Nihms 1683485
Nihms 1683485
Author manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Author Manuscript
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological
processes. The past dozen years have seen increasing experimental support for the notion that lipid
organization plays an important role in modulating this heterogeneity. Various biophysical
mechanisms rooted in the concept of liquid–liquid phase separation have been proposed to explain
diverse experimental observations of heterogeneity in model and cell membranes with distinct but
overlapping applicability. In this review, we focus on the evidence for and the consequences of the
hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point.
Critical phenomena explain certain features of the heterogeneity observed in cells and model
systems but also go beyond heterogeneity to predict other interesting phenomena, including
Author Manuscript
Keywords
critical composition fluctuations; thermodynamics; cell membrane; membrane microdomains;
lipid rafts
1. OVERVIEW
The spatial organization of the plasma membrane on 10–100-nm length scales has been a
topic of interest in biology for decades. Heterogeneity has been hypothesized to play
important roles in many membrane-associated biological processes, from the coordination of
Author Manuscript
DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the
objectivity of this review.
Shaw et al. Page 2
membrane domains, which implies stable, discrete regions of defined composition, critical
Author Manuscript
phenomena are subtle, dynamic, and malleable and inhabit the relevant nanoscopic length
scales.
In this review, we conduct a brief historical survey of membrane domains in both model and
biological membranes and describe the consensus that has been reached regarding the
macroscopic miscibility phase behavior of model membranes as well as the remaining
controversies regarding the microscopic heterogeneity reported in other regions of phase
space. We introduce membrane criticality and the accumulated evidence that eukaryotic
plasma membranes are near-critical. We discuss how the concept of criticality fits into
conventional descriptions of raft phenomenology and describe some unique areas in which
criticality could play roles in biological function that go beyond the simple organization of
components.
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 3
conclusions drawn from different methodologies provided convincing evidence that lipid-
Author Manuscript
methods and are in good qualitative agreement (41–49). An introduction to reading and
interpreting three component phase diagrams is given in Figure 1, and several experimental
phase diagrams are presented in Figure 2.
A range of experimental (50–56) and simulation (57, 58) approaches using different lipid
combinations have produced results consistent with phase diagrams topologically similar to
those shown in Figure 1b, and their detailed characteristics have been described in several
comprehensive review articles (3, 59, 60). Liquid immiscibility is most often observed at
temperatures below the Tm of the high Tm lipid (42, 44–46), although there are exceptions
(41). In the typical case, reported phase diagrams have a region of liquid–liquid coexistence,
a region of three-phase coexistence (two liquids and a solid), and two regions of liquid–solid
coexistence. One of the liquid phases is called the liquid-disordered (Ld) phase, and it
Author Manuscript
resembles the liquid crystalline phase (Lα) of pure phospholipids (61). The second liquid
phase, which is called the liquid-ordered (Lo) phase (15), was first characterized in mixtures
of saturated phospholipids and cholesterol (8, 16, 18). Most authors refer to both Lo and Ld
as Lα phases. The solid phase (So) is often called gel and there are several distinct gel phases
observed in purified membranes, including the solid lamellar phases designated Lβ and Lβ′
(62).
The high cholesterol edge of the three-phase triangle is sloped such that the Lo phase
contains a higher cholesterol mole fraction than does the Ld phase. This edge of this triangle
is also the first tie-line in the liquid–liquid coexistence region. As cholesterol is increased
further, the tie-lines run roughly parallel to one another, meaning that the cholesterol
concentration increases roughly linearly in both phases. The Lo–Ld coexistence region
Author Manuscript
terminates in a miscibility critical point at which in principle the tie-lines merge to a single
point. In practice, this region of the phase diagram is surprisingly flat, meaning that the tie-
lines remain long and shorten over a very small range of compositions. As the temperature is
lowered, the Lo–Ld immiscibility gap extends to higher concentrations of cholesterol and
low Tm lipid, as does the concentration of components at the critical point (41, 45, 48). At a
constant temperature, the miscibility gap expands when the Tm of the high Tm component is
increased or when the Tm of the low Tm lipid is decreased (41, 42, 44). No macroscopic
miscibility gap is observed for some combinations of low and high Tm lipids (42, 44, 63). A
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 4
closed loop miscibility gap is found when the extremely low Tm lipid diphytanoyl
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 5
researchers to conclude that this phase transition was not relevant for cells under normal
Author Manuscript
growth conditions.
Soon after, other methods emerged to isolate plasma membranes from cells, all of which
could yield coexisting liquid phases (77, 78), although the conditions needed to achieve
phase separation differed depending on the method used. A subsequent study found
correlations between biochemically defined detergent-resistant membranes and the Lo phase
detected in GPMVs (79) and that the surface fraction of Lo phase at low temperature was
altered by acute treatments to manipulate cholesterol levels in vesicles (79, 80). In all cases,
miscibility transition temperatures (Tmix) remained well below growth temperatures in
isolated cells, emphasizing that such macroscopic domains were not likely to form under
physiological conditions. A possible explanation came in 2008 when it was shown that
freshly isolated GPMVs exhibited hallmarks of criticality, placing them close to a room
temperature miscibility critical point (81). Over time, additional studies have documented
Author Manuscript
how GPMV phase behavior is impacted by growth conditions in cells (82–84) and
differentiation into other cell types (85, 86), and lipidomics analysis has begun to
characterize the vast compositional complexity of these membranes (82, 84, 87).
While there are many similarities between the phase behavior observed in GPMVs and
purified model membranes, there are also key differences (88). The coexisting phases
detected in GPMVs differ in their physical properties from their purified membrane
counterparts. The viscosity and hydration of phases is more similar in GPMVs compared to
that in GUVs, as measured through the diffusion of membrane components or using order-
sensing fluorophores that report on local hydration within the hydrophobic region of the
membrane (89). These different physical properties can be sensed by incorporated proteins.
Some transmembrane proteins, particularly those with palmitoylated cysteines, are observed
Author Manuscript
to partition into the Lo phase in GPMVs, whereas few are reported to partition into the Lo
phase in purified membranes (90).
GPMVs are model membranes that differ from intact plasma membranes in important ways.
