0% found this document useful (0 votes)
70 views20 pages

Solution 1170860

The document contains various mathematical problems and solutions related to rational and irrational numbers, simplifications, and calculations involving square roots. It includes examples of rationalizing denominators, calculating compound interest, and manipulating algebraic expressions. The document serves as a guide for students in Class 09 Mathematics to understand these concepts.

Uploaded by

gannuchaubey25
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
70 views20 pages

Solution 1170860

The document contains various mathematical problems and solutions related to rational and irrational numbers, simplifications, and calculations involving square roots. It includes examples of rationalizing denominators, calculating compound interest, and manipulating algebraic expressions. The document serves as a guide for students in Class 09 Mathematics to understand these concepts.

Uploaded by

gannuchaubey25
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

Solution

9TH STADS [RATIONAL TO LOG]

Class 09 - Mathematics
√2 √2
1. i. 1
× =
2
irrational
√2 √2


ii. 7√5 = irrational
iii. -3 rational
– –
iv. (4 + √8) - 2√2
– –
= 4 + 2√2 - 2√2 = 4 rational
v. 7 - π irrational
as π is an irrational quantity
− − – –
vi. √24 + (7√6 − 2√6)
– – –
2√6 + 7√6 − 2√6

​= 7√6 irrational number
14 14 (5√3+ √5)
2. = ×
5√3− √5 (5√3− √5) (5√3+ √5)

[Using identity (a + b)(a - b) = a2 - b2]


14(5√3+ √5)
= 2 2
(5√3) −( √5)

14(5√3+ √5)
= 25×3−5

14(5√3+ √5)
= 75−5

14(5√3+ √5)
= 70

(5√3+ √5)
= 5
– – −− – 3 – −−
3. We have, 2

3
√7 −
1

2
√2 + 6√11 +
1

3
√7 +
2
√2 − √11

2 1 – −1 3 – −−
=( 3
+
3
)√7 + (
2
+
2
) √2 + (6 − 1)√11

– – −− – – −−
=( 3

3
) √7 +( 2

2
) √2 + 5 √11 = √7 + √2 + 5√11

4. i. 1.37
¯

Let x = 1.3777...
10x = 13.777... (i)
100x = 137.777... (ii)
Subtact (ii) - (i)
⇒ 90x = 124
124 62
x = =
90 45

ii. 2.23
¯

Let x = 2.232323...
100x = 223.232323...
99x = 221
221
x =
99
¯
¯¯¯¯¯¯¯¯
¯
iii. 34. 5678
Let x = 34.56785678... (i)
Multiply by 10000 on both side
10000x = 345678.56785678... (ii)
Subtract (ii) - (i)
⇒ 9999x = 345644
345644
⇒ x =
9999
¯
¯¯¯
¯
iv. 111.3235
Let x = 111.32353535...
100x = 11132.353535... (i)
10000x = 1113235.3535... (ii)
Subtract (ii) - (i)

1 / 20
9900x = 1102103
x = ​ 1102103

9900

5. Given,

x = 5 - 2√6
1

x
= 1

(5−2√6)

(5+2√6)
= 1
×
(5−2√6) (5+2√6)

[Using identity (a + b)(a - b) = a2 - b2]


(5+2√6)
= 2 2
(5) −(2√6)

(5+2√6)
= 25−4×6

5+2√6
= 25−24

1

x
= 5 + 2√6
Now,
1 1 2
x
2
+
2
= (x + x
) -2
x
– – 2
= +5+2
(5 − 2√6 √6) -2
= (10) - 2 2

= 100 - 2
1
x
2
+
2
= 98
x

6. i. Here, 2

3
lies between 0 and 1.
2
∴ We take one-third of unit length and mark points on the number line XY on both sides of 0 (zero), then we represent 3
as
point A.

ii. Here, 1

4
lies between 0 and 1.
1
∴ We take one-fourth of unit length and mark points on the number line XY on both sides of 0 (zero), then we represent 4
as
point A.

3
iii. Here, - 5
lies between -1 and 0.
3
∴ We take one-fifth of unit length and mark points on the number line XY on both sides of 0 (zero), then we represen - 5
as
point A.

3√2−2√3 2√3
7. Prove that + = 11
3√2+2√3 √3− √2

LHS,
3√2−2√3 2√3
+
3√2+2√3 √3− √2

(3√2−2√3) 3√2−2√3 2√3 ( √3+ √2)


= × + ×
(3√2+2√3) 3√2−2√3 ( √3− √2) ( √3+ √2)
2

[Using identity (a + b)(a - b) = a2 - b2]


(3√2−2√3) 2√3( √3+ √2)
= 2 2
+ 2 2
(3√2) −(2√3) ( √3) −( √2)

2 2
(3√2) +(2√3) −2×3√2×2√3 2×3+2× √6
= 18−12
+ 3−2

18+12−12√6 6+2√6
= 6
+ 1

30−12√6 –
= 6
+ 6 + 2√6
6(5−2√6) –
= 6
+ 6 + 2√6
– –
= 5 - 2√6 + 6 + 2√6
= 11 = R.H.S
(3+ √θ) 3+ √8 –
8. Since 1

1
× = 9−8
= 3 + √8
3− √8 3− √8 (3+ √8)

( √7+ √6) √7+ √6 – –


1

1
× = 7−6
= (√7 + √6)
√7− √6 √7− √6 ( √7+ √6)

