
∂φ ∂φ ∂ z
+ . =0
∂ x ∂ z ∂x
∂φ ∂φ
Or + . p=0 … (ii)
∂x ∂z
∂φ ∂φ ∂ z
+ . =0
∂ y ∂z ∂ y
∂φ ∂φ
Or + .q=0 … (iii)
∂ y ∂z
Fx , y , z , p ,q ¿=0
f ( u , v )=0
Where,
| |
∂u ∂u
∂(u , v ) ∂ u ∂ v ∂u ∂ v ∂ y ∂z
P= = . − =
∂( y , z ) ∂ y ∂ z ∂ z ∂ y ∂ v ∂v
∂y ∂z
74
B.Tech , Sem- II, Mathematics -II (BT -202 )
| |
∂u ∂u
∂(u , v) ∂ u ∂ v ∂ u ∂ v ∂ z ∂x
Q= = . − . =
∂ (z , x) ∂ z ∂ x ∂ x ∂ z ∂ v ∂v
∂z ∂x
| |
∂u ∂u
∂ (u , v ) ∂u ∂ v ∂ u ∂ v ∂ x ∂y
R= = . − . =
∂ (x , y ) ∂ x ∂ y ∂ y ∂ x ∂ v ∂v
∂x ∂y
Example-1: Form partial differential equations from the following equations by eliminating
arbitrary constants
Solution:
∂z ∂z
=aand =b
∂x ∂y
z= px +qy + pq
∂z ∂z 2
=aand =2 a y
∂x ∂y
75
B.Tech , Sem- II, Mathematics -II (BT -202 )
( )y
2
∂z ∂z
=2
∂y ∂x
2
q=2 p y
Example-2: Form partial differential equations from the following equations by eliminating
∂z ' 2
=f ( x − y ) .2 x
2
∂x
∂z
=−f ( x − y ) .2 y
' 2 2
∂y
p −x
=
q y
py+ qx=0
(ii)
2
Given z= y +2 f ( 1x + logy )
Differentiating partially differentiating w.r.t. x and y, we get
∂z
∂x
=2 f (
' 1
x
+logy
−1
x
2 )( )
∂z
∂y
1
(
=2 y +2 f ' +logy
x )( 1y )
76
B.Tech , Sem- II, Mathematics -II (BT -202 )
−1
p x
=
q−2 y 1
y
p −y
=
q−2 y x
Lagrange's Method :
The general form of first-order linear partial differential equations with variable
coefficients is
P(x,y)ux+Q(x,y)uy+f(x,y)u=R(x,y)
We can eliminate the term in u from by substituting u=ve -(x,y), where (x,y) satisfies the
equation
Hence, Eq is reduced to
where P,Q,R in are not the same as in The following theorem provides a method for solving
77
B.Tech , Sem- II, Mathematics -II (BT -202 )
Theorem : The general solution of the linear partial differential equation of first order
Pp+Qq=R;
∂u ∂u
,q =
where p= ∂ x ∂ y , P, Q and R are functions of x y and u
is F(, ) = 0
where F is an arbitrary function and (x,y,u) =c1 and (x,y,u)=c2 form a solution of the
dx dy du
= =
P Q R
xdx+y dy +udu=0
and
dx dy du
= =
P Q R
Px+Qy+Ru=0
78
B.Tech , Sem- II, Mathematics -II (BT -202 )
P Q R
= =
∂(ϕ, ψ )/∂( y , u) ∂(ϕ ,ψ )/∂(u , x) ∂(ϕ ,ψ )/∂( x , y)
{
∂F ∂ϕ ∂ϕ
+
∂ϕ ∂ x ∂u
p + } {
∂ F ∂ ψ ∂ψ
+
∂ψ ∂ x ∂ u
p =0 }
{
∂ F ∂ϕ ∂ ϕ
+ q +
∂ϕ ∂ y ∂u } {
∂ F ∂ψ ∂ψ
+ q =0
∂ψ ∂ y ∂u }
∂F ∂F
and if we now eliminate ∂ ϕ and ∂ψ from these equations, we obtain the equation p
∂(ϕ, ψ ) ∂(ϕ, ψ ) ∂(ϕ, ψ )
∂( y , u ) +q ∂(u , x) = ∂( x , y )
Substituting from equations into equation we see that F(,)=0 is a general solution of
=g() or =h(),
Example: Find the general solution of the partial differential equation y2up + x2uq = y2x
dx dy du
2
= 2 = 2
y u x u xy
79
B.Tech , Sem- II, Mathematics -II (BT -202 )
Taking the first two members we have x 2dx = y2dy which on integration given x3-y3 = c1.
we have x dx = u du
F(x3-y3,x2-u2) = 0
Char pit’s Method for solving nonlinear Partial Differential Equation of First-Order :
We present here a general method for solving non-linear partial differential equations.
and y, we have
du=uxdx+uydy = pdx+qdy
∂u ∂u
where p=ux= ∂ x , q = uy= ∂ y
f(x,y,u,p,q)=0
80
B.Tech , Sem- II, Mathematics -II (BT -202 )
then we can solve for p and q and substitute them in equation This will give the solution
provided is integrable.
∂F ∂F ∂F ∂ p ∂F ∂q
+ p+ + =0
∂ x ∂u ∂ p ∂ x ∂q ∂ x
∂f ∂f ∂ f ∂ p ∂ f ∂q
+ p+ + =0
∂ x ∂u ∂ p ∂ x ∂q ∂ x
∂ F ∂ F ∂ F ∂ p ∂ F ∂q
+ q+ + =0
∂ y ∂u ∂ p ∂ y ∂q ∂ y
∂f ∂f ∂f ∂ p ∂f ∂q
+ q+ + =0
∂ y ∂ u ∂ p ∂ y ∂q ∂ y
∂p ∂q
Eliminating ∂ x from, equations and ∂ y from equations and we obtain
∂q ∂2 u ∂ p
= =
∂ x ∂ x∂ y ∂ y
81
B.Tech , Sem- II, Mathematics -II (BT -202 )
Following arguments in the proof of Theorem we get the auxiliary system of equations
dx dy du dp dq df
= = = = =
−∂ F −∂ F ∂F ∂F ∂ F ∂ F ∂F ∂F 0
− p −q +p +q
∂p ∂q ∂ p ∂ q ∂ x ∂u ∂ y ∂ u
( ) ( )
∂u 2
∂x
x+
∂u 2
∂y
y −u =0
………………… (1)
∂u ∂u
Solution: Let p = ∂ x , q = ∂ y
dx dy du dp dq
= = = =
2 px 2 qy 2( p x+q y ) p−p q−q 2
2 2 2
∂F ∂F ∂F ∂F ∂F
=2 px , =2qy , = p2 , = −1, =q2
∂p ∂q ∂x ∂u ∂y
82
B.Tech , Sem- II, Mathematics -II (BT -202 )
and multiplying by -1 throughout the auxiliary system. From first and 4 th expression we get
p 2 dx +2 pxdp
dx = py . From second and 5th expression
q2 dy+2qydq
dy= qy
Using these values of dx and dy in 1st and 2nd expression of Char pit’s auxiliary system ,
we get
dx 2 dy 2 dq
+ dp = +
or x p y q
or ln|x| p2 = ln|y|q2c
(c+1)q2y=u
{ } { }
1 1
u 2 cu 2
q=
(c+1) y p=
(c+1) x
83
B.Tech , Sem- II, Mathematics -II (BT -202 )
Therefore
du =p dx +q dy
{ } { }
1 1
cu 2 dx + u 2 dy
du=
(c+1) x (c +1) y
( ) () ()
1 1 1
1+c 2 du= c 2 dx+ i 2 dy
or u x y
1 1 1
F(p,q)=0
dx dy du dp dq
= = = =
F p F q pF p +qF q 0 0
F(c,q)=0
84
B.Tech , Sem- II, Mathematics -II (BT -202 )
dx dy du dp dq
= = = =
- −2 p 2 q −2 p 2
−2q 2 0 0
dx dy du dp dq
= = 2 2= =
or p q p +q 0 0
Using dp =0, we get p=c and q= √ 1−c 2 , and these two combined with
du =pdx+qdy yield
dx dx
Using du = p , we get du = c where p= c
x
Integrating the equation we get u = c + c1
85
B.Tech , Sem- II, Mathematics -II (BT -202 )
dy
2
√
Also du = q , where q = 1− p = 1−c
2
√
dy 1
or du = √1−c 2
. Integrating this equation we get u = √1−c 2 y +c 2
u=px+qy+f(p,q) or F=px+qy+f(p,q)-u=0
The auxiliary system of equations for Clairaut’s equation takes the form
dx dy du dp dq
x+ f p = y+ f q = px +qy + pf p +qf q = 0 = 0
86
B.Tech , Sem- II, Mathematics -II (BT -202 )
p=c1, q=c2
F(u,p,q) = 0
dx dy du dp dq
F p = F q = pF q +qF q = −pF u = −qF u
dp dq
The last two terms yield p = q
This equation together with 11.43 can be solved for p and q and we proceed as in
previous cases.