Plasma membranes exist in close association to the actin cytoskeletal cortex, while GPMVs
are missing polymerized cytoskeletal components and tend to be depleted in proteins that
associate with actin (91). Notably, the cell plasma membrane does not macroscopically
phase separate even under conditions that cause GPMVs to phase separate, or in fact under
any known conditions, even when phase-separated GPMVs remain attached to an intact cell
membrane (92). GPMVs are depleted of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]
(93), which typically makes up several mole percent of the inner plasma membrane leaflet in
intact cells (94). A recent report demonstrates that isolated GPMVs are frequently permeable
Author Manuscript
to large hydrophilic markers (95), indicating that their membranes contain long-lived
defects. While cell membranes are asymmetric in their lipid and protein composition, at least
some of this asymmetry is lost in the GPMV generation and isolation process (2, 93). The
interpretation of GPMV experiments is also complicated by their sensitivity to
methodological choices. For example, the most common method used to prepare GPMVs
involves incubating cells with a low concentration of formaldehyde and a reducing agent,
and the choice of the reducing agent can greatly impact the Tmix and physical properties of
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 6
phases of the resulting GPMVs (78, 96). This is due, at least in part, to the ability of some
Author Manuscript
experimental studies provide strong evidence that the heterogeneity reported in intact cells is
closely related to the macroscopic phase separation observed in GPMVs. Two excellent
recent reviews (101, 102) discuss many of these findings, as well as some exceptions. We
highlight several lines of evidence below.
1. In many cases, proteins that are associated with live-cell heterogeneity or with
detergent-resistant membranes are also found to partition into the Lo -like phase
of GPMVs. In particular, single-pass transmembrane and peripheral proteins
containing palmitoylations are more likely to be found in detergent-resistant
membranes and to partition into the Lo phase in GPMVs, while proteins
containing branched and unsaturated geranylgeranyl or prenyl groups tend to be
solubilized by detergents and to partition into the Ld phase in GPMVs. Recent
work has begun to extend this to multipass proteins that can accommodate more
Author Manuscript
2. Cells actively tune their plasma membrane Tmix in response to changes in growth
conditions, and conditions that change Tmix lead to different phenotypes. For
example, experiments indicate that cells in culture actively tune the Tmix of their
membrane to be a fixed temperature below their growth temperature (82) and
that the Tmix decreases in cells under conditions that inhibit cell growth (83).
Other studies have documented that acute treatments with lipophilic small
molecules or dietary lipids that alter Tmix correlate with changes in signaling
outcomes, cellular differentiation, and even the general anesthetic response (85,
108, 109). While these correlations with Tmix may be a result of a mutual
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 7
in GPMVs under a range of perturbation conditions. This work found that the
microscopic heterogeneity in GPMVs at elevated temperature was highly
correlated with their macroscopic transition temperature Tmix, suggesting that the
same could be true in intact cells. An older study found that macroscopic
membrane domains enriched in phase-marking probes could be stabilized even
well above Tmix (80). These and other studies have led to the idea that the value
of Tmix is a measure of the stability of raft-like domains under physiological
conditions, even though cells do not appear to experience phase separation
directly.
such as membranes (110). The cortical actin cytoskeleton, which is linked to the
plasma membrane through a system of adapter proteins, is likely to play the role
of quenched disorder in the intact plasma membrane (92, 111). Experimental
studies in model membranes support the main conclusion of this theory, which is
that a broadly distributed cytoskeletal network disrupts macroscopic domains
while stabilizing small-scale structure (112). Direct tests in intact cells have yet
to be reported, but broad evidence exists for important connections between
cortical actin and raft heterogeneity (113–117).
to clustered proteins in intact cells and have found that probe concentration in
clusters mirrors partitioning with respect to phase-separated domains in model
membranes, although typically with a smaller magnitude.
To explain these experimental developments, several theoretical avenues have been explored,
with a goal of explaining the lack of a macroscopic phase separation in intact cells. Any
complete biophysical model of membrane heterogeneity must first account for this fact, and
therefore must be more complex than the simple phase-separation picture. These
explanations include coupling to quenched disorder in the form of the cytoskeleton (92,
111); coupling to curvature in a way that produces a microemulsion (72, 74, 120); and
nonequilibrium suppression of domain growth, for example, by active lipid transport or the
remodeling of membrane-coupled actin structures (121, 122). Many of these models,
Author Manuscript
including the critical phenomena that are discussed in the next section, are closely related to
the canonical phase-separation picture (123).
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 8
and interfacial energy between domains also exhibit specific behaviors as the critical point is
Author Manuscript
approached. These properties of critical systems are universal, meaning that the dominant
behavior is governed by a small number of effective parameters regardless of the
complicated details of microscopic interactions (Figure 3). The physics of criticality has
been covered in detail in many textbooks (124–127). A useful introduction for biophysicists
is given in Reference 128.
In the first half of the twentieth century, precise measurements of near-critical liquid–gas
systems (132) as well as magnetic systems (133) indicated that classical equations of state
were inadequate to explain the near-critical region of phase space, for example, that the
shape of the liquid–gas coexistence curve is qualitatively different than that predicted by the
van der Waals equation. In 1944, Lars Onsager (134) exactly solved the 2D Ising model,
which allowed for the study of critical exponents in that system. In 1952, Lee & Yang (135)
observed that phase transitions correspond to nonanalyticities of the partition function in the
thermodynamic limit. Soon after, Widom (136) and others proposed power-law scaling for
various quantities at critical points and derived relationships between different critical
exponents from that hypothesis. Real-space [Kadanoff (137)] and momentum-space [Wilson
(138)] renormalization group methods explained the emergence of these power laws and
provided avenues for computing approximate values for the critical exponents in general
Author Manuscript
systems,. They also set a uniform framework for other conceptual advances. A broader class
of nonequilibrium critical points can also be defined, generalizing this equilibrium concept.
Biological nonequilibrium critical points have received considerable attention in recent
years; for a review see, e.g., Mora & Bialek (139).
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 9
behaviors in the vicinity of a room temperature critical point (81). Again, fluctuations were
Author Manuscript
consistent with the 2D Ising model universality class. These observations and their
implications have been previously reviewed in greater detail (128).