( √5+2) √5+2 –
1

1
× = 5−4
= (√5 + 2)
√5−2 √5−2 ( √5+2)

1 1 ( √8+ √7) √8+ √7 – –


⇒ × = 8−7
= (√8 + √7)
√8− √7 ( √8− √7) ( √8+ √7)

2 / 20
( √6+ √5) √6+ √5 – –
1

1
× = 6−5
= (√6 + √5)
√6− √5 √6− √5 ( √6+ √5)

So 1
+
1
+
1

1

1

3− √8 √7− √6 √5−2 √8− √7


√6− √5

−− – – – – – – –
⇒ (3 + √80 ) + (√7 + √6) + (√5 + 2) −(√8 + √7) − (√6 + √5)

⇒ 3+2=5
9. Rationalize
1 √7+ √3+ √2
⇒ ×
√7+ √3− √2 √7+ √3+ √2

√7+ √3+ √2
= 2 2
( √7+ √3) −( √2)

√7+ √3+ √2
=
7+3+2√21−2

√7+ √3+ √2
=
8+2√21

1 √7+ √3+ √2 4− √21


⇒ [ × ]
2 (4+ √21) 4− √21

( √7+ √3+ √2)(4− √21)]


= 1

2
[
16−21
]

1 −− – – –
⇒ (√21 − 4)(√7 + √3 + √2)
10

√147+ √63+ √42−4√7−4√3−4√2



10

7+4√3 7+4√3 –
10. a = 1
× =
49−48
= 7 + 4√3
7−4√3 7+4√3

7−4√3 7−4√3 –
and b = 1
× =
49−48
= 7 − 4√3
7+4√3 7−4√3

So,
i. a2 + b2 = (a + b)2 - 2ab
(7 + 4√3 + 7 - 4√3)2 - 2(7 + 4√3)(7 - 4√3)
– – – –

⇒ (14)2 - 2(49 - 48)


= 196 - 2
= 194
ii. a3 + b3
We know (a + b)3 = a3 + b3 + 3ab (a + b)
∴ a3 + b3 = (a + b)3 - 3ab (a + b)
and a + b = 14 & ab = 1
∴ a3 + b3 = (14)3 - 3(1)(14)
= 14(142 - 3)
= 14 × 194
= 2716​​
11. For 1st year
P = ₹4000, R = 8%, T = 1 year
P ×R×T 4000×8×1
I= 100
= 100
= ₹320
A = ₹4000 + ₹320 = ₹4320
For 2nd year
P = ₹4320, R = 10%, T = 1 year
I= = ₹432
4320×10×1

100

A = ₹4320 + ₹432 = ₹4752


For 3rd year
P = ₹4752, R = 10%, T = 1 year
4752×10×1
I= 100
= ₹475.20
∴ Total amount at the end of third year
= ₹4752 + ₹475.20
= ₹5227.20
Total compound interest = ₹5227.20 - ₹4000
= ₹1227.20

3 / 20
12. P = 20,000, r = 10% p.a.
t = 2 years 3months = 2 + 3

12

= 2
1

4
years
Now,
n
r
A = P (1 + )
100

1
2 1+ ×10
10 4
= 20, 000(1 + ) ( )
100 100

110 110 1
= 20, 000 × × × (1 + )
100 100 40

41
= 2 × 110 × 110 ×
40

A = ₹24,805
CI = A - P
= 24,805 - 20,000
CI = ₹4,805
13. Given:
C.I. = 205, n = 2 years, r = 5% p.a., p = ?
n
r
C . I . = P (1 + ) − P
100
n
r
= P [ (1 + ) − 1]
100

205 = P [(1 + 5

100
) − 1]

205 = P [ 21

20
×
21

20
− 1]

441
= P [ − 1]
400

41P
205 =
400

p =
400×205

41
= ₹ 2000
14. Given:
P = 10,000, n = 2 years
Amount at the end of 1 year
= 11,200
i. CI = A - P
= 11,200 - 10,000
CI = 1,200
for Ist year
let rate of interest be r%
C.I. for 1 year = r% of 10,000
r
1200 = × 10000
100

r = 12%
n
r
ii. A = p(1 + 100
)

2
12
= 10, 000(1 + )
100

2
112
= 10, 000( )
100

112 112
= 10, 000 × ×
100 100

A = 12,544
hence, the amount at the 2nd year = ₹ 12,544
2
pr
15. (C.I. - SI)2years = 2
100
2
4000×(8)
=
100×100
128
=
5
= 25.6
i.e. ₹25.6
16. Given, P = ₹7000, A = ₹9317, r = 10%, n = ?
n
r
A = P (1 + 100
)

4 / 20
n

9317 = 7000(1 + 10

100
)

n
9317

7000
=( 11

10
)

n
1331

1000
=( 11

10
)

3 n
11 11
(
10
) =( 10
)

Comparing the power on both sides


n = 3 years
17. Given:
A = 2809 in 2 years
A = 2977.54 in 3 years
P = ?, r = ?
n
r
A = P (1 + )
100

2
r
2809 = P (1 + 100
) ...(i)
3

2977.54 = P (1 + r

100
) ...(ii)
Eqn (ii) ÷ (i)
3
r
P (1+ )
2977.54 100
=
2809×10 2
r
P (1+ )
100

3−2
r
1.06 = (1 + 100
)