dx dy du dp dq
q = p = 2 pq = −2up = −2uq
1
± √ 4−u2 2
√
q= a and p = + a 4−u
√ 4−u2 ( adx+ 1a dy )
du = +
du 1
adx + dy
or √ 4−u = +
2
a
u
Integrating we get sin--1 2 = +
1
(
adx+ y +c
a )
or u = + 2 sin
( ax+
1
a
y +c )
which is the required complete solution.
f(x,p) = g(y,q)
88
B.Tech , Sem- II, Mathematics -II (BT -202 )
f(x, p) = g(y, q) = C
Solving for p and q, and using du=pdx+qdy we can obtain the solution
a a
This gives p = √ 1−x and q = √ 4− y
2 2
a a
du = √ 1−x dx + √ 4− y dy
2 2
Integration gives u = a
(sin'x + sin' 2y ) + c.
Partial differential equations (PDEs) are equations involving functions of more than one variable
and their partial derivatives with respect to those variables. Most (but not all) physical models
in engineering that result in partial differential equations are of at most second order and are
often linear. (Some problems such as elastic stresses and bending moments of a beam can be
of fourth order). In this course we shall have time to look at only a very small subset of second
order linear partial differential equations.
89
B.Tech , Sem- II, Mathematics -II (BT -202 )
A homogeneous linear partial differential equation of the nth order is of the form
homogeneous because all its terms contain derivatives of the same order. Equation (1) can be
expressed as
As in the case of ordinary linear equations with constant coefficients the complete solution of
(1) consists of two parts, namely, the complementary function and the particular integral.
Which must contain n arbitrary functions as the degree of the polynomial f(D,D'). The particular
integral is the particular solution of equation (2).
Let us now consider the equation f(D,D') z = F (x,y). The auxiliary equation of (3) is obtained by
replacing D by m and D' by 1.
Solving equation (4) for „m‟, we get „n‟ roots. Depending upon the nature of the roots, the
Complementary function is written as given below:
90
B.Tech , Sem- II, Mathematics -II (BT -202 )
91
B.Tech , Sem- II, Mathematics -II (BT -202 )
92
B.Tech , Sem- II, Mathematics -II (BT -202 )
Solving, we get m = 2, 2.
cos ( x−2 y )
The solution is z=f 1 ( y +2 x ) + x f 2 ( y +2 x ) +
25
93
B.Tech , Sem- II, Mathematics -II (BT -202 )
Solving, we get m = 0, 2.
94
B.Tech , Sem- II, Mathematics -II (BT -202 )
Therefore, m = –3, 2.
95
B.Tech , Sem- II, Mathematics -II (BT -202 )
¿ – y cosx+ sinx
Therefore, m = 2, 2
96
B.Tech , Sem- II, Mathematics -II (BT -202 )
Hence the C . F is f 1 ( y+ 2 x )+ x f 2( y+ 2 x ).
Since D2 – 4 D D' + 4 D'2=0 for D = 2 and D' = 1, we have to apply the general rule.
97
B.Tech , Sem- II, Mathematics -II (BT -202 )
98
B.Tech , Sem- II, Mathematics -II (BT -202 )
Contents
Functions of Complex Variables: Analytic Functions, Harmonic Conjugate, Cauchy-Riemann Equations
(without proof), Line Integral, Cauchy-Goursat theorem (without proof), Cauchy Integral formula
(without proof), Singular Points, Poles & Residues, Residue Theorem, Application of Residues theorem
for Evaluation of Real Integral (Unit Circle).
COMPLEX VARIABLES
If z=x +iy , then Z is called a complex variable. Also x and y are respectively called real and
imaginary parts of z. sometimes we express z as z=x +iy=(x , y).
z+ z z+z
It is easy to verify that: R ( z )=x= , and I ( z )= y= .
2 2i
The polar form of a complex number is another way to represent a complex number. The form
z=a+bi is called the rectangular coordinate form of a complex number.
The horizontal axis is the real axis and the vertical axis is the
imaginary axis. We find the real and complex components in
terms of r and θ where r is the length of the vector and θ is the
angle made with the real axis.
2 2 2
r =a +b
99
B.Tech , Sem- II, Mathematics -II (BT -202 )
z=rcosθ+ ( rsinθ ) i
In the case of a complex number, r represents the absolute value or modulus and the angle θ is
called the argument of the complex number.
ANALYTIC FUNCTION
100
B.Tech , Sem- II, Mathematics -II (BT -202 )
∂ u ∂ v ∂u ∂ v
I) , , , are continuous functions of x and y in the region R and
∂ x ∂ y ∂ y ∂x
∂ u ∂ v ∂u −∂ v
II) = , =
∂x ∂ y ∂ y ∂x
101
B.Tech , Sem- II, Mathematics -II (BT -202 )
∂u ∂v
=2 x , =2 y ,
∂x ∂x
∂u ∂v
= - 2 y, =2 x ,
∂y ∂y
∂ u ∂ v ∂u −∂ v
Hence, = , = ie ,u∧v satisfy Cauc h y – Riemann equations .
∂x ∂ y ∂ y ∂x
Therefore, f(z) is analytic.
HARMONIC FUNCTION
A real valued function u=u(x , y ) is called harmonic function, if
2 2
∂ u ∂ u
2
+ 2 =0
∂x ∂y
i.e. u satisfies Laplace’s equation
102
B.Tech , Sem- II, Mathematics -II (BT -202 )
2 2
2 ∂ u ∂ u
∇ u= 2
+ 2 =0
∂x ∂ y
Example : Prove that, if f(z)=u+iv is analytic function in domain D, then u and v are harmonic.
Solution: Since f(z)=u+iv is analytic,it means it is satisfies C-R equations.
∂u ∂v ∂u −∂ v
i.e. = and =
∂x ∂ y ∂ y ∂x
Differentiate w.r.t. x and y, we get
2 2 2 2
∂ u ∂ v ∂ u −∂ v
2
= and 2
=
∂ x ∂ x∂ y ∂ y ∂ y∂x
By adding both the equation, we get
2 2
∂ u ∂ u
2
+ 2 =0
∂x ∂y
Here, u is harmonic
Similarly,
2 2
∂ v ∂ v
2
+ 2 =0
∂x ∂y
Here, v is harmonic.
