Solution 1170860
Solution 1170860
Class 09 - Mathematics
√2 √2
1. i. 1
× =
2
irrational
√2 √2
–
ii. 7√5 = irrational
iii. -3 rational
– –
iv. (4 + √8) - 2√2
– –
= 4 + 2√2 - 2√2 = 4 rational
v. 7 - π irrational
as π is an irrational quantity
− − – –
vi. √24 + (7√6 − 2√6)
– – –
2√6 + 7√6 − 2√6
–
= 7√6 irrational number
14 14 (5√3+ √5)
2. = ×
5√3− √5 (5√3− √5) (5√3+ √5)
14(5√3+ √5)
= 25×3−5
14(5√3+ √5)
= 75−5
14(5√3+ √5)
= 70
(5√3+ √5)
= 5
– – −− – 3 – −−
3. We have, 2
3
√7 −
1
2
√2 + 6√11 +
1
3
√7 +
2
√2 − √11
2 1 – −1 3 – −−
=( 3
+
3
)√7 + (
2
+
2
) √2 + (6 − 1)√11
– – −− – – −−
=( 3
3
) √7 +( 2
2
) √2 + 5 √11 = √7 + √2 + 5√11
4. i. 1.37
¯
Let x = 1.3777...
10x = 13.777... (i)
100x = 137.777... (ii)
Subtact (ii) - (i)
⇒ 90x = 124
124 62
x = =
90 45
ii. 2.23
¯
Let x = 2.232323...
100x = 223.232323...
99x = 221
221
x =
99
¯
¯¯¯¯¯¯¯¯
¯
iii. 34. 5678
Let x = 34.56785678... (i)
Multiply by 10000 on both side
10000x = 345678.56785678... (ii)
Subtract (ii) - (i)
⇒ 9999x = 345644
345644
⇒ x =
9999
¯
¯¯¯
¯
iv. 111.3235
Let x = 111.32353535...
100x = 11132.353535... (i)
10000x = 1113235.3535... (ii)
Subtract (ii) - (i)
1 / 20
9900x = 1102103
x = 1102103
9900
5. Given,
–
x = 5 - 2√6
1
x
= 1
(5−2√6)
(5+2√6)
= 1
×
(5−2√6) (5+2√6)
(5+2√6)
= 25−4×6
5+2√6
= 25−24
–
1
x
= 5 + 2√6
Now,
1 1 2
x
2
+
2
= (x + x
) -2
x
– – 2
= +5+2
(5 − 2√6 √6) -2
= (10) - 2 2
= 100 - 2
1
x
2
+
2
= 98
x
6. i. Here, 2
3
lies between 0 and 1.
2
∴ We take one-third of unit length and mark points on the number line XY on both sides of 0 (zero), then we represent 3
as
point A.
ii. Here, 1
4
lies between 0 and 1.
1
∴ We take one-fourth of unit length and mark points on the number line XY on both sides of 0 (zero), then we represent 4
as
point A.
3
iii. Here, - 5
lies between -1 and 0.
3
∴ We take one-fifth of unit length and mark points on the number line XY on both sides of 0 (zero), then we represen - 5
as
point A.
