0% found this document useful (0 votes)
62 views7 pages

Chapter 7

The document discusses the auxiliary equation and its solutions for differential equations, specifically focusing on cases with distinct and repeated roots. It provides examples of solving differential equations using the auxiliary equation method and outlines exercises for practice. Additionally, it introduces the definition of exponential functions for imaginary numbers and emphasizes the importance of hyperbolic functions in solving initial value problems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
62 views7 pages

Chapter 7

The document discusses the auxiliary equation and its solutions for differential equations, specifically focusing on cases with distinct and repeated roots. It provides examples of solving differential equations using the auxiliary equation method and outlines exercises for practice. Additionally, it introduces the definition of exponential functions for imaginary numbers and emphasizes the importance of hyperbolic functions in solving initial value problems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

7.

2 The Auxiliary Equation: Distinct Roots 119

The auxiliary equation is


m 2 -4 = 0,
with roots m = 2, - 2. Hence the general solution of the differential equation is
x = c] e
21
+ C2e - 2t.
It remains to enforce the conditions at t = O. Now
dx
- = 2c]e 21 - 2c?e- 21.
dt -
Thus the condition that x = 0 when t = 0 requires that
0= CI + C2,
and the condition that dx / dt = 3 when t = 0 requires that
3 = 2c] - 2C2.

From the simultaneous equations for CI and C2 we conclude that CI 1


4
and
C2 = - t.
Therefore,
x = t(e 21 - e- 21) ,
which can also be put in the form
x = ~ sinh (2t).

• Exercises

In Exercises 1 through 22, find the general solution. When the operator D is used, itis implied
that the independent variabl e is x .

l. (D 2 + 2D - 3)y = O. 10. (4D 313D - 6)y = O.


-

2. (D 2 + 2D)y = O. d x d 2x
3
dx
11. -+ - 2- 2-=0.
3. (D 2 + D - 6) y = O. 3
dt dt dt
4. (D 2 - 5D + 6)y = O. d 3x dx
12. - 3 - 19- + 30x = O.
5. (D 3 + 3D 2 - 4D)y = O. dt dt
6. CD 3 - 3D 2 - lOD)y = O. 13. (9D 3 -7D+2)y=O.
7. (D 3 + 6D 2 + lID + 6)y = O. 14. (4D 3 - 2ID - lO)y = O.
8. (D 3 + 3D 2 - 4D - 12)y = O. 15. CD 3 - 14D + 8)y = O.
9. (4D 3 - 7 D + 3)y = O. 16. (D 3 - D2 - 4D - 2)y = O.
17. C4D4 - 8D 3 - 7D 2 + llD + 6)y = O.
18. (4D4 - I6D 3 + 7D2 + 4D - 2)y = O.
19. (4D 4 + 4D 3 - 13D 2 -7D + 6)y = O.
120 Chapter 7 Linear Equations with Constan.t Coefficients

20 . (4D 5 - 8D 4 - 17 D3 + 12D2 + 9D)y = 0.


21. (D 2 - 4aD + 3( 2 )y = 0; a real "# 0.
22. [D 2 - (a + b)D + ab]y = 0; a and b real and unequal.

In Exercises 23 and 24, find the particular solution indicated.

23. (D 2 - 2D - 3)y = 0; when x = 0, y = 0, yt = - 4.


24. (D 2 - D - 6) y = 0; when x = 0, y = 0, and when x = 1, y = e 3 .

In Exercises 25 through 29, find for x = I the y value for the particular solution required.

25. (D 2 - 2D - 3) y = 0; when x = 0, y = 4, y' = 0.


26. CD 3 - 4D)y = 0; when x = 0, y = 0 , yt = 0, y" = 2.
27. (D 2 - D - 6)y = 0; when x = 0, y = 3, yt = - 1.
28. CD2 + 3D - 10)y = 0; when x = 0, y = 0, and when x = 2 , y = l.
29. CD 3
- 2D2 - 5D + 6) y = 0; when x = 0, y = 1, yt = - 7, y" = - 1.