METHODS FOR CONSTRUCTING AN ANALYTIC FUNCTION:-
Method-I
If u is given function then to find v:
∂v ∂v
dv = dx + dy
∂x ∂y
−∂u ∂u
dv = dx + dy
∂y ∂x
dv =Mdx + Ndy …(i)
−∂ u ∂u
Where, M = and N=
∂y ∂x
2 2
∂ M −∂ u ∂N ∂ u
Differentiate = 2 and
=
∂y ∂y ∂ x ∂ x2
Since u is harmonic, therefore
103
B.Tech , Sem- II, Mathematics -II (BT -202 )
2 2
∂ u ∂ u
2
+ 2 =0
∂x ∂y
2 2
∂ u −∂ u ∂ M ∂ N
2
= 2
⇒ =
∂x ∂y ∂ y ∂x
Hence equation (i) is exact differential equation. dv can be solve to get v.
Method-II: Milne Thomson Method
Type-I: To construct analytic function f(z) in terms of z, when real part u is given by the
following formula,
f ( z )=∫ [∅ 1 ( z , 0 ) −i∅ 2 (z , 0) ] dz +C
∂u ∂u
Where ∅ 1 ( x , y )= and ∅ 2 ( x , y )=
∂x ∂y
Type-II: To construct analytic function f(z) in terms of z, when imaginary part v is given by the
following formula,
f ( z )=∫ [∅ 1 ( z , 0 ) +i ∅ 2 (z , 0) ] dz+C
∂v ∂v
Where ∅ 1 ( x , y )= and ∅ 2 ( x , y )=
∂x ∂y
Type-III: To construct analytic function f(z) in terms of z, when U = u – v is given by the
following formula,
(1+i)f ( z )=∫ [∅ 1 ( z , 0 ) −i∅ 2 (z , 0) ] dz +C
∂U ∂U
Where ∅ 1 ( x , y )= and ∅ 2 ( x , y )=
∂x ∂y
Type-IV: To construct analytic function f(z) in terms of z, when V = u + v is given by the
following formula,
(1+i)f ( z )=∫ [∅ 1 ( z , 0 ) +i ∅ 2 (z , 0) ] dz+C
∂V ∂V
Where ∅ 1 ( x , y )= and ∅ 2 ( x , y )=
∂x ∂y
Example: Use C-R equation to find v , where u=3 x 2 y− y 3.
Solution: Here u=3 x 2 y− y 3
Differentiating u w.r.t x and y
We have
104
B.Tech , Sem- II, Mathematics -II (BT -202 )
∂u
=6 xy =∅ 1 ( x , y )
∂x
∂u 2 2
=3 x −3 y =∅ 2 (x , y)
∂y
Also
2 2
∂ u ∂ u
2
+ 2 =6 y + (−6 y )=0
∂x ∂y
Here u is harmonic
Now putting x = z, y = 0
f ( z )=∫ [ 0−3 z i ¿ ] dz +C
2
3
f ( z )=−z i+ C
3
f ( z )=−( x +iy) i +C
105
B.Tech , Sem- II, Mathematics -II (BT -202 )
1
∮ z dz
Example 1. Find c , C: |z|=1.
ieit
∮ dzz =∫0
2π
¿ z∨¿ 1 ¿
z=e 0 ≤ t ≤ 2 π z ’ (t )=ie
¿ dt=2 πi
⇔ c eit
Solution: , , ,
dz
∮ z−3 i 1
Example 2: Evaluate: C
, C: |z-3i|= 3 .
Solution:
¿ ¿
z (t)=3i+e , z ’ (t )=ie ,
2π 1 i
dz =∫ ⋅ eit dt=2 πi
∮ z−3 i 0 1
e it
3
C 3
∮ z dz
Example 3: Evaluate c , C: |z|=1.
2 π −it
z (t)=e
¿ −¿ ¿ ∮ z dz=∫0 it
e ⋅ie dt=2 πi
Solution:
z e z ’ (t )=ie , c
, = ,
∮ [ z−R e ( z)]dz
Example 4: Evaluate c , C: |z|=2.
⇔
Solution : |z|=2 z(t)=2eit, z’(t)= i2eit
1 1 1 1
Re (z )= ( z + z )= (2 eit +2 e−it ) z−R e ( z )= ( z−z )= (2 e it −2 e−it )
2 2 ,
2 2
2π
∮ [ z−R e ( z)]dz=∫0 [ z(t )−Re (z(t ))]⋅z' (t )dt =∫ 2 (e it−e−it )⋅2ieit dt=2 i ∫ ( e2 it −1)dt
2π 2π
c
0 2 0 =−4 πi
106
B.Tech , Sem- II, Mathematics -II (BT -202 )
A (z=3+i)
O B(z=3) x
………………………..(1)
i.e. x=3 y
Now, On the line OA, x=3y
dx=3dy y:0 to 1
107
B.Tech , Sem- II, Mathematics -II (BT -202 )
26
=6+i
3
Again,
3 1
¿ ∫ x dx +∫ ( 9− y +6 iy ) i dy
2 2
0 0
26
=6+i
3
Lastly , The integral of z2 along the closed path OBAO is given by
108
B.Tech , Sem- II, Mathematics -II (BT -202 )
e 2 z dz
∮
|z|=3 z−2
Example 1 : Evaluate .
e2 z
∮
|z|=3 z−2
Solution : =2πie2∙2=2πie4
e iz
∮ z3 dz
c
Example 2: Evaluate , C: |z|=3.
iz iz ' '
(e )
∮ ez3 dz=i2 π⋅(3−1 )! =−iπ
c |z0 =0
Solution :
f ( z) f ( z)
∮C dz=2 πi ∮C ( z−1)2 dz=4 πi
Example 3: Given z and . If let f(z)=a+bz, find a and b
sin 6 ( z ) sin 6 ( z )
∮ π dz ∮ dz
Example 4: Evaluate
c z−
6 and
c
z−
π 3
6
if
π
6 ( )
C :|z − |=δ>0
.
sin 6 ( z )
∮ π dz =2 πi⋅sin6 π6 =32
c z−
πi
()
Solution: Let f(z)=sin6(z) and n=3 , 6 ,
sin 6 ( z )
∮ π 3 dz= 22πi! ⋅[sin6 ( z )]|z' ' = π =21 πi
c
( )
z−
6
0 6
16
dz dz
∮ z−z ∮ ( z−z n n ≧2
c 0 c 0)
Example 5: Let be within C, find and , .
dz dz
⇒∮
z−z 0
=2 πi ∮ ( z−z n
=0
c 0)
Solution: Let f(z)=1, f(n-1)(z0)=0 and .
2 sin( z 2 )
∮ (z−1)4 dz
c
Example 6: Evaluate , C is a closed curve not passing 1.
109
B.Tech , Sem- II, Mathematics -II (BT -202 )
2sin ( z2 ) 2 sin( z 2 )
( z−1 )4
∮ (z −1)4
dz=0
c
Solution: If C does not enclose 1, is analytic within C,∴
2 sin( z 2 ) f ( z)
f ( z )=2 sin( z 2 )⇒ =
( z−1 )4 ( z−1) 4
If C encloses 1, let ,n=4, n-1=3
( 3) 2 3 2
f ( z )=−24 z sin( z )−16 z cos( z )
2 sin( z 2 )
∮ (z−1)4 dz= 23!πi [−24 sin(1 )−16 cos(1)] = πi [−24 sin(1)−16 cos(1 )]
∴ c 3
CAUCHY’S RESIDUE THEOREM
Let f(z) be analytic in D except z1, z2, …,zn and C encloses z1, z2, …,zn within D. Then we have
n
1 d m−1 m
Re s ( f )= lim m−1 [( z−z j ) ¿ f ( z)]
zj (m−1)! z → z j dz
, where m is the order of a pole z=zj.