One of the key features of a critical point is that its fingerprints extend well beyond the
phase transition itself (Figure 3). An important parameter is t, the difference between the
temperature of the system and the Tc, normalized by Tc in units of Kelvin. The correlation
length ξ, or characteristic size of critical composition fluctuations, is predicted to vary as
ξ(t) = ξ0/t, where ξ0 is a parameter with dimensions close to the size of molecules in the
system and in membranes was measured to be roughly 1 nm. Note that as T → Tc, t → 0, so
that the correlation length becomes infinite. If extrapolating this relationship using a room
temperature critical point (Tc = 22°C = 295 K), then 20-nm-sized fluctuations are expected
at 37°C, which corresponds to t = 0.05. This prediction is in good agreement with recent
experimental work probing heterogeneity in GPMVs by FRET, which detects evidence for
Author Manuscript
larger than 10-nm structures in GPMVs over this same temperature range (96). Similar
observations have also been made in purified model membranes (141). Note that t need not
be a physical temperature. Instead, it is any trajectory in the phase diagram that runs
perpendicular to tie-lines close to the critical point. Thus, while some Ising model images of
Figure 3a are obtained by varying temperature in the model, the corresponding three-
component lattice model images are obtained by varying composition at fixed temperature,
as indicated in the phase diagram.
Another physical property that can extend well beyond the phase transition itself is the
susceptibility (χ). The susceptibility measures how large a local composition difference
arises from a local force applied to components of one of the phases, e.g., by clustering
components that prefer Lo lipids. In other words, in a highly susceptible membrane, a
Author Manuscript
domain of distinct local composition can be stabilized by clustering only a small subset of
components or by weakly biasing the concentration of many components that have the same
order preference. In the Ising universality class, χ varies with t as χ ∝ t−7/4. This too has
experimental support in vesicles, where robust domains are stabilized well above Tmix by
organizing a small subset of components via an actin network or a streptavidin crystal that
partially decorates a vesicle surface (114, 142) or by adhesion to a supported membrane
(80).
Direct theoretical predictions of critical phenomena such as the scaling of the correlation
length and the magnitude of the susceptibility are quite useful for predicting the
consequences of perturbations to membrane heterogeneity, but the theory quickly becomes
intractable when coupled to more complex biological phenomena. Statistical mechanical
Author Manuscript
lattice models based on the Ising model can be useful in this situation. These models
typically contain only two components (often called up and down spins because of the Ising
model’s origin as a model of magnetic systems) positioned on a lattice, where the
components at the lattice sites are either allowed to change identity (such that the
composition or magnetization can vary) or are allowed to exchange with other sites on the
lattice (such that the composition remains fixed). Universality guarantees that, as long as the
system is close to the critical point, the Ising model captures the relevant mesoscopic
heterogeneity of the membrane for appropriate choices of the Ising reduced temperature t
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 10
and magnetization m (Figure 3). That is, the Ising model accurately recapitulates the
Author Manuscript
thermodynamics of the effective Lo order parameter at length scales beyond a few lipid
diameters, despite the extreme simplicity of the microscopic interaction in the model, which
is a simple nearest-neighbor interaction potential. As a result, when a biological system is
coupled to the Lo order parameter, an Ising model modified to include this coupling is
expected to reflect the relevant biophysical phenomena. Past work has used this approach to
model the coupling of fluctuations to cortical actin (92), to explain changes in
phosphorylation steady states upon clustering of a component for various values of t and m
(118, 143), and to predict how proximity to the critical point affects conformational state
equilibria of proteins whose boundaries are sensitive to lipid order (144).
could easily be relevant to the biological function of membrane proteins. An important line
of evidence that criticality plays a role in biological function has come from the tuning of the
GPMV critical point. For a system to be near a critical point, two parameters must be tuned,
those corresponding to t (temperature) and m (composition) of the (fixed-composition) Ising
model. In the extremely large space of lipid mixtures of varying composition, there are many
critical points—an n − 2-dimensional manifold in the n-dimensional space. However, there
is no generic reason that tuning the concentration of any given lipid corresponds to tuning
just t, or just m, or neither; general perturbations affect both t and m. Thus, it is somewhat
surprising that the cell arrives near a critical point if it constructs its membranes without
explicitly or implicitly tuning to the critical point, given that lipid composition is modulated
by a wide variety of perturbations. In other words, the fact that plasma membrane
composition is near-critical is unlikely to simply be a coincidence. Furthermore, at least in
Author Manuscript
certain cases, eukaryotic cells adapt to perturbations in ways that preserve the distance to the
critical point and corresponding physical properties. Zebrafish cells cultured at a range of
temperatures from 20°C to 32°C produce GPMVs with correspondingly altered Tc values
(82).
The concept of high susceptibility near a critical point is useful in interpreting recent single-
molecule and super-resolution studies documenting the partitioning of phase-marking probes
to protein clusters in intact cells (118, 119, 143). In these studies, antibodies are used to
cross-link a membrane component that prefers either the Lo or Ld phase, then the differential
partitioning of probes is monitored with respect to these domains. When proteins that prefer
the Lo phase are clustered, probes that also prefer Lo tend to be recruited, and those that
prefer Ld tend to be excluded. In contrast, when proteins that prefer the Ld phase are
clustered, probes that prefer Lo are excluded, and probes that prefer Ld are recruited. Similar
Author Manuscript
to experiments with vesicles adhered to supported membranes (80), the act of clustering a
protein or peptide biases the concentration of many components in ways that can be detected
when membranes have high susceptibility. In some cases, the extent of probe partitioning
approaches that observed in phase-separated vesicles (143), while in others the sorting of
components is much weaker (118). These differences could arise from differences in either
the coupling of protein clusters to membranes or the susceptibility of the membrane in
different experimental systems.