1.06 = (1 + 100
r
)

100
= .06 × 100
r = 6%
Putting r = 6% in equation (i)
2

2809 = p(1 + 6

100
)

2809 = p × 106

100
×
106

100

P = ₹2500
18. Present Population = 2,16,000
r = 20% p.a.
i. Population after 2 year
n
r
A = P (1 + )
100

2
20
= 216, 000(1 + )
100

6 6
= 216000 × ×
5 5

A = 3,11,040
ii. Population before 2 year
P
A= n
r
(1+ )
100

2,16,000 216000
= =
2 6 6
20 ×
(1+ )
5 5
100

=
216000×5×5

6×6
= 1,50,000​​
19. i. Difference the depreciation value between the first year and second year = ₹4000 - ₹3600 = ₹400
Difference of depreciation
Rate of depreciation = depreciation of first year × time
× 100%
= 400

4000×1
× 100% = 10%
ii. Let the original cost be ₹x
Depreciation during first year
10 x
= 10% of x = x × 100
= 10
...(i)
But, depreciation during first year = ₹4000 (given) ...(ii)
From (i) and (ii), we get
x
= ₹4000
10

5 / 20
x = ₹40,000
Hence, The original cost of machine is ₹40,000
iii. The cost of machine after two depreciation
= ₹40,000 - ₹4000 - ₹3600
= ₹32400
∴ Depreciation during third year = 10% of ₹32400

= 32400 × = ₹3240 10

100

Total depreciation during three years


= ₹4000 + ₹3600 + ₹3240 = ₹10840
∴ The cost of machine at the end of the third year

= ₹40,000 - ₹10840
= ₹29160
20. Let the sum of money = ₹x
For 2 years
P = ₹x, n = 2 years, A = ₹19360
n
r
A = P (1 + 100
)

19360 = x(1 + r

100
) ...(i)
For 4 years
P = ₹x, n = 4 years, A = ₹23425.60
n

A = P (1 + 100
r
)

23425.60 = x(1 + 100


r
) ...(ii)
by (ii) ÷ (i)
2
2342560

19360×100
= (1 + r

100
)

2
14641 r

12100
= (1 + 100
)

2 2

(
121

110
) = (1 + r

100
)

Comparing on both sides


=1+
121

110
r

100
r

100
= 121

110
-1= 11

110

r= 11

110
× 100
r = 10%
2

From (i), 19360 = x(1 + 10

100
)

=x×( 11

10
)

19360 = 121x

100

x= 19360×100

121

Thus, Sum (x) = ₹16,000


21. Consider (x + y + z)2 + (x - y - z)2
= x2 + y2 + z2 + 2xy + 2yz + 2zx + x2 + y2 + z2 - 2xy + 2yz - 2zx [∵ (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca and (a - b - c)2
= a2 + b2 + c2 - 2ab + 2bc - 2ca]
= 2x2 + 2y2 + 2z2 + 4yz
= 2(x2 + y2 + z2 + 2yz)

22. i. (102)2
(100 + 2)2
(100)2 + (2)2 + 2(100)(2)
10000 + 4 + 400
10,404

6 / 20
ii. (10.2)2
(10 + 0.2)2
(10)2 + 2(10)(0.2) + (0.2)2
100 + 4 + 0.04
104.04
1
23. Given: a 2
+
2
= 66 , find
a

(i) a − 1

a
, (ii) a 3

1

a3

2
i. (a − 1

a
) = a
2
+
1

2
− 2 ⋅ a⋅
1

a
a

= 66 - 2
1 −−
(a − ) = ± √64
a
1
(a − ) = ±8
a

ii. By using identity


(a - b)3 = a3 - b3 - 3ab (a - b)
1 3 1 1 1
(a −
a
) =a 3

3
− 3 ⋅ a⋅
a
(a −
a
)
a

(8)3 = a 3

1
− 3(8)
a3
1
a
3

3
= 512 + 24
a

a
3

1
= 536
a3

24. Consider (a - b)2 = (a + b)2 - 4ab


= 62 - 4 × 8 [∵ a + b = 6 and ab = 8]
⇒ (a - b)2 = 36 - 32 = 4
(a - b)2 = 4 ⇒ a - b = ±√4 [taking square root on both sides]

⇒ a - b = ±2

1
25. i. Given: a 2
+
2
= 47
a

Adding 2 on both sides


2
a + + 2 = 47 + 2
1

2
a
2
(a)
2
+ (
1

a
) + 2 × a×
1

a
= 49
[Using identity a2 + b2 + 2ab = (a + b)2]
2
1 2
(a + ) = (7)
a

a+
1

a
= ±7 ...(a)
ii. a3
+
1

3
a

a+
1

a
= ±7 [From (a)]
Taking cube on both sides
1 3
2
(a + ) = (±7)
a

a
3
+
1

3
+ 3 × a×
1

a
(a +
1

a
) = ±343 [Using identity (a + b)3 = a3 + b3 + 3ab(a + b)]
a

3 1
a + + 3 × (±7) = ±343
3
a

3 1
a + = (±343) − (±21)
3
a

3 1
a + = ±322
3
a

26. a + b + c = 2, ab + bc + ca = -1, abc = -2


find a3 + b3 + c3
∵ (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
(2)2 = a2 + b2 + c2 + 2(-1)
4 = a2 + b2 + c2 - 2
a2 + b2 + c2 = 6
Now,
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
a2 + b3 + c3 - 3(-2) = (2) ((6) - {ab + bc + ca})