Re s ( f )=lim [ ( z−z j )⋅f ( z )]
z z→zj
In case of m=1, j .
z
Example 1: Find the residues of f(z)= .
z−1
z
Re s ( f )=lim [( z−1)⋅ ]
1 z→ 1 z−1
Solution: At z=1, m=1, =1
z
Example 2: Find the residues of f(z)= 2.
( z−1)(z +1)
z
Re s ( f )=lim [( z−1)⋅ 2
] 1
1 z→ 1 (z −1)( z+1) 4
Solution : At z=1, m=1, =
1 d 2 z ( z−1)−z 1
Re s ( f ) (2−1 )! lim [( z+1) ⋅ 2
]= |
2 z=−1 −
dz ( z+1 ) ( z−1) (z−1)
= 4
z→−1
At z=-1, m=2, −1 =
110
B.Tech , Sem- II, Mathematics -II (BT -202 )
1
Example 3: Find the residues of f(z)= 2 2.
( z−1) (z+ 1)
1 d 2 1 −2( z+1) 1
Re s ( f ) (2−1 )! lim [( z−1 ) ⋅ 2 2
]= |
4 z=1 −
z→1 dz ( z+1) ( z−1) ( z+1 ) 4
Solution: At z=1, m=2, 1 = =
1 d 2 1 −2( z−1) 1
Re s ( f ) (2−1 )! lim [( z+1) ⋅ 2 2
]= |
4 z=−1
−1 z→−1 dz ( z+1 ) ( z−1) ( z−1) 4
At z=-1, m=2, = =
z 2−2 z
( z +1)2 ( z 2 + 4 )
Example 4 : Find the residues of f(z)= .
z 2−2 z z 2−2 z
( z +1)2 (z 2 + 4 ) ( z +1)2 (z +2 i)( z−2 i)
Solution: f(z)= =
At z=-1, m=2,
1 d z2 −2 z (2z−2)( z 2 +4 )−( z 2 −2 z )(2z)
lim [( z+1)2⋅ ]= |z=−1 −14
(2−1 )! z→−1 dz ( z+1 )2 ( z 2 +4) (z 2 +4 )2 25
= =
z 2 −2 z
Re s ( f )= lim [( z−2 i)⋅ 2
] 7+i
2i z→ 2i ( z−2 i)( z +2 i)( z+1) 25
At z=2i, m=1, =
2
z −2 z
Re s ( f )= lim [( z +2i )⋅ ] 7−i
−2i z→−2i ( z−2 i)( z+2i)( z +1)2 25
At z=-2i, m=1, =
cot (z )coth (z )
Example 5: Find the residues of f(z)= z3 .
m−1
1 d m
Re s ( f )= lim m−1 [( z−z j ) ¿ f ( z)]
z (m−1)! z→ z j dz
Solution: It is difficult to compute the residue at 0 by j . We
∞ a−2 a−1
f ( z )= ∑ a n ( z−z 0 )n =⋯+ +
n=−∞ ( z−z 0 )2 ( z−z 0 ) + a0 + a1 ( z−z 0 )+⋯
utilize
cot (z )coth (z ) cos ( z )cosh ( z )
z3 z3 sin( z )sinh( z )
f(z)= =
111
B.Tech , Sem- II, Mathematics -II (BT -202 )
( 1−
z2 z 4 z2 z4
+ −+⋯ 1+ + +⋯
2! 4! 2! 4 ! ) ()( ) 1−
z4
6
+⋯
sin ( z ) sin (z )
f ( z )= ∮ dz
( z−i )3 and evaluate c ( z−i)3 , C:|z-i|=2.
Example 8: Find the residue of
1 d2 sin( z ) −1 1
Re s ( f )= lim 2 [( z−i)3⋅ ]= sin(i)=− i sinh(1)
i (3−1)! z →i dz ( z−i) 3 2 2
Solution: m=3,
∴
∮
sin (z )
2
( z−i )
1
( )
dz=2 πi⋅ − isinh (1) =π sinh(1)
2
112
B.Tech , Sem- II, Mathematics -II (BT -202 )
∮ tan zdz
Example 9: Evaluate c , C: |z|=2.
Solution: There are two poles ±π/2 within C.
π
z sin( z )− sin( z )
π π sin( z ) 2
Re s ( f ) lim [( z− )⋅tan( z )] lim [( z− )⋅ ] lim
π z→
π 2 π 2 cos( z ) π cos( z )
z→ z→
2
= 2 = 2 = 2
π
sin( z )+ z cos( z )− cos ( z )
2
lim
π −sin ( z )
z→
= 2 =-1
π
z sin ( z )+ sin( z )
π π sin( z ) 2
Re s ( f ) lim [( z+ )⋅tan( z )] lim [( z+ )⋅ ] lim
π z→−
π 2 π 2 cos ( z ) π cos( z )
− z→− z→−
2
= 2 = 2 = 2
π
sin ( z )+ z cos ( z )+ cos (z )
2
lim
π −sin( z )
z→−
= 2
=-1
∮ tan zdz
c
=2πi.[(-1)+(-1)]= -4πi
sin (z )
∮ z 2( z 2+4 ) dz
Example 10: Evaluate c , C is any piecewise-smooth curve enclosing 0, 2i, and –2i.
sin (z )/ z
f ( z )= lim [ sin( z )/z ] =1
z (z +2 i)( z−2 i) z→0
Solution : ,∵ ,∴f(z) has a removable singularity at 0⇒
sin( z ) 1
Re s ( f )=lim z⋅ 2 2 =
0 z→ 0 z ( z +4) 4
m of the pole z=0 in f(z) is 1.
sin ( z ) i 1
Re s ( f )= lim ( z−2 i)⋅ 2 = sin(2 i)=− sinh(2)
2i z→ 2i z ( z +2 i)( z−2i ) 16 16
sin( z ) i 1
Re s ( f )= lim ( z +2 i)⋅ 2 = sin (2i)=− sinh(2 )
−2i z→−2i z ( z+2 i)( z−2 i) 16 16
∮ f ( z)dz=2 πi
c
[ 1 1 1 πi πi
]
− sinh(2 )− sinh (2) = − sinh(2 )
4 16 16 2 4
113
B.Tech , Sem- II, Mathematics -II (BT -202 )
1
3 z
∮ zz3+1
e
dz
c
Example 11: Evaluate , C: |z|=3.
Solution: Let t=1/z, z=1/t, dz=-dt/t2, C: |t|=1/3
1
( )3 et
1 t −dt
z e 3 z∮ 1 3 ⋅( t 2 ) −e t
∮ z 3+1 dz c ( ) +1 ∮ t2 (t3 +1) dt
c t c
= = .
There is only one pole 0 within C.
1
t 3 z
1 d −e
Re s ( f )=
0
lim [t 2⋅ 2 3
1 ! t→ 0 dt t (t +1)
]= ∮ zz3+1
e
dz
c
-1, ∴ =2πi∙(-1)= -2πi
e− z
∮ cos( z) dz
c
Example 12: Evaluate ,C: |z|=2.
Solution: cos(z) has two zeros at z=±π/2 within |z|=2.
