0% found this document useful (0 votes)
18 views25 pages

Z Transform

The document discusses the Z-transform and its applications in signal processing, including concepts such as time shifting, differentiation, and integration. It outlines the conditions for convergence and provides examples of Z-transform calculations for various signals. Additionally, it covers the initial and final value theorems, as well as convolution and correlation of signals.

Uploaded by

paxvaid2022
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
18 views25 pages

Z Transform

The document discusses the Z-transform and its applications in signal processing, including concepts such as time shifting, differentiation, and integration. It outlines the conditions for convergence and provides examples of Z-transform calculations for various signals. Additionally, it covers the initial and final value theorems, as well as convolution and correlation of signals.

Uploaded by

paxvaid2022
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 25

Z transfo rm

The 2 -tronsform dirret time


powen Seros
dyied Hhe

Comple vareau
where 2
XC.

The z tronsform
nd hene
an iepower aerag
haye
t will eist ooly fo
for which the power Serey coNuors es. The

set al he valueg -for which the power

Sere Conuerge +he Region t


COhvergene (Ro).
Broper lig
Linely
X, Cz)

+hen

Preg
Time Shifting

-k

put n k= m
-Cm +k)

Saling o don ain

If
a'a c ’ X Cas

prog

anc^)
aa h
Time Rouers al

-h m

Differentiation i

dxce) d
dz dz

n
-n
Lo_x(2) ncco.z
2 de

dz
Integratien im 2 dosnn

1f ccn)

Sxc dz
z

n= )
-n

dz- fh-lj
D
confrn

J dz

-n-17
CHz

dz

n
-f X (Ddz

Covoltion fopestg

X cDX2(2

Lhen

Now

x 2 Cn -k)

n
M8

X2 (z. X(2)
The initial Value theorem
>(0) X(2D
md

Casua

proy

for n <o

in

The final hale theorero

X(z)

Ce Cagual.

i 0-z) xcz)
Procf

Cagual

lx2 --

Subtrat fcm

n o

(I-)x
C(-)xcT
li
Z)

nd

Coo
becaye JC Ch)-o for n2o
Soraly
2 trons foon ote Duratin

Cn)-dn)

= 1
Roc entire
plo

Realz.

no

entire 2 plae ept 2=0


Roc
XC2)=z2
Roc entire plome ecapt

Xc)- )+ 34:
Roc

XC2)- 2 + 3 2 + 4

ROC

2) 3,

4 2
- Z + 2 4 32

ROC
re c

lonclugjon finle cluratoh


the of
entire z plane exapt2z
eol cept z ao
(asual
) RHS Z plone
Roc y entire
i) Hs omticafuat
expt
led
2 Aransform of nfini te DaratiónSgnals

- n

XCD- 2 n ) 2

<1
|zl21

RoC

121:

uch=

-ul--D

J )z)4)
-)
vi)
vi).
J
za

an (a) anh
n

(-n)
Icn-au)
Lz|< |az<)
2

J2)>I

Jca
(=)
-(E) |zl>1

2-|

X2): J an
|az'<
fa
az]z)b

na
nz

0-2) (2-)2
melkod 2
|z) >
z-.

Z-)
d2

-Z.

(z)
|21>1

Cnnucn)

Znuc
(2-)2

ae (z -1) 2
-2 (z-) R (2 - . z
(2 -)3
-z2 7 - 2 2 + 2 2 ) z
=z (21) 2(ztD(eA)

2Cz+)
C2-)3

X) xcn naucn

X(2-nah

Sna)

(1- baz'² lazll<1

|z]>a .
(2-a)2

.Jnah a n h

oazD Jcay

(l-az)2.
2
a2+Z az
(224
(2-a)2 (z-aj
Xii) n .uln)

nahn

)
(l-ozl)

a2 az (az-) +2
(2-)2. (az-)
aucn zl>a

an shyting feees y
Z-a

7nanucn- -z d

-2
(2-a)o
(2

XiiiJ Tcn) naucn -)


a.nn
-N(az)"

Znauch) 2anauch)

aZ
(2
-n

no

l az

2 3

2 )
az
laz| <|
|zla
n
(x)

2-2

&2
32
32-)
6222+62.
,22 -32 )
)2-52
62252+|
lL) n
2)- 4(]un

3 a 4 Jszy
(2)
-4 |2)>3
I-37) Roc & l2)23

CCn- Cas us n uc o Son Un ucn

Sely

uln
Jate

2-(casW) Soo )

2(2- Cape
(2-cosus)t ps Siuo

z(ason) 2 cogu

2222 Cogut)
Conclusion

Casual .

anticauas

outaiclad

1 cn>= (n+) ucn

Jn

(l-)2

(2-)2 Z-)
(zl )
22

(2)2 (2-)2

ych)

n-)
+IC1)
laking 2 lan
Y - y(2) - X(2).
Yc (1-7)-xc2)
Show hat I-2logot2

Roc |2|>1

on-j won

) -))

-jwo jwo
|- e +|-e

I e

1- 2 og
Deteronine 2-rom Sforso sgral
OSnN-J

2
olkaa wie

Solutio

XCH, ucn- uCn -

shyting
wsing Linearity && time
XCz):2ucnd- 2u Cn -n)

|2)>I

X(2) 2 N. z

I2

Cogirm
finle duratien sitnal
Sin e
is
ccept
entre 2 plone
ROC

a o s ca,n ucd
olelinne Jka z trorn s forg

) zluasoo
2

2 2

I-aal2) ootaz)
bxample
Sho that 2| log (i+az]. Roc l2l> lal
(-) aucn -
Roc
XC2) log C1+az')
dxcz)
dz I+a

-2d xc2) az

Now

4(n-1).

-Caz)

-2 dx(2ncoal-a)n=ucna)

uCn )
n
n+)
an uCn-)

Compute the co velutio he foll wm

6S4.

&t2-32 2
X}(2
X2lz): I + 2 3 4
Example
Show that
2'log (itaz)]. Roc 12l> lal
an
u Cn)

XC2)- loq C1+a~') Roc lzl>la)


dxcz)
- - a22
dz |+az

-2d Xc2) az'

Now

-2dx
dX(2)n c al -a)ucn ).

C)-l an
n
n+)
uCnI)

Compute the Com vewutio y the


fo}lum
Sigoaly

X1 C2) &42372
X(D, X(2) X2(2)

(2,.3, o, o,0, -2, -3)


Correlati'on two sepueneg

then

Deterine the auto correl atlon the Si&oay

xcH)= a'ucn

Solution

Koc l l > 4
-az!
XC7)- J Roc Izl<a.
Rxxc 2). |-az
)-a~' Jal <i2)2 Ja).
Apply inad ale theren to pet

for the Sifnay


n e

20 olkeuie

X(2).

2 )

Determine 2 transform ucn)

X(2)
.

-5-)

Now
dz
n0 2

22

r2.|2sdz
no

2
S 2C2
dz

F2 Jog 2
XC= z log 2 Roc lzl>|

You might also like