7 / 20
a3 + b3 + c3 + 6 = 2(6 - (-1))
a3 + b3 + c3 = 8
27. According to identity
a3 + b3 + c3 = 3abc if (a + b + c) = 0
73 + 32 + (-10)3 = 3(7)(3)(-10) {∵ 7 + 3 + (-10) = 0}
= -630
28. x = 2y + 6
x - 2y - 6 = 0
a = x, b = -2y, c = -6
here a + b + c = 0
i.e. x - 2y - 6 = 0
then (x)3 + (-2y)3 + (-6)3 = 3(x)(-2y)(-6)
{by using identity, if a + b + c = 0 then a3 + b3 + c3 = 3abc}
= x3 - 8y3 - 216 = 36xy
= x3 - 8y3 - 36xy - 216 = 0
=0

29. i. Given a2- 5a - 1 = 0


a2- 1 = 5a
2
a −1
= 5
a
2
a −1
= 5
a

a−
1

a
= 5 ... (i)
[Using identity (a + b)2 = a2 + b2 + 2ab]
2
ii. (a + 1

a
) =a 2
+
1

2
+ 2 × a×
1

a
a
2
(a +
1

a
) =a 2
+
1
− 2 + 2 + 2
a2
2
(a +
1

a
) =a 2
+
1

2
− 2 × a×
1

a
+ 4
a

[Using identity a2 + b2 - 2ab = (a - b)2]


2 2
(a +
1

a
) = (a − 1

a
) + 4

1 2
(a +
a
) = (5) 2
+ 4 [From (1)]
= 25 + 4
2
(a +
1

a
) = 29
−−
a+
1

a
= ± √29 ...(ii)
[Using identity a2 - b2 = (a + b)(0 - b)]
1 1 1
iii. a 2

2
= (a + a
) (a −
a
)
a
−−
a
2

1

2
= (±√29) × 5 [From (1) and (2)]
a
1 −−
a
2

2
= ±5√29
a

30. Given:
x
2
=
1

2
=
25

36
(x > 0)
9x
1
Find x 3
+
3
27x

2 25
∵ x =
36
5
x = ±
6

But x > 0, given in question


So, x = 5

6
1

2
=
25

36
(Given)
9x
2
1 25
( ) =
3x 36

3x
=
5

6
(∵ x > 0)
Using identity
(a + b)3 = a2 + b3 + 3ab(a + b)
3 3

(x +
3x
1
) =x 3
+ (
1

3x
) + 3 ⋅ x ⋅
1

3x
(x +
1

3x
)

3
5 5 5 5
(
6
+
6
) =x 3
+
1

3
+ (
6
+
6
)
27x

8 / 20
3
10 3 1 10
( ) = x + +
6 3 6
27x

3
3 1 10 10
x + = ( ) −
27x3 6 6

2
3 1 10 10
(x + = ( ) − 1)
27x3 6 6

3 1 5 100
x + = ( − 1)
3 3 36
27x

3 1 5 64
x + = ×
3 3 36
27x

3 1 80
x + =
3 27
27x

31. px - (px + qy)2 + p2x + pqy + qy


(px + qy) - (px + qy)2 + p(px + qy)
Let (px + qy) = m
-m2 + m + pm
-m2 + m(p + 1)
m((P + 1) - m)
Resubstitute value of m
(px + qy) ((p + 1) - (px + qy))
32. We have, 3ax - 6ay - 8by + 4bx + 9az + 12bz.
Now, arranging the given expression into groups,
= (3ax + 4bx) − 6ay − 8by +9az + 12bz

= (3ax + 4bx)− (6ay + 8by) + (9az + 12bz)

= x(3a + 4b) − 2y (3a + 4b) + 3z(3a + 4b)

Now, (3a + 46) is common factor for each group, so


3ax − 6ay − 8by + 4bx +9az + 12bz = (3a + 4b)(x − 2y + 3z)

which is the required factorisation of the given expression.


33. i. ab(a2 + b2 - c2) - bc(c2 - a2 - b2) + ca(a2 + b2 - c2)
= ab(a2 + b2 - c2) + bc(a2 + b2 - c2) + ca(a2 + b2 - c2)
= (a2 + b2 - c2) (ab + bc + ca)
ii. 2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)
= 2x(a - b) + 3y × 5(a - b) + 4z × (-2) (a - b)
= 2x(a - b) + 15y(a - b) - 8z(a - b)
= (a - b) (2x + 15y - 8z).
34. 2x7 - 128x
= 2x(x6 - 64)
= 2x((x2)3 - (4)3)
= 2x(x2 - 4)(x4 + 4x2 + 16)
= 2x(x + 2)(x - 2)(x2 + 4x2 + 16)
35. a(a + b - c) - bc
a2 + ab - ac - bc
a(a + b) - c(a + b)
(a - c)(a + b)
36. We have, l(x − y) 2
+ (mx − my) +(5x − 5y)

2
= l(x − y) +m(x − y) + 5(x − y)

Now, (x - y) is common factor across all the groups,


so l(x − y) + (mx − my) + (5x − 5y) = (x − y)[k(x − y) + m + 5]
2

which is the required factorisations of the given expression.