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 11
Since the inception of the raft hypothesis, the study of the functional relevance of membrane
domains has focused on their ability to compartmentalize protein and lipid components so
that they can optimally function within biochemical networks (1). Critical phenomena are in
many ways consistent with this framework. A supercritical membrane contains domains
resembling ordered and disordered phases, and components that partition with the same
phase colocalize within these domains. The fluctuations are small and dynamic, consistent
with evolving descriptions of rafts over the decades (145–148), but fluctuations alone are not
an effective means to strongly colocalize or confine membrane components. This new reality
requires us to move beyond the simple mechanisms proposed in the early raft literature to
propose and test mechanisms that exploit the unique material properties of critical systems.
Several proposals are highlighted in Figure 4 and described in this section.
Author Manuscript
that prefer the same phase. Casimir forces may contribute to the stability of protein
assemblies, including phase-separated polymer droplets that assemble on membranes.
Casimir forces are also expected to alter biochemistry occurring at the membrane by
increasing or decreasing the rates at which the proteins encounter one another. It is tempting
to speculate that one functional role of palmitoylation, the posttranslational modification that
places a saturated acyl chain on proteins, is to tune the magnitude of these Casimir forces for
specific protein species.
proportion to the heightened susceptibility of the system. This effect can impact biochemical
reactions that take place within these clusters, drastically altering the chemical steady state
of the system. We have studied this effect in the context of B cell–receptor (BCR) signaling
(118, 143). Here, the act of clustering the BCR or another ordered membrane component by
an extracellular ligand stabilizes an ordered domain that contains a higher local
concentration of kinase and a lower concentration of phosphatase than the membrane as a
whole. This establishes a local environment that favors receptor phosphorylation and
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 12
activation. In principle, this class of activation mechanism could contribute to a wide range
Author Manuscript
of signaling pathways that are initiated by receptor clustering at the cell surface. This type of
mechanism could also play a role in establishing biochemical environments in membrane
regions where components are organized by processes occurring at the inner plasma
membrane leaflet, such as at junctions between the endoplasmic reticulum and plasma
membrane (152), or at sites where scaffolding adaptor proteins are anchored to membranes,
such as in neuronal synapses (153).
change in Tc differentially affects the free energies of the two conformational states.
Roughly, a spatially extended lipid preference carries a free energy cost that decreases near
Tc, so that a conformational state with a strong order preference becomes more probable
when fluctuations are large compared to the protein diameter. This model was proposed to
explain the striking correlations between Tc-altering effects and the anesthetic or anesthetic-
reversing potencies of a wide range of treatments, including short- and long-chain n-alcohols
and hydrostatic pressure (108, 109).
one particle into the system from a particle bath. Equivalently, the chemical activity α ∝
eμ/kT can be used. In an ideal gas or ideal dilute solution, the chemical potential has a simple
logarithmic relationship to concentration and is linear in temperature (so that activity is
proportional to concentration) and insensitive to the concentrations of other components
(154). However, a near-critical mixture is far from ideal: The critical point is precisely where
weak cooperative interactions between the many components lead to strong effects (124).
Therefore, we expect strong relationships between the chemical potentials of different
components, especially when those components modulate Tc.
binding-site occupancy also varies, and we expect to see changes in protein functions that
depend on the binding of those components. Recent work by Ayuyan & Cohen (154) has
resulted in the development of sensitive methods for measuring and controlling the chemical
potential of cholesterol in the plasma membrane and found that cholesterol chemical
potential varies by ~2 kBT in different physiologically relevant cellular conditions. That
amount is certainly adequate to induce substantial changes in binding-site occupancy. Work
remains to be done to explore if these differences can be attributed in any way to the critical
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 13
phase transition, but we can speculate that perturbations that change membrane criticality
Author Manuscript
6.5. Criticality Coupled to Other Processes Describes a Broad Array of Raft Phenomena
The Ising universal critical phenomena are a good start for understanding membrane
heterogeneity, but they are also clearly insufficient to explain all phenomena. As stated in
Section 5, critical phenomena alone are not expected to give rise to regions of tight
clustering or confinement of proteins and lipids, as is sometimes attributed to membrane
domains. This said, the local membrane environment could impact the conformational states
sampled by membrane proteins in ways that facilitate binding through stronger protein-
binding sites. This type of synergistic effect could underlie a range of cholesterol-dependent
processes observed at the plasma membrane, including, for example, the transient pinning
observed in studies of membrane protein and lipid dynamics (158).
Author Manuscript
Another example in which there is potential for synergy between criticality and other
organizing principles relates to the active composite model proposed by Rao & Mayor (159).
This model posits that the plasma membrane interacts with a heterogeneous cortical actin
network composed of both active and passive components. The passive components largely
resemble quenched disorder, as described in Section 3. The active component is composed
of motor-driven short actin filaments that can actively drive certain membrane proteins and
lipids into close proximity, coupling across membrane leaflets. Considering this model in a
critical membrane provides a simple means to correlate domain structure across leaflets
without requiring strong interactions such as interdigitation, because the cooperativity
inherent in a phase transition can amplify weak couplings that may be present. Moreover,
the high susceptibility of a critical membrane allows it to robustly remodel when external
forces are applied, including those originating from the actin cortex.
Author Manuscript
More broadly, we envision that plasma membrane criticality is only one of several
organizing principles that contribute to plasma membrane functions. Interactions mediated
by curvature and electrostatics may be superimposed over those mediated via criticality to
define the plasma membrane interactome. There also may be interesting cross talk between
these various interaction modes. For example, studies have shown that the sorting of lipids
into curved membranes can be mediated by the binding of curvature-sensing proteins that
have preferences for one membrane phase (160). Proteins and peptides can also organize
lipids through electrostatics, which in turn can stabilize domains impacted by the
fluctuations of Lo and Ld lipids. The broader implications of this potential cross talk are
largely unexplored and could give rise to qualitatively new phenomena accessible to cell
membranes (161).
Author Manuscript
7. CONCLUDING REMARKS
While it has long been appreciated that plasma membrane lipids are capable of intriguing,
nonideal behaviors, much of the past literature is clouded by imperfect methods and an
incomplete conceptual framework with which to conceptualize experimental observations.