3√2−2√3 2√3
7. Prove that + = 11
3√2+2√3 √3− √2
LHS,
3√2−2√3 2√3
+
3√2+2√3 √3− √2
2 2
(3√2) +(2√3) −2×3√2×2√3 2×3+2× √6
= 18−12
+ 3−2
18+12−12√6 6+2√6
= 6
+ 1
30−12√6 –
= 6
+ 6 + 2√6
6(5−2√6) –
= 6
+ 6 + 2√6
– –
= 5 - 2√6 + 6 + 2√6
= 11 = R.H.S
(3+ √θ) 3+ √8 –
8. Since 1
⇒
1
× = 9−8
= 3 + √8
3− √8 3− √8 (3+ √8)
( √5+2) √5+2 –
1
⇒
1
× = 5−4
= (√5 + 2)
√5−2 √5−2 ( √5+2)
2 / 20
( √6+ √5) √6+ √5 – –
1
⇒
1
× = 6−5
= (√6 + √5)
√6− √5 √6− √5 ( √6+ √5)
So 1
+
1
+
1
−
1
−
1
−− – – – – – – –
⇒ (3 + √80 ) + (√7 + √6) + (√5 + 2) −(√8 + √7) − (√6 + √5)
⇒ 3+2=5
9. Rationalize
1 √7+ √3+ √2
⇒ ×
√7+ √3− √2 √7+ √3+ √2
√7+ √3+ √2
= 2 2
( √7+ √3) −( √2)
√7+ √3+ √2
=
7+3+2√21−2
√7+ √3+ √2
=
8+2√21
2
[
16−21
]
1 −− – – –
⇒ (√21 − 4)(√7 + √3 + √2)
10
7+4√3 7+4√3 –
10. a = 1
× =
49−48
= 7 + 4√3
7−4√3 7+4√3
7−4√3 7−4√3 –
and b = 1
× =
49−48
= 7 − 4√3
7+4√3 7−4√3
So,
i. a2 + b2 = (a + b)2 - 2ab
(7 + 4√3 + 7 - 4√3)2 - 2(7 + 4√3)(7 - 4√3)
– – – –
⇒
100
3 / 20
12. P = 20,000, r = 10% p.a.
t = 2 years 3months = 2 + 3
12
= 2
1
4
years
Now,
n
r
A = P (1 + )
100
1
2 1+ ×10
10 4
= 20, 000(1 + ) ( )
100 100
110 110 1
= 20, 000 × × × (1 + )
100 100 40
41
= 2 × 110 × 110 ×
40
A = ₹24,805
CI = A - P
= 24,805 - 20,000
CI = ₹4,805
13. Given:
C.I. = 205, n = 2 years, r = 5% p.a., p = ?
n
r
C . I . = P (1 + ) − P
100
n
r
= P [ (1 + ) − 1]
100
205 = P [(1 + 5
100
) − 1]
205 = P [ 21
20
×
21
20
− 1]
441
= P [ − 1]
400
41P
205 =
400
p =
400×205
41
= ₹ 2000
14. Given:
P = 10,000, n = 2 years
Amount at the end of 1 year
= 11,200
i. CI = A - P
= 11,200 - 10,000
CI = 1,200
for Ist year
let rate of interest be r%
C.I. for 1 year = r% of 10,000
r
1200 = × 10000
100
r = 12%
n
r
ii. A = p(1 + 100
)
2
12
= 10, 000(1 + )
100
2
112
= 10, 000( )
100
112 112
= 10, 000 × ×
100 100
A = 12,544
hence, the amount at the 2nd year = ₹ 12,544
2
pr
15. (C.I. - SI)2years = 2
100
2
4000×(8)
=
100×100
128
=
5
= 25.6
i.e. ₹25.6
16. Given, P = ₹7000, A = ₹9317, r = 10%, n = ?
n
r
A = P (1 + 100
)
4 / 20
n
9317 = 7000(1 + 10
100
)
n
9317
7000
=( 11
10
)
n
1331
1000
=( 11
10
)
3 n
11 11
(
10
) =( 10
)
2
r
2809 = P (1 + 100
) ...(i)
3
2977.54 = P (1 + r
100
) ...(ii)
Eqn (ii) ÷ (i)
3
r
P (1+ )
2977.54 100
=
2809×10 2
r
P (1+ )
100
3−2
r
1.06 = (1 + 100
)
1.06 = (1 + 100
r
)
100
= .06 × 100
r = 6%
Putting r = 6% in equation (i)
2
2809 = p(1 + 6
100
)
2809 = p × 106
100
×
106
100
P = ₹2500
18. Present Population = 2,16,000
r = 20% p.a.