7 .3 The Auxiliary Equation : Repeated Roots


Suppose that in the eq uation

f(D) y = ° (1)

the operator feD) has repeated factors; that is, the auxiliary equation f(m) =
has repeated roots. Then the method of the preceding section does not yield
°
the general solution. Let the auxiliary equation have three equal roots m I = b,
m 2 = b, m 3 = b. The correspo nding part of the solution yielded by the method
of Section 7.2 is
y = C Ie + C2evx + C3evx,
Vx

vx (2)
y = (CI + C2 + c3)e .

Now (2) can be replaced by

(3)

with C4 = CI + C2 + C3. Thus, corre ponding to the three roots under consideration ,
this method has yielded only the solution (3). The difficulty is present, of course,
because the three solutions corresponding to the roots m I = m2 = m 3 = bare
not linearly independent.
What is needed is a method for obtaining n linearly independent solutions cor-
responding to n equal roots of the auxili ary equation. Suppose that the auxiliary
°
eq uation f(m) = has the n roots
122 Chapter 7 Linear Equations with Constanl Coefficients

EXAMPLE 7.4
Solve the equation

(D 4 - 7D3 + 18D 2 - 20D + 8)y = O. (10)


With the aid of synthetic division, it is easily seen that the auxiliary equation

m 4 - 7m 3 + 18m 2 - 20m +8= 0


has the roots m = 1, 2 , 2, 2. Then the general sol ution of equation (10) is

or

y= Cte x + ( C2 + C3X + C4X 2) e 2r


' .


EXAMPLE 7.5
Solve the equation

d4 y d 3 y d2 y
-+2-+-= 0.
dx 4 dx 3 dx 2
The auxiliary equation is

m
4
+ 2m 3 + m 2 = 0,
with roots m = 0, 0, - 1, - 1. Hence the desired solution is

• Exercises

In Exercises 1 through 20, fi nd the general solutj on.

1. ( D 2 - 6D +9)y = 0 . 4. (D 3 8D 2 + 16D)y = O.
-

2. (D 2 + 4D + 4) y = O. 5. (D4 + 6D 3 + 9D2)y = O.
3. (4D 3 + 4D2 + D)y = O. 6. (D 3 - 3D 2 + 4)y = O.
3
7. (4D - 3D + Oy = O.
8. ( D4 - 3D 3 - 6D 2 + 28D - 24)y = O.
9. (D 3 + 3D 2 + 3D + l) y = O. 11. (D s - D 3 )y = O.
10. (D 3 + 6D 2 + 12D + 8)y = O. 12. (D s - 16D 3 )y = O.
13. 4 2
(4D +4D3 - 3D - 2D + l)y = O.
7.4 A Definition of exp z forlmaginary z 123

14. (4D 4 - 4D 3 - 23D 2 + 12D + 36)y = 0.


15. (D 4 + 3D 3 - 6D 2 - 28D - 24)y = 0.
16. (27D4 - 18D 2 + 8D - ' l)y = 0.
17. (4D 5 - 23D 3 - 33D 2 - 17D - 3)y = 0.
18. (4D 5 - 15D 3 - 5D2 + 15D + 9)y = 0.
19. (D 4 - 5D2 - 6D - 2)y = 0.
20. (D 5 - 5D 4 + 7 D3 + D2 - 8D + 4)y = 0.

In Exercises 2 J through 26, find the particular olution indicated.

2l. (D 2 +4D+4)y = 0; when x = 0, y = 1, y' =-1.


22. The equation of Exercise 21 with the condition that the graph of the solution
pass through the points (0, 2) and (2, 0).
23. (D 3 - 3D - 2)y = 0; when x = 0, y = 0, y' = 9, y" = 0.
24. (D 4 + 3D 3 + 2D2)y = 0; when x = 0, y = 0, y' = 4, y" = - 6, y"l = 14.
25. The equation of Exercise 24 with the conditions that when x = 0, y = 0,
y' = 3, y" = - 5, y"' = 9.
26. CD 3 + D2 - D - l)y = 0; when x = 0, y = 1, when x = 2, y = 0, and
also with the condition as x -7 00, Y -7 0.