π z π
z e ze z −
e z + ze z− e z
π e 2 2
Re s ( f ) lim [( z− )⋅ ] lim lim π
π π 2 cos( z ) π cos( z ) π −sin( z ) 2
z→ z→ z→
2
= 2
= 2
= 2
=−e
π π z
z ze z + e z e z + ze z + e
π e 2 2
Re s ( f ) lim [( z+ )⋅ ] lim lim π
π π 2 cos ( z ) π cos( z ) π −sin ( z ) −
2
− z→− z→− z→−
2
= 2
= 2
= 2
=e
e− z
∮ cos( z) dz −
π
2
π
c e e2
∴ =2πi∙( - )
1
z
e
∮ z+1 dz
c
Example 13: Evaluate , C: |z|=0.5.
Solution: Let t=1/z, z=1/t, dz= -dt/t2, C: |t|=2
114
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 et −dt
∮ ⋅( 2 ) t
∮ t(t−e+1) dt
z
e 1
∮ z+1 dz c ( )+1 t
c t c
= = . There are twopoles0and -1 within C.
−et −et
Re s ( f )=lim [ t⋅ ]=−1 Re s ( f )= lim [(t +1)⋅ ]=e−1
0 t →0 t (t+1 ) −1 t→−1 t (t+1 )
, ,
1
3 z
∮ zz3+1
e
dz
c
∴ =2πi∙(-1+e-1)
Evaluation of real Integral by Cauchy Residue Theorem i.e. Integration round the unit circle
2π
and
iθ −iθ
e −e 1 1
sin θ= = ( z− )
2i 2i z
As θ varies from 0 to 2π ,moves once round the unit circle in the anti-clockwise direction
where C is the unit circle |z| = 1.
Hence, after putting the above values in the given real integral (1) ,then it will be reduce in to
complex integral and the we, sovle by Cauchy Residue Theorem .
2π dθ
∫0 5−3 cosθ .
Example 1: Evaluate
115
B.Tech , Sem- II, Mathematics -II (BT -202 )
2π dθ dz /iz 2idz 2idz
∫0 =∮ =∮ 2 ∮c
Solution:
5−3 cos θ c 1
( )
5−3⋅ z+
2
1
z
c 3 z −10 z+3
=
1
3( z− )( z−3)
3
1
There is only one pole within |z|=1.
3
1 2i 2i π
2 πi⋅Re s (f )=2 πi⋅lim ( z− )⋅ =2 πi⋅ =
2π dθ 3 1 −8 2
∫0 5−3 cosθ =
1
3
z→
1
3
3( z− )( z−3)
3
∴ .
2π dθ
∫0 3−2cos θ+sin θ .
Example 2: Evaluate
2π dθ dz /iz 2dz
∫0 =∮ =∮
Solution:
3−2cos θ+sin θ c 1
( ) ( )
1 1
3−2⋅ z+ +
2 z 2i
z−
1 c (1−2 i) z 2 +6 iz−1−2 i
z
2 dz
∮c 2−i
(1−2i )( z− )[ z−(2−i)]
=
5 .
2−i
There is only one pole within |z|=1.
5
2π dθ
∫0 3−2cos θ+sin θ
∴
2−i 2
2 πi⋅Re s (f )=2 πi⋅ lim {(z− )⋅ } 1
2−i 2−i 5 2−i
z→ (1−2i )( z− )[ z−(2−i)] 2i
=
5 5 5 =2πi∙( )=π.
2π dθ 2π dθ 2π
∫0 a+b sin θ
=∫0 = 2 2
a+b cos θ √a −b if a>|b|.
Example 3: Show that
2π dθ dz /iz 2 dz
∫0 =∮ =∮ 2
Proof:
a+ b sin θ c 1
a+b⋅ z−
2i ( )1
z
c bz +2 iaz−b
=
2 dz
∮c b ( z−z )( z−z )
1 2
i i
z 1=(−a+ √ a2 −b2 ) z 2 = (−a− √ a 2−b2 )
Poles:
b is within C: |z|=1, but
b is not.
2 2 1 2 b 1
Re s ( f )=lim ( z−z 1 )⋅ = ⋅ = ⋅ =
z1 z→z
1
b( z−z 1 )( z−z 2 ) b z 1−z 2 b 2i √ a −b i √ a2 −b 2
2 2
116
B.Tech , Sem- II, Mathematics -II (BT -202 )
2π dθ 1 2π
∫0 =2 πi⋅ 2 2 = 2 2
∴
a+b sin θ i √ a −b √ a −b
Contents
Differentiation of Vectors, Scalar and vector point function, Gradient, Geometrical meaning of
gradient, Directional Derivative, Divergence and Curl, Line Integral, Surface Integral and Volume
Integral, Gauss Divergence, Stokes and Green theorems.
Vector Differentiation
^ ^ ^
One-variable vector function: R(t )= x(t ) i+ y(t ) j+z(t ) k
d R (t ) d R(t ) dt dR(t ) df (t )
= ⋅ = /
The derivatives of vector functions: df (t ) dt df (t ) dt dt
∂ F ( x, y ,z ) ∂ F ( x , y , z) ∂x ∂ F ( x , y , z) ∂y ∂ F ( x, y , z) ∂z
= ⋅ + ⋅ + ⋅
∂ g(x , y ,z) ∂x ∂ g( x , y , z) ∂y ∂ g( x , y , z) ∂z ∂ g ( x, y ,z )
^ ^ 3^
Eg. For R(t )=2t i−cos(3t ) j+t k , 0¿ t¿ 1, find R '(t )=d R (t )/dt .
Let s(t)= 0 ∫ 1 √ 4+9sin 2(3 t )+9 t 4⋅dt , then find d R(t )/ds(t ) .
117
B.Tech , Sem- II, Mathematics -II (BT -202 )
^ ^ 2^
Sol: d R(t )/dt=2 i+3sin (3t ) j+3t k
^ ^ ^
4. For R(t )= x(t ) i+ y(t ) j+z(t ) k , if R(t ) does not change direction, then R(t )×R ' (t )=0 , and
vice versa.
5. Let R(t ) denote the position of a particle at time t. If the particle moves so that equal areas
are swept out in equal times, then we have R(t)×R \( t \) =0} {¿, and vice versa. (Kepler's law)
Proof:
1
= R 2θ
Area 2 and |R(t +Δt )−R(t )|≈Rθ
∴ 2 area=R θ=R (t )×[ R(t+ Δt )−R (t )]
2
If area=0 ⇔ R(t )×[ R (t+ Δt )−R (t )]=0 ⇔ R(t )×R ' (t )⋅Δt =0
⇔ R(t )×R ' (t )=0
Differential Geometry
^ ^ ^
Position vector: R (t )=x (t ) i + y (t ) j+z (t ) k
118
B.Tech , Sem- II, Mathematics -II (BT -202 )
' dx (t ) ^ dy (t ) ^ dz (t ) ^
v (t )=R (t )= i+ j+ k
Velocity: dt dt dt
t2 ds
s (t )=∫t |R (t )|dt , =|R (t )|=|v (t )|
' '
Arc length: 1 dt
' d 2 x ( t ) ^ d 2 y (t ) ^ d 2 z ( t ) ^
a ( t )=v ( t )= i+ j+ k
Acceleration: dt 2 dt 2 dt 2
d T^ '
R (t ) v (t ) d R(t )
κ=| | T^ = ' = =
Curvature: ds , where |R (t )| |v (t )| ds(t )
^ ^ ^
Eg. C: R(t )=t i+(t−2) j+(3t−1 ) k is a straight line.