i. Population after 2 year
n
r
A = P (1 + )
100
2
20
= 216, 000(1 + )
100
6 6
= 216000 × ×
5 5
A = 3,11,040
ii. Population before 2 year
P
A= n
r
(1+ )
100
2,16,000 216000
= =
2 6 6
20 ×
(1+ )
5 5
100
=
216000×5×5
6×6
= 1,50,000
19. i. Difference the depreciation value between the first year and second year = ₹4000 - ₹3600 = ₹400
Difference of depreciation
Rate of depreciation = depreciation of first year × time
× 100%
= 400
4000×1
× 100% = 10%
ii. Let the original cost be ₹x
Depreciation during first year
10 x
= 10% of x = x × 100
= 10
...(i)
But, depreciation during first year = ₹4000 (given) ...(ii)
From (i) and (ii), we get
x
= ₹4000
10
5 / 20
x = ₹40,000
Hence, The original cost of machine is ₹40,000
iii. The cost of machine after two depreciation
= ₹40,000 - ₹4000 - ₹3600
= ₹32400
∴ Depreciation during third year = 10% of ₹32400
= 32400 × = ₹3240 10
100
= ₹40,000 - ₹10840
= ₹29160
20. Let the sum of money = ₹x
For 2 years
P = ₹x, n = 2 years, A = ₹19360
n
r
A = P (1 + 100
)
19360 = x(1 + r
100
) ...(i)
For 4 years
P = ₹x, n = 4 years, A = ₹23425.60
n
A = P (1 + 100
r
)
19360×100
= (1 + r
100
)
2
14641 r
12100
= (1 + 100
)
2 2
(
121
110
) = (1 + r
100
)
110
r
100
r
100
= 121
110
-1= 11
110
r= 11
110
× 100
r = 10%
2
100
)
=x×( 11
10
)
19360 = 121x
100
x= 19360×100
121
22. i. (102)2
(100 + 2)2
(100)2 + (2)2 + 2(100)(2)
10000 + 4 + 400
10,404
6 / 20
ii. (10.2)2
(10 + 0.2)2
(10)2 + 2(10)(0.2) + (0.2)2
100 + 4 + 0.04
104.04
1
23. Given: a 2
+
2
= 66 , find
a
(i) a − 1
a
, (ii) a 3
−
1
a3
2
i. (a − 1
a
) = a
2
+
1
2
− 2 ⋅ a⋅
1
a
a
= 66 - 2
1 −−
(a − ) = ± √64
a
1
(a − ) = ±8
a
(8)3 = a 3
−
1
− 3(8)
a3
1
a
3
−
3
= 512 + 24
a
a
3
−
1
= 536
a3
⇒ a - b = ±2
1
25. i. Given: a 2
+
2
= 47
a
2
a
2
(a)
2
+ (
1
a
) + 2 × a×
1
a
= 49
[Using identity a2 + b2 + 2ab = (a + b)2]
2
1 2
(a + ) = (7)
a
a+
1
a
= ±7 ...(a)
ii. a3
+
1
3
a
a+
1
a
= ±7 [From (a)]
Taking cube on both sides
1 3
2
(a + ) = (±7)
a
a
3
+
1
3
+ 3 × a×
1
a
(a +
1
a
) = ±343 [Using identity (a + b)3 = a3 + b3 + 3ab(a + b)]
a
3 1
a + + 3 × (±7) = ±343
3
a
3 1
a + = (±343) − (±21)
3
a
3 1
a + = ±322
3
a
7 / 20
a3 + b3 + c3 + 6 = 2(6 - (-1))
a3 + b3 + c3 = 8
27. According to identity
a3 + b3 + c3 = 3abc if (a + b + c) = 0