In Exercises 27 through 29, find for x = 2 the y value for the particular solution required.
27. (4D 2 - 4D + l)y = 0; when x = 0, y = - 2, y' = 2.
28. (D 3 + 2D2)y = 0; when x = 0, y = -3, y' = 0, y" = 12.
29. CD 3 + 5D2 + 3D - 9)y = 0; when x = 0, y = -1, when x = 1, y = 0,
and also with the condition as x -7 00, Y -7 0.

7.4 A Definition of exp z for Imaginary z


Since the auxiliary equation may have imaginary roots, we need to lay down a
definition of exp z for imaginary z.
Let z = 0: + if3 with 0: and f3 real. Since it is desirable to have the ordinary
laws of exponents remain valid, it is wise to require that

(l)

To eCL with 0: real , we attach the usual meaning.


Now consider e i /3, f3 real. In calculus it is shown that for all real x

X x2 x3 x"
eX = 1 + - + - + - + ... + - + .. . (2)
I! 21 31 n!
130 Chapter 7 Linear Equations with COl/stant Coefficients

The initial conditions now require that °= c, and 2 = 2C2, so finally,


y = sin h 2x.
Note that if we were to choose the alternative form

for the general solution of (7), we would obtain the same result with a little more
fuss in detel111ining C3 and C4 . Indeed, one major reaso n for using the hyperbolic
°
fu nctions is that cosh ax and sinh ax have values I and when x = 0, a fact that
is particularly useful in solving initial value problems .

• Exercises

Find the general sol ution except when the exercise stipulates otherwise.

1. Verify directly that the relation

(A)

satisfies the equation

[CD - a)2 + b2Jy = 0.

2. (D 2 - 2D + 5)y = O. 7. CD2 - 4D + 7)y = O.


3. (D 2 - 2D + 2)y = O. S. CD 3 + 2D2 + D + 2)y = O.
4. (D 2 + 9)y = O. 9. (D 4 + 2D 3 + 10D2)y = O.
S. (D 2 - 9)y = O. 10. (D 4 -2D 3 +2D 2 - 2D+ l )y = O.
6. (D 2 + 6D + 13)y = O. 11. (D4 + lSD 2 + Sl)y = O.
12. (2D 4 + J ID J - 4D2 - 69D + 34)y = O.
13. (D + 9D + 24D2 + 16)y = O.
6 4

14. (2D 3 - D2 + 36D - lS)y = O.


15. (D 2 -l)y = 0; when x = 0, y = Yo, y' = O.
16. (D 2 + J)y = 0; when x = 0, y = yo, y' = O.
17. (D J +7D 2 + J9D + 13)y = 0; when x = 0, y = 0, y' = 2, y" = -12.
IS. (D 5 + D4 - 7D 3 - llD2 - SD - 12)y = O.
d 2x dx
19. -2 +k 2 x = 0, k real; when t = 0, x = 0, - = Va.
dt dt
20. (D + D2 + 4D + 4)y = 0; when x = 0, y = 0, y' = -1, y" = S.
J

czZx dx 2 . dx
21. dt 2 + 2b di + k x = 0, k > b > 0, when t = 0, x = 0, dt = Vo.
7.6 A NOie on H yperbolic FUIlC/ioli s 131

• Miscellaneous Exercises
Obtai n the general solution unless otherwise instructed.

1. (D 2 +3D)y=0. 10. (4D 3 -2 1D - IO )y=0.