37. We have, 9x2 + 12xy + 4y2.
Given expression can be rewritten as
(3x)2 + 2⋅ 3x⋅ 2y+ (2y)2
Now, take 3x = a and 2y = b, then the expression becomes

9 / 20
a2 + 2ab + b2 = (a + b)2
Hence, the expression becomes (3x + 2y)2
So, the required factors are (3x + 2y) and (3x + 2y).
38. 3(2a - b)2 - 19(2a - b) + 28
Let 2a - b = x
= 3x2 - 19x + 28
= 3x2 - 12x - 7x + 88
= 3x(x - 4) - 7(x - 4)
= (3x - 7) (x - 4)
Resubstituting the value of x
= (3(2a - b) - 7)(2a - b - 4)
39. x4 + x2 + 1 = x4 + x2 + 1 + x2 - x2
= (x2)2 + 2x2 + 1 - x2
= (x2)2 + 2 × x2 × 1 + (1)2 - (x)2 [Using identity a2 + 2ab + b2 = (a + b)2]
= (x2 + 1)2 - (x)2
= (x2 + 1 + x) (x2 + 1 - x) [Using identity a2 - b2 = (a + b) (a - b)]
= (x2 + x + 1) (x2 - x + 1)

40. i. x3 + xy(2 − 3x) − 6y2


x3 + 2xy - 3x2y - 6y2
x(x2 + 2y) - 3y(x2 + 2y)
(x - 3y) (x2 + 2y)
ii. pq(x2 + y2) - xy(p2 + q2)
pqx2 + pqy2 - p2xy - q2xy
pqx2 - p2xy + pqy2 - q2xy
px(qx - py) + qy(py - qx)
px(qx - py) - qy(qx - py)
(px - qy) (qx - py)

41. a7 - ab6
= a(a6 - b6)
= a(a2)3 - (b2)3)
= a(a2 - b2) ((a2)2 + (a2) (b2) + (b2)2)
= a(a + b)(a - b) (a4 + a2b2 + b4)
42. 9x2 − 4(y + 2x)2
= (3x)2 - (2(4 + 2x))2
= (3x + 2(y + 2x))(3x - 2(y + 2x))
= (3x + 2y + 4x) (3x - 2y - 4x)
= (7x + 2y) (-x - 2y)
= -(7x + 2y) (x + 2y)
43. i. 8x + 5y = 11 ...(i)
x + y = 4 ...(ii) {by elimination midpoint}
(i) - 8(ii)

y=7
Putting y = 7 in equation (ii) to get x

10 / 20
x = 4 - 7 = -3
x = -3
ii. 4x - 3y = 8 ...(i)
18x - 3y = 29 ...(ii)
(i) - (ii)
-14x = -21
x= 21
=
14
i.e x = 3

2
3

Putting x = 3

2
in equation (i)
3
4( 2
) - 3(4) = 8
6 - 3y = 8
-3y = 2
−2
y= 3
y
iii. x

4
+
3

1

12
=0
3x+4y−1

12
=0
⇒ 3x + 4y = 1 ...(i)
x 5 7
− y =
2 4 4
2x−5y 7
=
4 4

2x - 5y = 7 ...(ii)
(i) × (ii) - (ii) × (iii)

19
y= 23

Put y = 19

23
in equation (i)
3x + 4y = 1
19
3x + 4 × 23
=1
76
3x = 1 - 23
23−76
3x = 23
−53
x= 23×3
−53
x= 69

44. Let unit digit = x


ten's digit = 6x
Required no. = 6x × 10 + x
= 60x + x
= 61x
A/c question
61x - 45 = 10x + 6x
61x - 16x = 45
45x = 45
x=1
i.e. unit digit = x = 1
ten's digit = 6x = 6
Required no. = 61x
= 61 × x
= 61 × 1
= 61
45. 43x + 67y = -24 ...(i)
67x + 43y = 24 ...(ii)
(i) + (ii)
110x + 110y = 0
x + y = 0 ...(iii)

11 / 20
(i) - (ii)
-24x + 24y = -48
24(-x + y) = -48
-x + y = -2 ...(iv)
(iii) + (iv)
2y = -2
y = -1, x = 1​​
46. − = 0...(i)
3

x
2

x
+
5

y
= 19...(ii)
Multiplying eqn. (i) by 5 and eqn. (ii) by 2 and on adding we get

x= 19

38

x= 1

Putting this value of x in eqn. (ii),


5

1/2
+
2
= 19 y

5
4 +
y
= 19
5

y
= 15
y = 15
y= 1

From y = ax + 3
1 1

3
=a× 2
+3
a 1 3

2
= 3

1
−8
a

2
= 3

a=- 16

3
= −5 1

47. Given pair of linear equations is


10
+ = 4 and −
2 15 5
= -2
(x+y) (x−y) (x+y) (x−y)

On putting x+y
1
= u and 1

x−y
= v, we get
10u + 2v = 4 ...(i)
and 15u - 5v = -2 ...(ii)
On multiplying Eq. (i) by 5 and Eq. (ii) by 2 and then adding, we get
5(10u + 2v) + 2(15u - 5v) = 5 × 4 + 2 × ( -2)
⇒ 50u + 10v + 30u - 10v = 20 - 4

⇒ 80u = 16 ⇒ u =
1

On substituting u = 1

5
in Eq. (i), we get
10 × 1

5
+ 2v = 4 ⇒ 2 + 2v = 4 ⇒ 2v = 2 ⇒ v = 1
If u = 1

5
, then by 1

x+y
= u, we get

x+y
1
= 1

5
⇒ x + y = 5 ...(iii)
1
If v = 1, then by x−y
= v, we get
1

x−y
= 1 ⇒ x - y = 1 ...(iv)
On adding Eqs. (iii) and (iv), we get
2x = 6 ⇒ x = 3
On putting x = 3 in Eq. (iv), we get
3-y=1⇒y=2
Hence, x = 3 and y = 2, which is the required solution.