73 + 32 + (-10)3 = 3(7)(3)(-10) {∵ 7 + 3 + (-10) = 0}
= -630
28. x = 2y + 6
x - 2y - 6 = 0
a = x, b = -2y, c = -6
here a + b + c = 0
i.e. x - 2y - 6 = 0
then (x)3 + (-2y)3 + (-6)3 = 3(x)(-2y)(-6)
{by using identity, if a + b + c = 0 then a3 + b3 + c3 = 3abc}
= x3 - 8y3 - 216 = 36xy
= x3 - 8y3 - 36xy - 216 = 0
=0
a−
1
a
= 5 ... (i)
[Using identity (a + b)2 = a2 + b2 + 2ab]
2
ii. (a + 1
a
) =a 2
+
1
2
+ 2 × a×
1
a
a
2
(a +
1
a
) =a 2
+
1
− 2 + 2 + 2
a2
2
(a +
1
a
) =a 2
+
1
2
− 2 × a×
1
a
+ 4
a
a
) = (a − 1
a
) + 4
1 2
(a +
a
) = (5) 2
+ 4 [From (1)]
= 25 + 4
2
(a +
1
a
) = 29
−−
a+
1
a
= ± √29 ...(ii)
[Using identity a2 - b2 = (a + b)(0 - b)]
1 1 1
iii. a 2
−
2
= (a + a
) (a −
a
)
a
−−
a
2
−
1
2
= (±√29) × 5 [From (1) and (2)]
a
1 −−
a
2
−
2
= ±5√29
a
30. Given:
x
2
=
1
2
=
25
36
(x > 0)
9x
1
Find x 3
+
3
27x
2 25
∵ x =
36
5
x = ±
6
6
1
2
=
25
36
(Given)
9x
2
1 25
( ) =
3x 36
3x
=
5
6
(∵ x > 0)
Using identity
(a + b)3 = a2 + b3 + 3ab(a + b)
3 3
(x +
3x
1
) =x 3
+ (
1
3x
) + 3 ⋅ x ⋅
1
3x
(x +
1
3x
)
3
5 5 5 5
(
6
+
6
) =x 3
+
1
3
+ (
6
+
6
)
27x
8 / 20
3
10 3 1 10
( ) = x + +
6 3 6
27x
3
3 1 10 10
x + = ( ) −
27x3 6 6
2
3 1 10 10
(x + = ( ) − 1)
27x3 6 6
3 1 5 100
x + = ( − 1)
3 3 36
27x
3 1 5 64
x + = ×
3 3 36
27x
3 1 80
x + =
3 27
27x
2
= l(x − y) +m(x − y) + 5(x − y)
9 / 20
a2 + 2ab + b2 = (a + b)2
Hence, the expression becomes (3x + 2y)2
So, the required factors are (3x + 2y) and (3x + 2y).
38. 3(2a - b)2 - 19(2a - b) + 28
Let 2a - b = x
= 3x2 - 19x + 28
= 3x2 - 12x - 7x + 88
= 3x(x - 4) - 7(x - 4)
= (3x - 7) (x - 4)
Resubstituting the value of x
= (3(2a - b) - 7)(2a - b - 4)
39. x4 + x2 + 1 = x4 + x2 + 1 + x2 - x2
= (x2)2 + 2x2 + 1 - x2
= (x2)2 + 2 × x2 × 1 + (1)2 - (x)2 [Using identity a2 + 2ab + b2 = (a + b)2]
= (x2 + 1)2 - (x)2
= (x2 + 1 + x) (x2 + 1 - x) [Using identity a2 - b2 = (a + b) (a - b)]
= (x2 + x + 1) (x2 - x + 1)
41. a7 - ab6
= a(a6 - b6)
= a(a2)3 - (b2)3)
= a(a2 - b2) ((a2)2 + (a2) (b2) + (b2)2)
= a(a + b)(a - b) (a4 + a2b2 + b4)
42. 9x2 − 4(y + 2x)2
= (3x)2 - (2(4 + 2x))2
= (3x + 2(y + 2x))(3x - 2(y + 2x))
= (3x + 2y + 4x) (3x - 2y - 4x)
= (7x + 2y) (-x - 2y)
= -(7x + 2y) (x + 2y)
43. i. 8x + 5y = 11 ...(i)
x + y = 4 ...(ii) {by elimination midpoint}
(i) - 8(ii)
y=7