2. (9D 4 + 6D 3 + D2)y = O. 11. (4D 3 - 7 D + 3)y = O.
3. (D 2 + D - 6)y = O. 12. (D J - 14D + 8)y = O.
4. (D J + 2D2 + D + 2)y = O. 13. (8D 3 - 4D2 - 2D + l )y = O.
3 2
S. (D - 3D + 4)y = O. 14. (D4 + D3 - 4D2 - 4D)y = O.
6. (D - 2D2 - 3D)y = O.
3
IS . (D 4-2D 3+SD 2-8D+4)y = O.
7. (4D 3 - 3D + l )y = O. 16. (D 4 + 2D2 + I)y = O.
8. (D J + 3D 2 - 4D - 12»)1 = O. 17. (D 4 + SD 2 + 4)y = O.
2
9. (D + 3D + 3D + 1))1 = O.
3
18. (D 4 + 3D J - 40)y = O.
19. (D 4 - 11D 3 + 36D 2 - 16D - 64)y = O.
20. (D 2 + 2D + S) y = O.
21. (D 4 + 4D 3 + 2D2 - 8D - 8)y = O.
22. (4D4 - 24D 3 + 3SD 2 + 60 - 9»)1 = O.
23. (4D 4 + 20D 3 + 350 2 + 2SD + 6)y = O.
24. (04 - 7D3+ IID 2 +SD - 14)y=0 .
25. (D 3 +S D 2 +7D+3)y=0. 33 . (D 4 -D 3 - 3D 2 +D+2)y=0.
26. (D - 2D2 + D - 2)y = O.
3 34. (D 3 - 2D2 - 3D + 10) y = o.
27. (D J - D2 + D - I)y = O. 35. (D s + D4 - 6D 3 )y = O.
28. (D J +40 2 +SD)y =0. 36. (4D 3 +28D 2 +6ID+37)y=0.
29. (D4 - 13D 2 + 36)y = O. 37 . (4DJ+ 12D2+ 13D + 10)y = o.
30. (D4-SDJ+SD2 +S0 -6)y = O. 38. (18D 3 - 33D 2 +20D -4)y = O.
31. (4D 3 + 8D 2 - 11 D + 3»)1 = O. 39. (D s -2D 3 - 2D 2-3D-2)y = O.
32. (D J + D2 - 160 - 16)y = O. 40. (D 4-2D 3 +2D 2-2D+ 1).'1 = O.
41. (D 5 - ISD 3 + lOD 2 + 60D - 72)y = O.
42. (4D4 - ISD 2 + SD + 6) y = O.
43. (D 4 + 3D 3 - 6D 2 - 28D - 24)y = O.
44 . (4D 4 - 4D 3 - 23 D 2 + 12D + 36)y = O.
45 . (4D 5 - 23D J - 33D 2 - 17 D - 3)y = O.
46. (D 2 - D - 6) y = 0; when x = 0, y = 2, )I' = l.
47. (D4 + 6D 3 + 9D 2 »)I = 0; when x = 0, y = 0 , y' = 0, y" = 6, and as
x ~ 00, y' ~ 1. For this particular solution, find the value of y when
x =1.
132 Chapter 7 Linear Equations with Constant Coefficienls

48. (D 3 + 6D 2 + 12D + 8)y = 0; when x = 0, y = 1, y' = - 2, y" = 2.


49. (D s + D4 - 9D 3 - 13D 2 + 8D + 12) y = O.
50. (4D 5 + 4D4 - 9D 3 - llD2 + D + 3)y = O.
51. (D s + D4 - 7 D3 - J ID2 - 8D - 12)y = O.

I 7.7 I Computer Supplement


The techniques described in the Computer Supplement to Chapter 2 extend easily
to higher-order equations. We can ill ustrate this with Example 7.6 in Section 7.5

(D 3 - 3D 2 +9D + 13»), = O.

If we add the initial conditions, yeO) = 1, y' (0) = 2, y" (0) = 3, Maple solves
the problem with the commands
>di f f(y (x) ,x$3 )-3* di f f(y (x) ,x$2)
+9*diff(y(x) ,x)+13*y(x)=O;
d3 d2 d
dx 3 y(x) - 3 dx 2 y(x) + 9 dx y(x) + 13 y(x) = 0

>dso lve({ " ,y(O) = l, D (y ) (O) =2,D(D(y)) (O ) =3 },y(x));


4 e- x S e2 Xcos(3x) 4e 2 x sin(3x)
y (x) = - 9- + 9 + 9

We can also use Maple to plot the resulting sol ution with the command
>p l ot (rhs(" ) , x=-2 .. 2);
See Figure 7.2.

20

15

10

-2 -1 0
-5

- 10

Figure 7.2

You might also like