This backdrop led to controversial and often unphysical descriptions of lipid rafts. The past
decade or so has brought key advances, including membrane isolations that largely preserve
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 14
plasma membrane protein and lipid content and super-resolution imaging methods that do
Author Manuscript
not suffer from the same pitfalls that plagued early raft research. Alongside these advances,
the membrane community has begun to appreciate the rich phenomena that naturally occur
near miscibility critical points, many of which exhibit strong parallels with long-standing
observations in both the membrane biophysics and membrane biology literatures. Moving
forward, the challenges will be to isolate these effects to enable a definitive measurement of
the role of criticality in cell membranes and to explore how these immiscibility-mediated
interactions work alongside other physical and biochemical organizing principles to
contribute to the rich array of biological functions at the cell surface.
ACKNOWLEDGEMENTS:
We thank Sarah Shelby and Ben Machta for helpful discussions, and Aurelia Honerkamp-Smith for supplying the
raw data used to generate parts of Figure 3. The authors’ work is funded by grants from the National Science
Author Manuscript
Foundation (MCB1552439 and DMR1905600) and the National Institutes of Health (R01GM129347 and
R01GM110052).
LITERATURE CITED
1. Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387(6633):569–72 [PubMed:
9177342]
2. Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, et al. 2007. Large-scale fluid/fluid
phase separation of proteins and lipids in giant plasma membrane vesicles. PNAS 104(9):3165–70
[PubMed: 17360623]
3. Veatch SL, Keller SL. 2005. Seeing spots: complex phase behavior in simple membranes. Biochim.
Biophys. Acta Mol. Cell Res 1746(3):172–85
4. Oldfield E, Chapman D. 1971. Effects of cholesterol and cholesterol derivatives on hydrocarbon
chain mobility in lipids. Biochem. Biophys. Res. Commun 43(3):610–16 [PubMed: 4327446]
5. Oldfield E, Chapman D. 1972. Dynamics of lipids in membranes: heterogeneity and the role of
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 15
15. Hjort Ipsen J, Karlström G, Mourtisen OG, Wennerström H, Zuckermann MJ. 1987. Phase
equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta Biomembr
Author Manuscript
905(1):162–72
16. Vist MR, Davis JH. 1990. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures:
deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochemistry
29(2):451–64 [PubMed: 2302384]
17. Almeida PF, Vaz WL, Thompson TE. 1992. Lateral diffusion in the liquid phases of
dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry
31(29):6739–47 [PubMed: 1637810]
18. Huang TH, Lee CW, Das Gupta SK, Blume A, Griffin RG. 1993. A 13C and 2H nuclear magnetic
resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid–gel
phases. Biochemistry 32(48):13277–87 [PubMed: 8241184]
19. McMullen TPW, McElhaney RN. 1995. New aspects of the interaction of cholesterol with
dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning
calorimetry. Biochim. Biophys. Acta Biomembr 1234(1):90–98
20. Ahmed SN, Brown DA, London E. 1997. On the origin of sphingolipid/cholesterol-rich detergent-
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 16
33. Sheets ED, Holowka D, Baird B. 1999. Critical role for cholesterol in Lyn-mediated tyrosine
phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol
Author Manuscript
Biomembr 1768(11):2764–76
47. Petruzielo RS, Heberle FA, Drazba P, Katsaras J, Feigenson GW. 2013. Phase behavior and domain
size in sphingomyelin-containing lipid bilayers. Biochim. Biophys. Acta Biomembr
1828(4):1302–13
48. Connell SD, Heath G, Olmsted PD, Kisil A. 2013. Critical point fluctuations in supported lipid
membranes. Faraday Discuss 161:91–111 [PubMed: 23805740]
49. Khadka NK, Ho CS, Pan J. 2015. Macroscopic and nanoscopic heterogeneous structures in a three-
component lipid bilayer mixtures determined by atomic force microscopy. Langmuir
31(45):12417–25 [PubMed: 26506226]
50. Konyakhina TM, Wu J, Mastroianni JD, Heberle FA, Feigenson GW. 2013. Phase diagram of a 4-
component lipid mixture: DSPC/DOPC/POPC/chol. Biochim. Biophys. Acta Biomembr
1828(9):2204–14
51. Mills TT, Tristram-Nagle S, Heberle FA, Morales NF, Zhao J, et al. 2008. Liquid-liquid domains in
bilayers detected by wide angle X-ray scattering. Biophys. J 95(2):682–90 [PubMed: 18390623]
Author Manuscript
52. Konyakhina TM, Feigenson GW. 2016. Phase diagram of a polyunsaturated lipid mixture: brain
sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/ cholesterol. Biochim.
Biophys. Acta Biomembr 1858(1):153–61
53. de Almeida RFM, Borst J, Fedorov A, Prieto M, Visser AJWG. 2007. Complexity of lipid domains
and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and
macroscopic time-resolved fluorescence. Biophys. J 93(2):539–53 [PubMed: 17449668]
54. Sibold J, Tewaag VE, Vagedes T, Mey I, Steinem C. 2020. Phase separation in pore-spanning
membranes induced by differences in surface adhesion. Phys. Chem. Chem. Phys 22(17):9308–15
[PubMed: 32309836]
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 17
55. Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P. 2003. Probing lipid mobility of raft-
exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem
Author Manuscript
a review and summary of some recent studies. Chem. Phys. Lipids 3(4):304–56 [PubMed:
4905514]
62. Janiak MJ, Small DM, Shipley GG. 1979. Temperature and compositional dependence of the
structure of hydrated dimyristoyl lecithin. J. Biol. Chem 254(13):6068–78 [PubMed: 447695]
63. Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW. 2010. Comparison of three ternary lipid
bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J 99(10):3309–18 [PubMed:
21081079]
64. Pathak P, London E. 2011. Measurement of lipid nanodomain (raft) formation and size in
sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase
domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys.