Putting y = 7 in equation (ii) to get x
10 / 20
x = 4 - 7 = -3
x = -3
ii. 4x - 3y = 8 ...(i)
18x - 3y = 29 ...(ii)
(i) - (ii)
-14x = -21
x= 21
=
14
i.e x = 3
2
3
Putting x = 3
2
in equation (i)
3
4( 2
) - 3(4) = 8
6 - 3y = 8
-3y = 2
−2
y= 3
y
iii. x
4
+
3
−
1
12
=0
3x+4y−1
⇒
12
=0
⇒ 3x + 4y = 1 ...(i)
x 5 7
− y =
2 4 4
2x−5y 7
=
4 4
2x - 5y = 7 ...(ii)
(i) × (ii) - (ii) × (iii)
19
y= 23
Put y = 19
23
in equation (i)
3x + 4y = 1
19
3x + 4 × 23
=1
76
3x = 1 - 23
23−76
3x = 23
−53
x= 23×3
−53
x= 69
11 / 20
(i) - (ii)
-24x + 24y = -48
24(-x + y) = -48
-x + y = -2 ...(iv)
(iii) + (iv)
2y = -2
y = -1, x = 1
46. − = 0...(i)
3
x
2
x
+
5
y
= 19...(ii)
Multiplying eqn. (i) by 5 and eqn. (ii) by 2 and on adding we get
x= 19
38
x= 1
1/2
+
2
= 19 y
5
4 +
y
= 19
5
y
= 15
y = 15
y= 1
From y = ax + 3
1 1
3
=a× 2
+3
a 1 3
2
= 3
−
1
−8
a
2
= 3
a=- 16
3
= −5 1
On putting x+y
1
= u and 1
x−y
= v, we get
10u + 2v = 4 ...(i)
and 15u - 5v = -2 ...(ii)
On multiplying Eq. (i) by 5 and Eq. (ii) by 2 and then adding, we get
5(10u + 2v) + 2(15u - 5v) = 5 × 4 + 2 × ( -2)
⇒ 50u + 10v + 30u - 10v = 20 - 4
⇒ 80u = 16 ⇒ u =
1
On substituting u = 1
5
in Eq. (i), we get
10 × 1
5
+ 2v = 4 ⇒ 2 + 2v = 4 ⇒ 2v = 2 ⇒ v = 1
If u = 1
5
, then by 1
x+y
= u, we get
x+y
1
= 1
5
⇒ x + y = 5 ...(iii)
1
If v = 1, then by x−y
= v, we get
1
x−y
= 1 ⇒ x - y = 1 ...(iv)
On adding Eqs. (iii) and (iv), we get
2x = 6 ⇒ x = 3
On putting x = 3 in Eq. (iv), we get
3-y=1⇒y=2
Hence, x = 3 and y = 2, which is the required solution.
12 / 20
48. Let the numerator of the fraction = x
and the denominator of the fraction = y
Then, the fraction = x
According to question,
x−5
y−3
= 1
2x - 10 = y - 3
2x - y = 7 ...(i)
and y = x + 5 ...(ii)
Putting the value of y in eqn (i),
2x - (x + 5) = 7
2x - x - 5 = 7
x-5=7
x = 12
Putting the value of x in eqn. (ii), we get
y = 12 + 5
y = 17
12
Hence, the fraction = 17
3
+
2
=2 1
6
...(ii)
x 13 y
3
= 6
−
2
y
x = 3( 13
6
−
2
) ...(iii)
Putting this value of x in eqn. (i),
y 5y
3
2
× 3( 13
6
−
2
) - 3
= -2
y 5y
9
2
(
13
6
−
2
) - 3
= -2
39 9y 5y
4
−
4
- 3
= -2
9y 5y
4
+
3
= 39
4
+
2
1
27y+20y 39+8
12
= 4
47y 47
12
= 4
y=3
Putting this value of y in eqn. (iii), then we get
13 3
x = 3( - ) 6 2
13 / 20
13−9
= 3( 6
)
= 4
x=2
51.