12 / 20
48. Let the numerator of the fraction = x
and the denominator of the fraction = y
Then, the fraction = x

According to question,
x−5

y−3
= 1

2x - 10 = y - 3
2x - y = 7 ...(i)
and y = x + 5 ...(ii)
Putting the value of y in eqn (i),
2x - (x + 5) = 7
2x - x - 5 = 7
x-5=7
x = 12
Putting the value of x in eqn. (ii), we get
y = 12 + 5
y = 17
12
Hence, the fraction = 17

49. Let the number of ₹1 coins = x


and the number of ₹2 coins = y
According to equation,
x × 1 + y × 2 = ₹256
x + 2y = 256 ...(i)
and y = 2x + 3...(ii)
Putting the value of y from (ii) in eqn. (i),
x + 2 × (2x + 3) = 256
x + 4x + 6 = 256
5x = 250
x = 50
by eqn. (ii),
y = 2 × 50 + 3
y = 100 + 3
y = 103
∴ The number of ₹1 coins = 50

the number of ₹2 coins = 103


and the value of ₹2 coins = 103 × 2
= ₹206
3x 5y
50. 2

3
+ 2 = 0 ...(i)
x y

3
+
2
=2 1

6
...(ii)
x 13 y

3
= 6

2

y
x = 3( 13

6

2
) ...(iii)
Putting this value of x in eqn. (i),
y 5y
3

2
× 3( 13

6

2
) - 3
= -2
y 5y
9

2
(
13

6

2
) - 3
= -2
39 9y 5y

4

4
- 3
= -2
9y 5y

4
+
3
= 39

4
+
2

1
27y+20y 39+8

12
= 4
47y 47

12
= 4

y=3
Putting this value of y in eqn. (iii), then we get
13 3
x = 3( - ) 6 2

13 / 20
13−9
= 3( 6
)
= 4

x=2

51.

5x - 5y = 100

120
x= 2

x = 60 km/hr, y = 40 km/hr
i.e car starting from point A has speed 60 km/hr and car from point B has speed of 40 km/hr.
52. Let Sarita invested ₹x and y at a rate of 10% and 8% per annum.
According to question
x×10×1 y×8×1

100
+
100
= 1640
10x 84

100
+
100
= 1640
10x + 8y = 1,64,000 ...(i)
On interchanging rates
x×8×1 y×10×1

100
+
100
= 1600
8x + 10y = 1,60,000
(i) + (ii)
18x + 18y = 2,24,000
18(x + y) = 3,24,000 ...(iii)
(i) - (ii)
2x - 2y = 4000
x - y = 2,000 ...(iv)
(iii) + (iv)
2x = 20,000
x = 10,000
from equation (iv)
10,000 - y = 2000
y = 8,000
Hence, she invested ₹10,000 at 10% and 8000 at 8%.
53. Let the fixed charge be ₹x and charge form each extra day be ₹y.

y=3
From equation (i)
x = 27 - 4y
= 27 - 12
x = 15
Hence, fixed charge = ₹ 15
additional charge = ₹ 3/day​​
54. Let present age of Nisha and Samar be x and y years 5 years ago;
Nisha's age = x - 5
Samar's age = y - 5
x - 5 = 3(y - 5)
x - 3y = -10 ...(i)
Ten years Later;
Nisha's age = x + 10
Samar's age = y + 10

14 / 20
x + 10 = 2(y + 10)
x - 2y = 10 ...(ii)
(i) - (ii)

from (ii)
x = 50
i.e. Nisha's age = 50 years
Samar's age = 20 years​​
55. 4

−2
+
1

−3
+
2

−1

(216) 3 (256) 4 (243) 5

4 1 2
= + +
−2 −3 −1

(6×6×6) 3 (4×4×4×4) 4 (3×3×3×3×3) 5

4 1 2
= + +
−2 −3 −1

3 4 5
(6 ) 3 (4 ) 4 (3 ) 5

=
4

−2
+
1

−3
+
2

−1
(∵ (am)n = amn)
(6) (4) (3)

= 4 × 62 + 1 × 43 + 2 × 31 (∵ 1

−n
n
= a )
a

= 4 × 36 + 64 + 2 × 3
= 144 + 64 + 6
= 214
56. 2x = 3y = 6-z = k
1 1 −1

2 = (k) , 3 = (k) x y
and 6 = (k) z

−1

6 = (k) z

−1

⇒ 3.2 = (k) z

1 1 −1
y
⇒ (k) ⋅ (k) x = (k) z

1 1 1
⇒ + + = 0
x y z

x-1 + y-1 + z-1 = 0


−6

57. 42m = (√16)


3 −− – 2
n = (√8)
−6

42m = 8 and (√16)