J 101(10):2417–25 [PubMed: 22098740]
65. Pathak P, London E. 2015. The effect of membrane lipid composition on the formation of lipid
ultrananodomains. Biophys. J 109(8):1630–38 [PubMed: 26488654]
66. Konyakhina TM, Goh SL, Amazon J, Heberle FA, Wu J, Feigenson GW. 2011. Control of a
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 18
75. Cornell CE, Skinkle AD, He S, Levental I, Levental KR, Keller SL. 2018. Tuning length scales of
small domains in cell-derived membranes and synthetic model membranes. Biophys. J
Author Manuscript
86. Cammarota E, Soriani C, Taub R, Morgan F, Sakai J, et al. 2020. Criticality of plasma membrane
lipids reflects activation state of macrophage cells. J. R. Soc. Interface 17(163):20190803
[PubMed: 32019470]
87. Symons JL, Cho K-J, Chang JT, Du G, Waxham MN, et al. 2020. Lipidomic atlas of mammalian
cell membranes reveals hierarchical variation induced by culture conditions, subcellular
membranes, and cell lineages. Soft Matter In press. 10.1039/D0SM00404A
88. Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, et al. 2012. Partitioning, diffusion,
and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim.
Biophys. Acta Biomembr 1818(7):1777–84
89. Kaiser H-J, Lingwood D, Levental I, Sampaio JL, Kalvodova L, et al. 2009. Order of lipid phases
in model and plasma membranes. PNAS 106(39):16645–50 [PubMed: 19805351]
90. Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA, et al. 2017. Structural determinants and
functional consequences of protein affinity for membrane rafts. Nat. Commun 8:1219 [PubMed:
29089556]
91. Menon AK, Holowka D, Webb WW, Baird B. 1986. Cross-linking of receptor-bound IgE to
Author Manuscript
aggregates larger than dimers leads to rapid immobilization. J. Cell Biol 102(2):541–50 [PubMed:
2935543]
92. Machta BB, Papanikolaou S, Sethna JP, Veatch SL. 2011. Minimal model of plasma membrane
heterogeneity requires coupling cortical actin to criticality. Biophys. J 100(7):1668–77 [PubMed:
21463580]
93. Keller H, Lorizate M, Schwille P. 2009. PI(4,5)P2 degradation promotes the formation of
cytoskeleton-free model membrane systems. ChemPhysChem 10(16):2805–12 [PubMed:
19784973]
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 19
94. McLaughlin S, Wang J, Gambhir A, Murray D. 2002. PIP2 and proteins: interactions, organization,
and information flow. Annu. Rev. Biophys. Biomol. Struct 31:151–75 [PubMed: 11988466]
Author Manuscript
95. Skinkle AD, Levental KR, Levental I. 2020. Cell-derived plasma membrane vesicles are permeable
to hydrophilic macromolecules. Biophys. J 118(6):1292–300 [PubMed: 32053777]
96. Li G, Wang Q, Kakuda S, London E. 2020. Nanodomains can persist at physiologic temperature in
plasma membrane vesicles and be modulated by altering cell lipids. J. Lipid Res 61:758–66
[PubMed: 31964764]
97. Toulmay A, Prinz WA. 2013. Direct imaging reveals stable, micrometer-scale lipid domains that
segregate proteins in live cells. J. Cell Biol 202(1):35–44 [PubMed: 23836928]
98. Rayermann SP, Rayermann GE, Cornell CE, Merz AJ, Keller SL. 2017. Hallmarks of reversible
separation of living, unperturbed cell membranes into two liquid phases. Biophys. J 113(11):2425–
32 [PubMed: 29211996]
99. Lee I-H, Saha S, Polley A, Huang H, Mayor S, et al. 2015. Live cell plasma membranes do not
exhibit a miscibility phase transition over a wide range of temperatures. J. Phys. Chem. B
119(12):4450–59 [PubMed: 25747462]
100. Sevcsik E, Brameshuber M, Fölser M, Weghuber J, Honigmann A, Schütz GJ. 2015. GPI-
Author Manuscript
anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat.
Commun 6:6969 [PubMed: 25897971]
101. Levental I, Levental KR, Heberle FA. 2020. Lipid rafts: controversies resolved, mysteries remain.
Trends Cell Biol 30(5):341–53 [PubMed: 32302547]
102. Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu A-A, et al. 2020. Defining raft domains
in the plasma membrane. Traffic 21(1):106–37 [PubMed: 31760668]
103. Castello-Serrano I, Lorent JH, Ippolito R, Levental KR, Levental I. 2020. Myelin-associated
MAL and PLP are unusual among multipass transmembrane proteins in preferring ordered
membrane domains. J. Phys. Chem. B 124(28):5930–39 [PubMed: 32436385]
104. Marinko JT, Kenworthy AK, Sanders CR. 2020. Peripheral myelin protein 22 preferentially
partitions into ordered phase membrane domains. PNAS 117(25):14168–77 [PubMed: 32513719]
105. Yang S-T, Kreutzberger AJB, Kiessling V, Ganser-Pornillos BK, White JM, Tamm LK. 2017.
HIV virions sense plasma membrane heterogeneity for cell entry. Sci. Adv 3(6):e1700338
[PubMed: 28782011]
Author Manuscript
106. Anderson RGW, Jacobson K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts,
and other lipid domains. Science 296(5574):1821–25 [PubMed: 12052946]
107. Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu R-X, Siuda I, et al. 2018. Lipid–protein
interactions are unique fingerprints for membrane proteins. ACS Cent. Sci 4(6):709–17
[PubMed: 29974066]
108. Gray E, Karslake J, Machta BB, Veatch SL. 2013. Liquid general anesthetics lower critical
temperatures in plasma membrane vesicles. Biophys. J 105(12):2751–59 [PubMed: 24359747]
109. Machta BB, Gray E, Nouri M, McCarthy NLC, Gray EM, et al. 2016. Conditions that stabilize
membrane domains also antagonize n-alcohol anesthesia. Biophys. J 111(3):537–45 [PubMed:
27508437]
110. Grinstein G, Ma S. 1982. Roughening and lower critical dimension in the random-field Ising
model. Phys. Rev. Lett 49(9):685–88
111. Yethiraj A, Weisshaar JC. 2007. Why are lipid rafts not observed in vivo? Biophys. J 93(9):3113–
19 [PubMed: 17660324]
112. Honigmann A, Sadeghi S, Keller J, Hell SW, Eggeling C, Vink R. 2014. A lipid bound actin
Author Manuscript
meshwork organizes liquid phase separation in model membranes. eLife 3:e01671 [PubMed:
24642407]
113. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M. 2003. Membrane cholesterol,
lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell
actin. PNAS 100(24):13964–69 [PubMed: 14612561]
114. Liu AP, Fletcher DA. 2006. Actin polymerization serves as a membrane domain switch in model
lipid bilayers. Biophys. J 91(11):4064–70 [PubMed: 16963509]