5x - 5y = 100
120
x= 2
x = 60 km/hr, y = 40 km/hr
i.e car starting from point A has speed 60 km/hr and car from point B has speed of 40 km/hr.
52. Let Sarita invested ₹x and y at a rate of 10% and 8% per annum.
According to question
x×10×1 y×8×1
100
+
100
= 1640
10x 84
100
+
100
= 1640
10x + 8y = 1,64,000 ...(i)
On interchanging rates
x×8×1 y×10×1
100
+
100
= 1600
8x + 10y = 1,60,000
(i) + (ii)
18x + 18y = 2,24,000
18(x + y) = 3,24,000 ...(iii)
(i) - (ii)
2x - 2y = 4000
x - y = 2,000 ...(iv)
(iii) + (iv)
2x = 20,000
x = 10,000
from equation (iv)
10,000 - y = 2000
y = 8,000
Hence, she invested ₹10,000 at 10% and 8000 at 8%.
53. Let the fixed charge be ₹x and charge form each extra day be ₹y.
y=3
From equation (i)
x = 27 - 4y
= 27 - 12
x = 15
Hence, fixed charge = ₹ 15
additional charge = ₹ 3/day
54. Let present age of Nisha and Samar be x and y years 5 years ago;
Nisha's age = x - 5
Samar's age = y - 5
x - 5 = 3(y - 5)
x - 3y = -10 ...(i)
Ten years Later;
Nisha's age = x + 10
Samar's age = y + 10
14 / 20
x + 10 = 2(y + 10)
x - 2y = 10 ...(ii)
(i) - (ii)
from (ii)
x = 50
i.e. Nisha's age = 50 years
Samar's age = 20 years
55. 4
−2
+
1
−3
+
2
−1
4 1 2
= + +
−2 −3 −1
4 1 2
= + +
−2 −3 −1
3 4 5
(6 ) 3 (4 ) 4 (3 ) 5
=
4
−2
+
1
−3
+
2
−1
(∵ (am)n = amn)
(6) (4) (3)
= 4 × 62 + 1 × 43 + 2 × 31 (∵ 1
−n
n
= a )
a
= 4 × 36 + 64 + 2 × 3
= 144 + 64 + 6
= 214
56. 2x = 3y = 6-z = k
1 1 −1
2 = (k) , 3 = (k) x y
and 6 = (k) z
−1
6 = (k) z
−1
⇒ 3.2 = (k) z
1 1 −1
y
⇒ (k) ⋅ (k) x = (k) z
1 1 1
⇒ + + = 0
x y z
−6 1
= 23 and (2 = 23
2 2m 4 ×
n
(2 ) ) 3
−8
⇒ m= 3
4
and n = 3
a+b+c
58. −1 −1 −1 −1 −1 −1
a b +b c +c a
abc(a+b+c)
= 1
a+b+c
1 1
=
c+a+b
= abc
+ +
ab bc ca
3+x 3y
3
) = (
1
9
)
3y
3+x 2
x+1 y+2
(3 )
3
= (3 )
4
and ( 1
3
) = ((
1
3
) )
3x + 3 = 4y + 8 and 3 + x = 6y
3x - 4y = 5 and x - 6y = -3
Solving y = 1, x = 3