d|v| ^ |v|2 ^
a= T+ N=
Theorem : dt ρ tangential acceleration+centripetal acceleration
d v (t ) d ^
d|v (t )| ^ d T^
a (t )= = [|v (t )|T ] = ⋅T +|v (t )|
⋅
Proof : dt dt dt dt
=
d|v (t )| ^
dt (
ds d T^
⋅T +|v (t )|⋅ ⋅
dt ds = )
d|v (t )| ^
dt
⋅T +|v (t )|2
d T^
ds . Define
N=
^
^ ρdT
ds
d|v (t )| ^ |v (t )|2 ^ ^ ^ ^ ^ ^ T^ )
d ( T⋅
⇒ a(t )= T+ N ( N ⊥ T ⇐ T⋅T =1) =0
dt ρ , ds
^ ^ 2^
Eg. : For R(t )=[ cos(t )+t sin(t )] i +[sin(t )−t cos(t )] j+t k , t>0, we have
v(t )=t cos(t ) ^i +t sin (t ) ^j+2t k^
^ sin(t )+t cos(t )] ^j+2 k^
a (t )=[ cos(t )−t sin (t )] i+[
v (t ) 1 1 2
T^ = = cos(t ) ^i+ sin (t ) ^j+ k^
|v (t )| √5 √5 √5
1 1 1
ρ= = = =5 t
κ d T^ dt d T^ 1
| ⋅ | | ⋅ |
dt ds dt |v (t )|
119
B.Tech , Sem- II, Mathematics -II (BT -202 )
^ ^ ^
^ ρ d T =ρ dt ⋅d T = ρ ⋅d T =−sin (t ) ^i +cos (t ) ^j
N=
ds ds dt |v (t )| dt
∴a (t )=√ 5 T^ +t N^ √5
, at= , an=t
^
Binormal vector: B=T × N
^ ^
Fernet formulae:
{ {
dT^ ^ N^ d N^ ^ ^
=κN= (1)¿ =−κT+τB (2)¿ ¿
ds ρ ds
Gradient, Divergence and Curl: the Basics
r = xi+yj+zK
Where x, y, and z are rectangular unit vectors. Since the unit vectors for rectangular
coordinates are constants, we have for dr:
dr = dx i + dy j + dz k .
1. Gradient
If the del operator, Ñ operates on a scalar function, f(x,y,z), we get the gradient:
We can interpret this gradient as a vector with the magnitude and direction of the
maximum change of the function in space. We can relate the gradient to the differential
change in the function:
120
B.Tech , Sem- II, Mathematics -II (BT -202 )
Since the del operator should be treated as a vector, there are two ways for a vector to
multiply another vector: dot product and cross product. We first consider the dot product:
2. Divergence
since the rectangular unit vectors are constant, ¶x/¶x = 0 (etc.). This will not necessarily
be true for other unit vectors in other coordinate systems. We'll see examples of this soon.
3. Curl
Where we have used the fact that the unit vectors do not change with position (¶x/¶x = 0)
and the fact that (x´x=0 and x´y=z, etc.). For other coordinate systems, unit vectors may
change with position.
121
B.Tech , Sem- II, Mathematics -II (BT -202 )
Example 1 : Determine if
is a conservative vector field.
Solution:
122
B.Tech , Sem- II, Mathematics -II (BT -202 )
So, the curl isn’t the zero vector and so this vector field is not conservative.
Solution: There really isn’t much to do here other than compute the divergence.
123
B.Tech , Sem- II, Mathematics -II (BT -202 )
Example 5: Find the directional derivative of the function f ( x , y )=3 x 2 y at a point (-2,1) along
^ ^j.
the direction 4 i+3
^ ^
^ ^j is u^ = 4 i+ 3 j .
Solution: The unit vector along 4 i+3
5
^ x 2 ^j .
Gradient of the given function is 6 xy i+3
Example 6: Find the directional derivative of the function f ( x , y , z )=3 x 3 +2 x y 2 + xyz along the
^ 4 ^j+ 4 k^ at a point (1,1,1)
direction 2 i+
^ ^j+2 k^
i+2
^ 4 ^j+ 4 k^ is u^ =
Solution: The unit vector along 2 i+ .
5
^
Gradient of the given function is ( 9 x 2 +2 y 2+ yz ) i+(4 xy + xz ) ^j+ xy k^ .
^ ^j+ k^
At (1,1,1) the gradient is 12 i+5
Example 7: Find the equation to the tangent plane to the surface x 2+ y 2−z 2=7 at the point
(2,2,1).
^ 4 ^j−2 k^ .
Normal to the surface is in the direction of gradient which is 4 i+
124
B.Tech , Sem- II, Mathematics -II (BT -202 )
The equation to the tangent plane is given by f x ( x−x 0 ) +f y ( y − y 0 ) + f z ( z−z 0)=0 , where f x , f y
and f z are the partial derivative of the function f(x,y,z)= constant at the point (x 0 , y 0 , z 0).
Solution: We first need to find a unit vector u that travels in the same direction is the vector with
an initial point P and terminal point Q. First, we see that
→
v=PQ=¿0−1,0−1>¿ <−1,−1>¿−i−j
Then, since ||v||= √(1)2 +(1 )2=√ 2 , we can find the unit vector u to be
v 1 1
u= =¿−1 ,−1> ¿ =− i− j=a i+b j ¿
||v|| √ 2 √2 √2
1 1
a=− b=− x2 − y2
Hence, √2 and √2 . For f ( x , y )=e , we have that
2
− y2 2 2
f x ( x , y )=2 xe x f ( x , y )=−2 ye x − y
and x .
Hence,
Therefore,
125
B.Tech , Sem- II, Mathematics -II (BT -202 )
Line integral ¿ ∫ F .
c
( ⃗
dr
ds)ds=∫ F . dr
c
Note:
1) Work: If F represents the variable force acting on a particle along arc AB, then the total
B
work done ¿ ∫ F . dr
A
126
B.Tech , Sem- II, Mathematics -II (BT -202 )
B
here F is called Conservative (irrotational) vector field and ∅ is called the Scalar potential.
And ∇ × F=∇ × ∇ ∅ =0
plane z=0 and bounded by the lines x=0 , y=0 , x=a∧ y =a.
Solution: ∫ F . dr=∫ F . dr + ∫ F . dr + ∫ F . dr + ∫ F . dr
c OA AB BC CO
Here ^ y ^j , dr=dx i+
r =x i+ ^ dy ^j , F=x 2 i+
^ xy ^j
2
F . dr =x dx + xydy _______ (i)
On OA , y=0
2
∴ F . dr=x dx (From (i))
[ ]
a 3
x3 a3
∫ F . dr=∫ x dx=
2
=
3 0 3
_______ (ii)
OA 0
On AB , x=a
∴ dx=0
∴ F . dr=ay dy (From (i))
[ ]
a a
y2 a3
∫ F . dr=∫ ay dy =a =
2 0 2
_______ (iii)
AB 0
On BC , y=a
∴ dy=0
∴ F . dr=x dx
2
(From (i))
[ ]
0 0
x3 −a3
∫ F . dr=∫ x dx=
2
3 a
=
3
_______ (iv)
BC a
On CO , x=0
∴ F . dr=0 (From (i))
127
B.Tech , Sem- II, Mathematics -II (BT -202 )
Solution:
[ ]
3
since x=2 t y=t z=t
dx dy dz 2
∴ =2 =1 =3 t
dt dt dt
1
¿ ∫ ( 2 t+3 )( 2 dt )+ ( 2t ) ( t ) dt + ( t −2t ) (3 t dt )
3 4 2
1
¿ ∫ ( 4 t+6 +2 t + 3t −6 t ) dt
4 6 3
[ ]
1
t2 2 5 3 7 6 4
¿ 4 + 6 t+ t + t − t
2 5 7 4 0
[ ]
1
2 3 3
¿ 2 t 2+6 t + t 5+ t 7 − t 4
5 7 2 0
2 3 3
¿ 2+6+ + −
5 7 2
¿ 7.32857
128
B.Tech , Sem- II, Mathematics -II (BT -202 )
(3 , 5 ,7)
¿ ∫ ( x3 i+
^ y ^j+ z k^ ) . ( i^ dx + ^j dy + k^ dz )
(1 , 2 ,3)
(3 , 5 ,7)
¿ ∫ ( x3 dx + ydy + zdz )
(1 , 2 ,3)
3 5 7
¿ ∫ x dx+∫ y dy +∫ z dz
3
1 2 3
[ ][ ][ ]
3 5 7
x4 y2 z2
¿ + +
4 1 2 2 2 3
¿
[ 81 1
− +
4 4
25 4
− +
2 2
−
][
49 9
2 2 ][ ]
80 21 40
¿ + +
4 2 2
202
¿
4
¿ 50.5 units
Exercise:
path joining the points (1, 2) and (3, 4). Hence, evaluate the integral.