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 20
115. Shelby SA, Veatch SL, Holowka DA, Baird BA. 2016. Functional nanoscale coupling of Lyn
kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated
Author Manuscript
121. Foret L 2005. A simple mechanism of raft formation in two-component fluid membranes.
Europhys. Lett 71(3):508–14
122. Gowrishankar K, Ghosh S, Saha S, Rumamol C, Mayor S, Rao M. 2012. Active remodeling of
cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149(6):1353–
67 [PubMed: 22682254]
123. Schmid F 2017. Physical mechanisms of micro- and nanodomain formation in multicomponent
lipid membranes. Biochim. Biophys. Acta Biomembr 1859(4):509–28 [PubMed: 27823927]
124. Goldenfeld N 2018. Lectures on Phase Transitions and the Renormalization Group Boca Raton,
FL:CRC Press
125. Cardy J 1996. Scaling and Renormalization in Statistical Physics Cambridge, UK: Cambridge
Univ. Press
126. Kardar M 2007. Statistical Physics of Fields Cambridge, UK: Cambridge Univ. Press
127. Chaikin PM, Lubensky TC. 2010. Principles of Condensed Matter Physics Cambridge, UK:
Cambridge Univ. Press
Author Manuscript
128. Honerkamp-Smith AR, Veatch SL, Keller SL. 2009. An introduction to critical points for
biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim.
Biophys. Acta Biomembr 1788(1):53–63
129. Cagniard de la Tour C. 1822. Exposé de quelques résultats obtenu par l’action combinée de la
chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et
l’essence de pétrole rectifiée. Ann. Chim. Phys 21:127–32
130. van der Waals JD, Rowlinson JS. 2004. On the Continuity of the Gaseous and Liquid States
Mineola, NY: Dover
131. Ornstein L, Zernike F. 1918. Die linearen Dimensionen der Dichteschwankungen. Phys. Zeit
19:134–37
132. Guggenheim EA. 1945. The principle of corresponding states. J. Chem. Phys 13(7):253–61
133. Fisher ME. 1967. The theory of equilibrium critical phenomena. Rep. Prog. Phys 30(2):615–730.
Corrigendum. 1968. Rep. Prog. Phys. 31:418–20
134. Onsager L 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition.
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 21
139. Mora T, Bialek W. 2011. Are biological systems poised at criticality? J. Stat. Phys 144(2):268–
302
Author Manuscript
140. Honerkamp-Smith AR, Machta BB, Keller SL. 2012. Experimental observations of dynamic
critical phenomena in a lipid membrane. Phys. Rev. Lett 108(26):265702 [PubMed: 23004996]
141. Frazier ML, Wright JR, Pokorny A, Almeida PFF. 2007. Investigation of domain formation in
sphingomyelin/cholesterol/POPC mixtures by fluorescence resonance energy transfer and Monte
Carlo simulations. Biophys. J 92(7):2422–33 [PubMed: 17218467]
142. Manley S, Horton MR, Lecszynski S, Gast AP. 2008. Sorting of streptavidin protein coats on
phase-separating model membranes. Biophys. J 95(5):2301–7 [PubMed: 18502811]
143. Núñez MF, Wisser K, Veatch SL. 2019. Synergistic factors control kinase-phosphatase
organization in B-cells engaged with supported bilayers. Mol. Biol. Cell 31(7):667–82 [PubMed:
31877064]
144. Kimchi O, Veatch SL, Machta BB. 2018. Ion channels can be allosterically regulated by
membrane domains near a de-mixing critical point. J. Gen. Physiol 150(12):1769–77 [PubMed:
30455180]
145. Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–
Author Manuscript
50 [PubMed: 20044567]
146. Pike LJ. 2006. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function.
J. Lipid Res 47:1597–98 [PubMed: 16645198]
147. Levental I, Veatch SL. 2016. The continuing mystery of lipid rafts. J. Mol. Biol 428(24, Part
A):4749–64 [PubMed: 27575334]
148. Sezgin E, Levental I, Mayor S, Eggeling C. 2017. The mystery of membrane organization:
composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol 18(6):361–74 [PubMed:
28356571]
149. Casimir HBG. 1948. On the attraction between two perfectly conducting plates. Indag. Math
10:261–63
150. Machta BB, Veatch SL, Sethna JP. 2012. Critical Casimir forces in cellular membranes. Phys.
Rev. Lett 109(13):138101 [PubMed: 23030121]
151. Reynwar BJ, Deserno M. 2008. Membrane composition-mediated protein-protein interactions.
Biointerphases 3(2):FA117–24 [PubMed: 20408660]
Author Manuscript
152. Saheki Y, De Camilli P. 2017. Endoplasmic reticulum-plasma membrane contact sites. Annu. Rev.
Biochem 86:659–84 [PubMed: 28301744]
153. Zeng M, Chen X, Guan D, Xu J, Wu H, et al. 2018. Reconstituted postsynaptic density as a
molecular platform for understanding synapse formation and plasticity. Cell 174(5):1172–87.e16
[PubMed: 30078712]
154. Ayuyan AG, Cohen FS. 2018. The chemical potential of plasma membrane cholesterol:
implications for cell biology. Biophys. J 114(4):904–18 [PubMed: 29490250]
155. Fantini J, Epand RM, Barrantes FJ. 2019. Cholesterol-recognition motifs in membrane proteins.
Adv. Exp. Med. Biol 1135:3–25 [PubMed: 31098808]
156. De Craene J-O, Bertazzi DL, Bär S, Friant S. 2017. Phosphoinositides, major actors in membrane
trafficking and lipid signaling pathways. Int. J. Mol. Sci 18(3):634
157. Shimizu T 2009. Lipid mediators in health and disease: enzymes and receptors as therapeutic
targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol 49:123–
50 [PubMed: 18834304]
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 22
161. Mitra ED, Whitehead SC, Holowka D, Baird B, Sethna JP. 2018. Computation of a theoretical
membrane phase diagram and the role of phase in lipid-raft-mediated protein organization. J.