−2 1
60. We have, 3 3
× (243) 3 × 9 3
−2 1
=3 3
× (3 × 3 × 3 × 3 × 3) 3 × (3 × 3) 3
−2 1
=3 3
× (3 )
5
3 × (3 )
2
3
−2 1
[∵ (am)n = am × n]
5×( ) 2×
=3 3
× 3 3 × 3 3
−10 2
=3 3
× 3 3 × 3 3
15 / 20
10 2
3− +
=3 3 3 [∵ a
l
× a
m
× a
n
= a
l+m+n
]
(3×3)−10+2 9−10+2 11−10 1
=3 3 = 3 3 = 3 3 = 3 3
−y −2
y 2 x
9 × 3 × (3 2 ) ÷(27)
61. 3x 2
=
1
27
3 ×3
−y −2
2 y 2
(3 ) × 3 × ( 3 2 )
1
x
=
3x 2 3 3
3 × 3 ×( 3 ) 3
2y+2+y
(3) 1
=
3x +2+3x 3
(3) 3
(3)2y+2+y+3 = (3)3x+2+3x
3y + 5 = 6x + 2
= 2x - y = 1
62. We have to prove
−1 −1 2
a a 2b
+ =
−1 −1 −1 −1 2 2
a +b a −b b −a
−1 −1
a a
L.H.S. = −1 −1
+
−1 −1
a +b a −b
−1 −1
a a
= +
1 1 1 1
+ −
a b a b
1 1
a a
= +
b+a b−a
ab ab
ab ab
= +
a(b+a) a(b−a)
ab(b−a)+ab(b+a)
=
a(b+a)(b−a)
ab(b−a+b+a)
=
2 2
a( b − a )
b×2b
=
2 2
b −a
2
2b
=
2 2
b −a
= R.H.S.
4 −7
3 4
√2× √3× √4 (3) 3 ×(5) 5
63. −1 3
÷
−3
1 1 1 −3
2 2
(2) 2 ×(3) 3 × (2 ) 4 (2 ) 5 ×3×2
= −1 3
×
4 −7
1 1 6 1 1 4 1 3 7
+ − + +1 − +1 − +
= (2) 2 2 5 5 × (3) 3 3 × (5) 5 5 5
=2 ×3 1 0
× 5
1
= 10
3
3 1 m 1 m
64. i. We have, 4 2 = (4 2 ) [∵ (a n ) = (a n ) ]
3 3
1 1
[∵ (am)n = amn]
2×( )
= [(2 2
) 2 ] = [2 2 ]
= (2)3 = 8
4
4 1 m 1 m
4 4
1 1
[∵ (am)n = amn]
3×( )
= [(3 3
) 3 ] = (3 3 )
= 34 = 81
3
3 3
= (3 × 3 × 3 × 3 × 3) 5 = (3 )
5
5
3
5×
=3 = 3 [∵ (a 5
3 m
)
n
= a
m×n
]
= 3 ×3× 3 = 27
16 / 20
2
iv. We have, 1
−2
= (27) 3 [∵
a−n
1
= a ]
n
(27) 3
2 2
= (3 × 3 × 3) 3 = (3 )
3 3
= 32
3×( )
=3 3
n
= 3 × 3 = 9 [∵ (a m
) = a
m×n
]
x+3
⇒ log(
x−3
) = log 10 [∵ 1 = log10]
x+3
⇒ ( ) = 10
x−3
⇒ x + 3 = 10(x - 3)
⇒ x + 3 = 10x - 30
⇒ x - 10x = -30 - 3
⇒ -9x = -33
33 11 2
∴ x = = = 3
9 3 3
⇒ log x2 - 2x - 5x + 10 = 1
⇒ log x2 - 7x + 10 = 1
⇒ x2 - 7x + 10 = 101
⇒ x2 - 7x + 10 - 10 = 0
⇒ x2 - 7x = 0
x(x - 7) = 0
x = 0, 7
But x = 0 is not our answer because on putting x = 0, log 6n become (-ve) which is not defined.