−−
=8
3
n

−6 1

= 23 and (2 = 23
2 2m 4 ×
n
(2 ) ) 3

−8
⇒ m= 3

4
and n = 3

a+b+c
58. −1 −1 −1 −1 −1 −1
a b +b c +c a

abc(a+b+c)
= 1
a+b+c

1 1
=
c+a+b
= abc
+ +
ab bc ca

3+x 3y

59. 27x+1 = 81y+2 and ( 1

3
) = (
1

9
)

3y
3+x 2
x+1 y+2
(3 )
3
= (3 )
4
and ( 1

3
) = ((
1

3
) )

3x + 3 = 4y + 8 and 3 + x = 6y
3x - 4y = 5 and x - 6y = -3
Solving y = 1, x = 3
−2 1

60. We have, 3 3
× (243) 3 × 9 3

−2 1

=3 3
× (3 × 3 × 3 × 3 × 3) 3 × (3 × 3) 3

−2 1

=3 3
× (3 )
5
3 × (3 )
2
3

−2 1

[∵ (am)n = am × n]
5×( ) 2×
=3 3
× 3 3 × 3 3

−10 2

=3 3
× 3 3 × 3 3

15 / 20
10 2
3− +
=3 3 3 [∵ a
l
× a
m
× a
n
= a
l+m+n
]
(3×3)−10+2 9−10+2 11−10 1

=3 3 = 3 3 = 3 3 = 3 3

−y −2

y 2 x
9 × 3 × (3 2 ) ÷(27)

61. 3x 2
=
1

27
3 ×3
−y −2

2 y 2
(3 ) × 3 × ( 3 2 )

1
x
=
3x 2 3 3
3 × 3 ×( 3 ) 3
2y+2+y
(3) 1
=
3x +2+3x 3
(3) 3

(3)2y+2+y+3 = (3)3x+2+3x
3y + 5 = 6x + 2
= 2x - y = 1
62. We have to prove
−1 −1 2
a a 2b
+ =
−1 −1 −1 −1 2 2
a +b a −b b −a
−1 −1
a a
L.H.S. = −1 −1
+
−1 −1
a +b a −b
−1 −1
a a
= +
1 1 1 1
+ −
a b a b
1 1

a a
= +
b+a b−a

ab ab

ab ab
= +
a(b+a) a(b−a)

ab(b−a)+ab(b+a)
=
a(b+a)(b−a)

ab(b−a+b+a)
=
2 2
a( b − a )

b×2b
=
2 2
b −a
2
2b
=
2 2
b −a

= R.H.S.
4 −7

3 4
√2× √3× √4 (3) 3 ×(5) 5

63. −1 3
÷
−3

(10) 5 ×(5) 5 (4) 5 ×6

1 1 1 −3

2 2
(2) 2 ×(3) 3 × (2 ) 4 (2 ) 5 ×3×2
= −1 3
×
4 −7

(5×2) 5 ×(5) 5 (3) 3 ×(5) 5

1 1 6 1 1 4 1 3 7
+ − + +1 − +1 − +
= (2) 2 2 5 5 × (3) 3 3 × (5) 5 5 5

=2 ×3 1 0
× 5
1
= 10​​
3
3 1 m 1 m

64. i. We have, 4 2 = (4 2 ) [∵ (a n ) = (a n ) ]

3 3
1 1

[∵ (am)n = amn]
2×( )
= [(2 2
) 2 ] = [2 2 ]

= (2)3 = 8
4
4 1 m 1 m

ii. We have, (27) 3 = (27 3 ) [∵ a n = (a n ) ]

4 4
1 1

[∵ (am)n = amn]
3×( )
= [(3 3
) 3 ] = (3 3 )

= 34 = 81
3

iii. We have, (243) 5

3 3

= (3 × 3 × 3 × 3 × 3) 5 = (3 )
5
5

3

=3 = 3 [∵ (a 5
3 m
)
n
= a
m×n
]

= 3 ×3× 3 = 27

16 / 20
2

iv. We have, 1

−2
= (27) 3 [∵
a−n
1
= a ]
n

(27) 3

2 2

= (3 × 3 × 3) 3 = (3 )
3 3

= 32
3×( )
=3 3

n
= 3 × 3 = 9 [∵ (a m
) = a
m×n
]

65. We have, log(x + 3) - log(x - 3) = 1


x+3 m
⇒ log( ) = 1 [log m − log n = log ]
x−3 n

x+3
⇒ log(
x−3
) = log 10 [∵ 1 = log10]
x+3
⇒ ( ) = 10
x−3

⇒ x + 3 = 10(x - 3)
⇒ x + 3 = 10x - 30

⇒ x - 10x = -30 - 3

⇒ -9x = -33
33 11 2
∴ x = = = 3
9 3 3

66. log (x - 2) + log (x - 5) = 1


⇒ log (x - 2)(x - 5) = 1

⇒ log x2 - 2x - 5x + 10 = 1
⇒ log x2 - 7x + 10 = 1
⇒ x2 - 7x + 10 = 101
⇒ x2 - 7x + 10 - 10 = 0
⇒ x2 - 7x = 0
x(x - 7) = 0
x = 0, 7
But x = 0 is not our answer because on putting x = 0, log 6n become (-ve) which is not defined.
Hence x = 7
67. Given that
a2 + b2 = 23 ab
a2 + b2 + 2ab = 23 ab + 2 ab
(a + b)2 = 25 ab [Using identity a2 + 2ab + b2 = (a + b)2]
2
(a+b)