SURFACE INTEGRAL:
129
B.Tech , Sem- II, Mathematics -II (BT -202 )
¿ ∑ F . n^ ¿ ∬ ( F . n^ ) ds
S
Note:
VOLUME INTEGRAL:
Example 1: Evaluate ∬ ( yz i+
^ zx ^j+ xy k^ ) . ds where S the surface of the sphere is
S
∂∅ ^ ∂∅ ^ ∂∅
¿ i^ +j +k
∂x ∂y ∂z
(
¿ i^
∂ ^ ∂ ^ ∂
∂x
+j
∂y
+k
∂z )
( x 2 + y 2 + z 2−a 2)
^
¿ 2 x i+2 y ^j+ 2 z k^
^ y ^j+2 z k^
∇ ∅ 2 x i+2
n^ = =
|∇ ∅ | √ 4 x 2+ 4 y 2 + 4 z 2
130
B.Tech , Sem- II, Mathematics -II (BT -202 )
^ y ^j+ z k^
x i+
¿
√ x 2+ y 2+ z 2
^ y ^j+ z k^
x i+
¿ [ ∵ x 2+ y2 + z 2=a2 ]
a
Here, ⃗ ^ zx ^j+ xy k^
F = yz i+
⃗
^ ^ ^
^ zx ^j+ xy k^ ) . x i+ y j+ z k = 3 xyz
F . n^ =( yz i+
a a ( )
Now, ∬ ⃗F . n^ ds=∬ ( ⃗F . n^ ) dx^ dy
S S |k . n^|
a √ a2−x 2
3 xyz dx dy
¿∫ ∫
0 0
a
z
a ()
a √ a2−x 2
¿ 3∫ ∫ xy dy dx
0 0
y √ a −x
( )
a
2 2 2
¿ 3∫ x dx
0 2 0
a
3
¿ ∫ x (a −x )dx
2 2
20
( )
2 2 4 a
3 a x x
¿ −
2 2 4 0
( )
4 4
3 a a
¿ −
2 2 4
4
3a
¿
8
^
Example 2: If F=2 z i−x ^j+ y k^ , evaluate ∭ F dv where, v is the region bounded by the
V
2
surfaces x=0 , y=0 , x=2 , y=4 , z=x , z=2.
131
B.Tech , Sem- II, Mathematics -II (BT -202 )
2 4 2
¿ ∫ dx ∫ dy ∫ ( 2 z i−x
^ ^j+ y k^ ) dz
0 0 x
2
2 4
2
¿ ∫ dx ∫ dy [ z i−xz ^j+ yz k^ ]
2^
2
x
0 0
2 4
¿ ∫ dx ∫ dy [ 4 i−2
^ x ^j+ 2 y k^ −x i+ x ^j−x y k^ ]
4^ 3 2
0 0
[ ]
2 2 2 4
¿ ∫ dx 4 y i−2
^ 2^
xy ^j+ y k−x
4 ^ x3 y ^j− x y k^
y i+
0
2 0
2
¿ ∫ ( 16 i−8
^ x ^j+16 k^ −4 x i+4
4^
x ^j−8 x k^ ) dx
3 2
[ ]
5 3 2
^
¿ 16 x i−4 ^ 4 x i+
x ^j+16 x k−
2 ^ x 4 ^j− 8 x k^
5 3 0
^ 128 i+16
¿ 32 i^ −16 ^j +32 k− ^ ^j− 64 k^
5 3
32 i^ 32 k^
¿ +
5 3
32 ^ ^
¿ ( 3 i +5 k )
15
Exercise:
^
F =( 2 x 2−3 z ) i−2
2) If⃗ xy ^j−4 x k^ , then evaluate∭ ∇ ⃗
F dv , where V is bounded by the
V
132
B.Tech , Sem- II, Mathematics -II (BT -202 )
∂ϕ
∧∂ Ψ
If ∂y be continuous functions over a region R bounded by
∅ ( x , y ) ,Ψ ( x , y ) ,
∂x
simple closed curve C in x− y plane, then
∮ ( ϕ dx +Ψ dy )=∬ ( ∂∂Ψx − ∂∂ ϕy ) dx dy
C R
∫ F . dr=∬ ( ∇ × F ) . k^ dR
c R
^
Where, F=∅ i+Ψ ^ y ^j, k^ is a unit vector along z -axis and dR=dx dy .
^j , r=x i+
∮ ( ϕ dx +Ψ dy )=∬ ( ∂∂Ψx − ∂∂ ϕy ) dx dy
C R
0 0
1 x
¿ ∫ ( 2 x−x ) dx [ y ] ¿0 ¿
2
0
1
¿ ∫ (2 x −x )dx
2 3
( )
3 4 1
2x x
¿ −
3 4 0
¿ ( 23 − 14 )
5
¿
12
133
B.Tech , Sem- II, Mathematics -II (BT -202 )
∮ ( ϕ dx +Ψ dy )=∬ ( ∂∂Ψx − ∂∂ ϕy ) dx dy
C R
[ ]
1 1
∂ 2 2
¿∫ ∫ ( x + y )− ∂ (x 2+ xy ) dx dy
−1 −1 ∂x ∂y
1 1
¿ ∫ ∫ ( 2 x−x ) dxdy
−1 −1
1 1
¿ ∫ ∫ x dxdy
−1 −1
1 1
¿ ∫ x dx ∫ dy
−1 −1
1 1
¿ ∫ x dx ( y )−1
¿
¿
−1
1
¿ ∫ x dx (1+1)
−1
1
¿ ∫ 2 x dx
−1
1¿
2
¿( x )−1
¿
¿ 1−1
¿0
Exercise:
^ x (1+cos y) ^j .
2) A vector field F is given by F=sin y i+
134
B.Tech , Sem- II, Mathematics -II (BT -202 )
Evaluate the line integral ∫ F . dr where C is the circular path given by x 2+ y 2=a2 .
C
Surface integral of the component of curl F along the normal to the surface S, taken
over the surface S bounded by curve C is equal to the line integral of the vector point
function F taken along the closed curveC .
Mathematically
∮ F . dr =∬ curl F . n^ ds
S
^
Where n^ =cos ∝ i+cos β ^j+ cos γ k^
OR
The circulation of vector F around a closed curve C is equal to the flux of the curve of
the vector through the surface S bounded by the curveC .