Hence x = 7
67. Given that
a2 + b2 = 23 ab
a2 + b2 + 2ab = 23 ab + 2 ab
(a + b)2 = 25 ab [Using identity a2 + 2ab + b2 = (a + b)2]
2
(a+b)
25
= ab
2
a+b
(
5
) = ab
2
a+b
log ( 5
) = log ab
2
(log a + log b)
68. We have, log 7 - log 2 + log 16 - 2 log 3 - log 7
45
= 1 + log x
⇒ log 7 - log 2 + log 16 - log 32 - log
7
45
= 1 + log x [∵ n log m = log mn]
⇒ log 7 - log 2 + log 16 - log 9 - (log 7 - log 45) = 1 + log x [∵ log m
n
= log m − log n]
∴ x = 4
69. 2 log 15
18
− log
25
162
+ log
4
9
2
15 25
= log ( 18
) - log 162
+ log 4
17 / 20
= log 225
324
- log 162
25
+ log 4
9
225
= log
324 4
+ log
25 9
162
= log 225×162
328×25
+ log
4
= log 9
2
+ log
4
= log 9
2
×
4
= log 2 RHS
Hence, Proved.
70. i. log4 32 = x - 4
4x - 4 = 32
(22)x - 4 = (2 × 2 × 2 × 2 × 2)
(22)x - 4 = 25
2(x - 4) = 5
2x - 8 = 5
2x = 13
13 1
x= 2
=6 2
72 = 2x2 - 1
49 = 2x2 - 1
2x2 = 50
x2 = 25
x=±5
71. 3 (log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x
3 log 5 - 3 log 3 - log 5 + 2 log 6 + log x = 2
log 53 - log 33 - log 5 + log 62 + log x = 2 × 1 (∵ n log m = log mn)
(log 53 + log 62 + log x) - (log 33 + log 5) = 2 log 10
log (53 × 62 × x) - log (33 × 5) = 2 log 102 (∵ log m + log n = log m × n)
log 125×36×x
= log 100 (∵ log m - log n = log )
27×5
m
125×36×x
27×5
= 100
x= 100×27×5
125×36
x=3
log(x+y) log(x−y) log 4
72. log 2
=
log 5
=
log(0.5)
log(x+y) log 9
⇒ =
log 2 log(0.5)
2
log(x+y) log
⇒ =
2 1
log log( )
2
log(x+y) 2 log 2
⇒ =
log 2 2−1
log
log(x+y) 2 log 2
⇒ =
log 2 −1 log 2
log(x+y)
⇒ = −2
log 2
⇒ log (x + y) = -2 log 2
⇒ log (x + y) = log 2-2
⇒ log (x + y) = log2
1
⇒ x+y= 1
⇒ 4x + 4y = 1
⇒ 4(x + y) = 1
x + y = ...(i)1
4
log(x−y) log 4
=
log 5 log 0.5
18 / 20
log(x−y)
⇒
log 5
= -2
⇒ log (x - y) = -2 log 5
⇒ log (x - y) = log (5)2
⇒ log (x - y) = log
1
25
x-y= 25
1
25x - 25y = 1
25(x - y) = 1
1
x-y= 25
...(ii)
(i) and (ii)
29
2x = 100
29
x= 200
4
−
200
50−29
y= 200
y= 21
200
343
+2=0
logx 49
7
+ logx ( 1
343
) = -2 (∵ log m - log n = log m
n
)
logx 7 + logx 1
343
= -2
logx 7 × 343
1
= -2
logx 7 × 343
1
= -2 (∵ log m + log n = log m × n)
1
logx 49
= -2
x-2 = 1
49
1 1
=
2 49
x
x2 = 49
x=±7
∴ x = 7 (at x = -7, logx 7 is not defined)
but x ≠ -14
Hence x = 14
75. Given log3 m = x
3x = m ...(i)
log3 n = y
3y = n ...(ii)
i. 32x - 3 = 32x × 3-3
x 2
(3 )
= 3
3
2
(m)
= 27
2
m
= 27
19 / 20
ii. 31 - 2y + 3x = 31 × 3-2y × 33x
x 3
3×( 3 )
= 2y
3
x 3
3×( 3 )
= y 2
(3 )
3
3×(m)
= 2
(n)
3
= 3m
2
n
20 / 20