25
= ab
2
a+b
(
5
) = ab
2
a+b
log ( 5
) = log ab

= log a + log b (∵ log mn = n log m and log m × n = log m + log n)


a+b
2 log 5
a+b
log 5
= 1

2
(log a + log b)
68. We have, log 7 - log 2 + log 16 - 2 log 3 - log 7

45
= 1 + log x
⇒ log 7 - log 2 + log 16 - log 32 - log
7

45
= 1 + log x [∵ n log m = log mn]
⇒ log 7 - log 2 + log 16 - log 9 - (log 7 - log 45) = 1 + log x [∵ log m

n
= log m − log n]

⇒ log 7 - log 2 + log 16 - log 9 - log 7 + log 45 = 1 + log x


⇒ (log 16 + log 45) - (log 2 + log 9) = 1 + log x

⇒ log(16 × 45) - log(2 × 9) = 1 + log x [∵ log m + log n = log mn]


16×45 m
⇒ log = 1 + log x [∵ log m - log n = log ]
2×9 n

⇒ log 40 = 1 + log x = log 10 + log x [∵ 1 = log 10]


⇒ log 40 = log 10x ⇒ 10x = 40

∴ x = 4

69. 2 log 15

18
− log
25

162
+ log
4

9
2
15 25
= log ( 18
) - log 162
+ log 4

17 / 20
= log 225

324
- log 162
25
+ log 4

9
225

= log
324 4
+ log
25 9

162

= log 225×162

328×25
+ log
4

= log 9

2
+ log
4

= log 9

2
×
4

= log 2 RHS
Hence, Proved.
70. i. log4 32 = x - 4

4x - 4 = 32
(22)x - 4 = (2 × 2 × 2 × 2 × 2)
(22)x - 4 = 25
2(x - 4) = 5
2x - 8 = 5
2x = 13
13 1
x= 2
=6 2

ii. log7 (2x2 - 1) = 2

72 = 2x2 - 1
49 = 2x2 - 1
2x2 = 50
x2 = 25
x=±5
71. 3 (log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x
3 log 5 - 3 log 3 - log 5 + 2 log 6 + log x = 2
log 53 - log 33 - log 5 + log 62 + log x = 2 × 1 (∵ n log m = log mn)
(log 53 + log 62 + log x) - (log 33 + log 5) = 2 log 10
log (53 × 62 × x) - log (33 × 5) = 2 log 102 (∵ log m + log n = log m × n)
log 125×36×x
= log 100 (∵ log m - log n = log )
27×5
m

125×36×x

27×5
= 100
x= 100×27×5

125×36

x=3
log(x+y) log(x−y) log 4
72. log 2
=
log 5
=
log(0.5)

log(x+y) log 9
⇒ =
log 2 log(0.5)
2
log(x+y) log
⇒ =
2 1
log log( )
2

log(x+y) 2 log 2
⇒ =
log 2 2−1
log

log(x+y) 2 log 2
⇒ =
log 2 −1 log 2

log(x+y)
⇒ = −2
log 2

⇒ log (x + y) = -2 log 2
⇒ log (x + y) = log 2-2
⇒ log (x + y) = log2
1

⇒ x+y= 1

⇒ 4x + 4y = 1
⇒ 4(x + y) = 1

x + y = ...(i)1

4
log(x−y) log 4
=
log 5 log 0.5

18 / 20
log(x−y)

log 5
= -2
⇒ log (x - y) = -2 log 5
⇒ log (x - y) = log (5)2
⇒ log (x - y) = log
1

25

x-y= 25
1

25x - 25y = 1
25(x - y) = 1
1
x-y= 25
...(ii)
(i) and (ii)

29
2x = 100
29
x= 200

Putting above value of x in equation (i)


29 1
+ y =
200 4
29
y= 1

4

200
50−29
y= 200

y= 21

200

73. logx 49 - logx 7 + logx 1

343
+2=0
logx 49

7
+ logx ( 1

343
) = -2 (∵ log m - log n = log m

n
)
logx 7 + logx 1

343
= -2
logx 7 × 343
1
= -2
logx 7 × 343
1
= -2 (∵ log m + log n = log m × n)
1
logx 49
= -2

x-2 = 1

49
1 1
=
2 49
x

x2 = 49
x=±7
∴ x = 7 (at x = -7, logx 7 is not defined)

74. log (x + 2) + log(x - 2) = log 3 + 3 log 4


⇒ log (x + 2) (x - 2) = log 3 + 3 log 43
⇒ log (x2 - 22) = log 3 + log 64
⇒ log x2 - 4 = log 3 × 64
⇒ x2 - 4 = 192
⇒ x2 = 196
⇒ x = ± 14

but x ≠ -14
Hence x = 14
75. Given log3 m = x

3x = m ...(i)
log3 n = y

3y = n ...(ii)
i. 32x - 3 = 32x × 3-3
x 2
(3 )
= 3
3
2
(m)
= 27
2
m
= 27

19 / 20
ii. 31 - 2y + 3x = 31 × 3-2y × 33x
x 3
3×( 3 )
= 2y
3
x 3
3×( 3 )
= y 2
(3 )

3
3×(m)
= 2
(n)
3

= 3m

2
n

20 / 20

You might also like