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 23
Author Manuscript
Author Manuscript
Figure 1.
Phase diagram of lipid mixtures. (a) Phase diagrams of three component mixtures (C1, C2,
and C3) are conventionally drawn on an equilateral triangle. The three vertices are pure
mixtures of each lipid component, points along the edges are binary mixtures, and points
within the triangle contain all three components. Compositions can be read by measuring the
perpendicular distance to each edge and adding the resulting percentages, which always sum
to 100%. Two examples are shown. (b) A qualitative phase diagram for ternary lipid
mixtures of high melting temperature (Tm) lipids, low Tm lipids, and cholesterol. Thick red
lines indicate the boundaries of liquid–solid (So) coexistence, and the thick blue line
Author Manuscript
represents the boundary of liquid-liquid coexistence of the liquid-disordered (Ld) and liquid-
ordered (Lo) phases. Points along this boundary also indicate the composition of coexisting
phases, and the specific compositions in coexistence are indicated by blue and red shaded
areas within binary coexistence regions. The purple triangle represents compositions that
exhibit all three phases in coexistence. The compositions of the three phases are indicated by
the three vertices of the triangle. The Ld–Lo coexistence region terminates at a miscibility
critical point along the high cholesterol edge that is indicated by an orange star.
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 24
Author Manuscript
Author Manuscript
Figure 2.
Phase diagrams of ternary lipid mixtures exhibit the same overall topology. Curves on the
Author Manuscript
phase diagrams indicate phase boundaries. In particular, the high cholesterol phase boundary
defines the boundary of the liquid-liquid miscibility gap in each case. Sample points and/or
deduced tie-line endpoints are indicated in some cases, and some diagrams label single
phases as Lα or Ld, Lo, and Lβ or So with abbreviations given below. (a) DPhPC/ DPPC/
Chol by fluorescence microscopy at 16°C. Panel a adapted from Reference 41 with
permission. (b) DOPC/DPPC/Chol by deuterium NMR spectroscopy. Panel b adapted from
Reference 45 with permission. (c) DOPC/DSPC/Chol by fluorescence microscopy and
FRET. Panel c adapted from Reference 46 with permission. (d) DPC/PSM/Chol by FRET,
neutron scattering, and DSC. Panel d adapted from Reference 47 with permission. (e)
POPC/PSM/Chol by EPR spectroscopy. Panel e adapted from Reference 43 with permission.
(f) DOPC/eggSM/Chol by atomic force microscopy at 28°C. Panel f adapted from Reference
48 with permission. Abbreviations: BSM, brain sphingomyelin; Chol, cholesterol; DOPC,
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 25
or gel phase.
Author Manuscript
Author Manuscript
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 26
Author Manuscript
Author Manuscript
Figure 3.
Critical systems exhibit universal features that extend beyond the two-phase region. (a)
Simulation snapshots of two lattice models. (Top) An Ising model at various reduced
temperatures t and compositions m, and (middle) a three-component model with interactions
designed to reproduce typical phase diagrams of ternary mixtures of Cholesterol (dark blue),
a low melting temperature (Tm) lipid (yellow) and a high Tm lipid (cyan) at fixed
temperature and various compositions. (Bottom) Model parameters used for (i)-(vi) in each
Author Manuscript
model are indicated on the respective phase diagram. Compositions of the three-component
model are chosen so that the effective reduced temperature t and effective magnetization m
of the model match the t and m of the corresponding Ising model. Miscibility gaps, tie-lines,
and the directions of t and m are shown on each schematic phase diagram. The regions that
correspond to liquid-ordered (Lo) and liquid-disordered (Ld) mixtures in ternary lipid
mixtures are also indicated. (b) Measurements of the divergence of correlation length ξ
versus t as the critical point is approached from the one-phase region. (Top) In the two
models from panel a. For the three-component model, t is the cholesterol (Chol) content
normalized by the Chol content at the critical point. (Middle) In GUVs and giant plasma
membrane vesicles (GPMVs) with varying temperature. Data from Reference 128. In each
case, the expected 2D Ising power law ξ ∝ t−1 is observed although the proportionality
constant differs, resulting in each data set being plotted with a different y-axis scale.
(Bottom) Representative GUV and GPMV images near the critical point.
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 27
Author Manuscript
Author Manuscript
Author Manuscript
Figure 4.
Four functional mechanisms primarily driven by liquid-ordered (Lo)–liquid-disordered (Ld)
phase partitioning in a near-critical membrane. Membrane proteins and other components
are characterized by how they partition into Lo–Ld domains, as shown here schematically.
The combination of the partitioning of various components confers to the systems particular
properties that can be used to drive biological function. a) Critical Casimir forces yield an
effective attraction between components with like order preference (blue-blue circles), and
an effective repulsion between components that prefer opposite lipid order (blue-magenta
circles). The strength of these interactions increases rapidly when t is reduced andξ becomes
large. (b) Clustering a protein that prefers Lo lipids (green circle) induces a distinct Lo
Author Manuscript
domain due to the high susceptibility of the membrane near the critical point. As a result,
other Lo-preferring proteins (blue circles) are recruited to the cluster, and Ld -preferring
proteins (magenta circles) are excluded. Similarly, an Ld domain can be stabilized by
clustering an Ld-preferring component. (c) The white shape is a large protein with two
conformations, pentagon or star. One conformation (pentagon) has no order preference, and
the other (star) prefers an Lo environment. The star conformation becomes more likely as t is
decreased, because there are large patches of Lo membrane that satisfy its preferred
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.
Shaw et al. Page 28
boundary condition. (d) Changes in t also result in changes in the chemical potentials of
Author Manuscript
some membrane components, including components (red ovals) that can bind to a membrane
protein (orange squares) as an allosteric modulator. Therefore, a change in t can induce
differences in binding-site occupancy and the resulting distribution of protein states.
Author Manuscript
Author Manuscript
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2022 April 20.