∫ ( y dx+ z dy + x dz)
c
¿ ∫ ( y i+
^ z ^j+ x k^ ) .( i^ dx + ^j dy + k^ dz )
c
135
B.Tech , Sem- II, Mathematics -II (BT -202 )
¿ ∫ ( y i+
^ z ^j+ x k^ ) . d r
c
¿ ∬ curl ( y i+
^ z ^j+ x k^ ) . n^ ds (By Stoke’s theorem)
S
¿ ∬ i^
S ∂ x
+j
∂ (
∂ ^ ∂ ^ ∂
y
+k
∂ z )
^ z ^j+ x k^ ) . n^ ds
× ( y i+
¿ ∬ – ( i+
^ ^j+ k^ ). n^ ds _______ (i)
S
x + z=a .
∇∅
n^ =
|∇ ∅ |
¿ ∬ – ( i+
^ ^j+ k^ ).
S
( i^
+
√2 √2
k^
)
ds
136
B.Tech , Sem- II, Mathematics -II (BT -202 )
( ) [ ]
2 2
1 1 a a
¿ ∬−¿ + ds ¿ 2
Use r =R − p =a −
2 2 2
=
S √2 √2 2 2
( )
2 2
2 −2 a −π a
¿− ∬
√2 S
ds= π
√2 √2
=
√2
| |
i^ ^j k^
∂ ∂ ∂
¿
∂x ∂y ∂z
2 2
y x −(x+ z )
^ ^j+2(x− y ) k^
¿ 0. i+
∴ n^ = k^
∮ F . dr =∬ (curl F . n^ )ds
C S
1 x
¿∫ ∫ 2 ( x− y ) dxdy
x=0 y=0
[ ]
1 2
x
¿ 2∫ x −
2
dx
0 2
137
B.Tech , Sem- II, Mathematics -II (BT -202 )
1 2
x
¿ 2∫ dx
0 2
1
¿ ∫ x dx
2
[ ]
1
x3
¿
3 0
1
¿
3
Exercise:
direction.
The surface integral of the normal component of a vector function F taken around a
closed surface S is equal to the integral of the divergence of F taken over the volume V
enclosed by the surface S.
Mathematically
∬ ⃗F . n^ ds=∭ ¿ ⃗F dv
S V
Example 1: Evaluate ∬ ⃗
F . n^ ds where ⃗ ^ y 2 ^j+ yz k^ and S is the surface of the
F =4 xz i−
S
138
B.Tech , Sem- II, Mathematics -II (BT -202 )
∬ ⃗F . n^ ds=∭ ( ∇ . ⃗F ) dv
S V
¿ ∭ i^
v
∂ ^ ∂ ^ ∂
∂x
+j
∂y (
+k
∂z
^ y 2 ^j+ yz k^ ) dv
. ( 4 xz i− )
¿∭
v
[ ∂
∂x
( 4 xz ) +
∂
∂y
2 ∂
]
(− y )+ ( yz ) dx dy dz
∂z
¿ ∭ ( 4 z −2 y + y ) dx dy dz
v
¿ ∭ (4 z− y )dx dy dz
v
( )
1 1 2 1
4z
¿ ∫∫
¿
− yz dx dy ¿
0 0 2 0
1 1 1
¿ ∫ ∫ (2 z − yz )¿0 dx dy ¿
2
0 0
1 1
¿ ∫ ∫ ( 2− y ) dx dy
0 0
( ) dx
1 2 1
y
¿∫ 2 y −
0 2 0
1
3
¿
20
∫ dx
3 1¿
¿ [ x ]0¿
2
3
¿ (1)
2
3
¿
2
∬ ⃗F . n^ ds=∭ ¿ ⃗F . dv
S V
139
B.Tech , Sem- II, Mathematics -II (BT -202 )
¿ ∭ i^
V ∂ x
+j(
∂ ^ ∂ ^ ∂
∂ y
+k
∂ z
2 2 2 ^ ^ ^
. ( x + y + z ) ( i+ j+ k ) dv)
¿ ∭ (2 x +2 y+ 2 z )dv
V
¿ 2∭ ( x + y + z ) dx dy dz
V
2 2− x 2− x− y
¿ 2∫ dx ∫ dy ∫ ( x+ y+ z ) dz
0 0 0
( )
2 2− x 2 2−x− y
z
¿ 2∫ dx ∫ dy ¿
xz + yz + ¿
0 0 2 0
[ ]
2 2− x 2
(2−x − y)
¿ 2∫ dx ∫ dy 2 x−x 2−xy + 2 y −xy− y 2 +
0 0 2
[ ]
2 3 2− x
y3 ( 2−x− y ) ¿
¿ 2∫ dx 2 xy −x y−x y + y − − 2 2 2
¿
0
3 6 0
[ ]
2 3 3
(2−x) (2−x )
¿ 2∫ dx 2 x ( 2−x )−x 2 ( 2−x )−x (2−x )2+(2−x)2− +
0 3 6
[ ]
2 3 3
(2−x ) (2−x)
¿ 2∫ 2 2 3
4 x −2 x −2 x + x −4 x + 4 x −x +(2−x ) − + 2 3 2
0 3 6
[ ]
3 4 4 2
4 x x (2−x ) (2−x) (2−x)
3 4 3 4
4x x 2
¿2 2 x − + −2 x 2 + − − + −
3 4 3 4 3 12 24 0
[ ]
2
−(2−x)3 ( 2−x) 4 (2−x )4
¿2 + −
3 12 24 0
¿2
[ 8 16 16
− +
3 12 24 ]
140
B.Tech , Sem- II, Mathematics -II (BT -202 )
¿4
Example 3: Verify Stokes' theorem for F = (x2 - y2) i + 2xy j in the rectangular region in the xy plane,
the vertices of the rectangle being given by (0, 0), (a, 0), (b, 0) and (a, b).
i j k
∂ ∂ ∂
∴ ∇×F =| ∂ x ∂ y ∂ z |=i ( 0 )− j ( 0 ) +k ( 4 y )=4 y k .
x2 − y2 2 xy 0
The surface is the rectangular region in the xy plane. Hence the outward normal to the surface is k.
n dS = k dx dy.
____ (1)
(0, b) B C(a, b)
(0,0) O A (a, 0) X
141
B.Tech , Sem- II, Mathematics -II (BT -202 )
a a
∫ F .dr=∫ ( x −0 )dx+2 x.0.0=∫ x 2 dx= 13 a3 .
2 2
OA 0 0
Similarly,
b
( ii ) ∫ F . dr=∫ 2 aydy=ab 2 . (∵ x=a dx =0 .)
AC 0
0 a
1
( iii ) ∫ F .dr =∫ ( x −b )dx=−∫ ( x2 −b 2 )dx=ab 2 − a3 (∵ ¿ ¿
2 2
CB a 0 3
____ (3)
∬ ( ∇× F ) . n dS=∮ F . dr
S C ,
Example 4: Verify Stokes' theorem for F = (2x – y) i yz2 j y2z k, where S is the upper half surface of the
unit sphere x2 + y2 + z2 = 1 and C is its boundary.
Solution
i j k
∂ ∂ ∂
∇×F =| ∂ x ∂y ∂ z |=k
2 2
2 x− y − yz − y z
142
B.Tech , Sem- II, Mathematics -II (BT -202 )
Now is the area of the region enclosed by the circle and is hence, we
obtain
____ (1)
The boundary C of S is a circle in the xy plane of radius 1 and center at the origin. Suppose x = cos t,
y = sin t, z = 0, 0 t 2 be the parametric form of C.
Then
= (2)
∬ ( ∇× F ) . n dS=∮ F . dr
S C
******************************************************************************
143