0% found this document useful (0 votes)
9 views15 pages

Calculo Vectorial 8-14

The document contains a series of mathematical problems and equations related to geometry and algebra, including calculations for volumes, areas, and points in space. It presents various mathematical expressions and operations involving vectors and coordinates. The problems appear to be part of a larger exercise set aimed at practicing mathematical concepts.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
9 views15 pages

Calculo Vectorial 8-14

The document contains a series of mathematical problems and equations related to geometry and algebra, including calculations for volumes, areas, and points in space. It presents various mathematical expressions and operations involving vectors and coordinates. The problems appear to be part of a larger exercise set aimed at practicing mathematical concepts.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

Problemas 8: I

(vxV) .
w =

19 i k &R (rxv) 1 24
=0
0 8
=

+ w
+
=
- -

228
a

20 E Ik = +

0 +

3k (2 +

0g 3k) (+
.
-

i +

2 -

k) =

I 1 I
(1)(-1) (0)(2) (3)( 1) &
-

=
-
+ +
-

2 1
-

(v w . . =

19 I k -
Pe +

0y
+

04 12 -

2 = 0
⑧ 20
0 0 2

20 I K =

3 +
4 +

5k (32 +

1y 3k) (2 y k)
-
. -
+
=

2 7 -2 3(1) +

(2)( 1) -
+

(5)(1) =

1 2 -

I 3 -

2 +

5 =
0

(wxv) .

v =

ac
19 I 6 k -
02 +

14 +

0 19 24 .
=

2 o0
a
M
j (2 34) (22 y 24)
20 K
l = +

08 34 +
+

0y +
:
+
-
=

I 1 I
2(1) (0)(1) 3) 2) 1
-

+
+
-
= -

2 I
-

2
Volumen del paralepipedo
(vxw) &r
*
19 U .
=

(vxw) =

20 X
v .
(vxw) =

v =
(vxw) =

13

17 Pa) 1 1 , ,
1) ,
Pa(1 ,
2
,
17 ,
Ps(1 ,
1
,
2) I

P2D =
(1 1) - +

(2 1) 2
-
+

(1 112
- =

1
P2
8

PP ,
=

/(1)1-1)
(2 1)2 + - =
1 -j Pe
. ⑳

Pi
~

x
a =

0 1 0 , ,
E = 0 0 1
, ,

B
Area triangulo a
x I
=

↑8 P (0 , ,
0 ,
01 ,
P2CO ,
1 ,
2) ,
P3(2 ,
2 , 0)

P2D ,
- a =
0 1
, ,
2) P3D ,
-
5 =

2 2 0
, ,

X
X
Area triangulo
ax5
3
G
=
=

·
P3

5 * k 4 6
a 4y 2k SX
= =
-

x
+ =

p
-

Pa
I 8
0 ⑧
,

zh
59a = +

y +
04b =
-

2 +

4y +

04c =

2 +

2y
+

2k

Area paralepipedo =

a .
(b xc)

A
paralepipedo 110 1
1
. =

140
-

11 =

8 +

0 +

0 -

0 0 - +

2
=

10

22222
Problemas 9:

1(1 ,
6, -7) v
=

(3 = , ) ,
2(1 ,
8 ,
-2) T = -

72 ,
-

By
X =

1 -
7x
X =

P +
2 y
=

8 -
8x
(x y , ,
z) =

(1 ,
6 ,
-

7) +

<(3 = , ) ,
z = -

2x

x =

1 +

3x

y =
6 +

IC
z 7
E
=
-
-

9 (1 2 1) ,
,
(3 5 , 2) ,
,
1 2 1
, ,
+

t(3 ,
5 ,
-

2 -
1
,
2
,
1)
1 2 1
, ,
+

t(2 3 , ,
-

3)
1 2, 1 +

2t 3t -3t =

1 +

2t
,
2 +

3t 1 -

3t
, , , ,

6( -

2
,
b ,
(0 4 5) ( 2 , 2, -2)
3) -

, ,
=
-

(x y , ,
z) (0 2 5) t(- 2 2 2)
=

, ,
+

, ,
-

0 9 . ,
5 +
2t , 2t -2t ,

=-2t , 1 +
2t 5-2t
,

z (I ,
-

,
1) ,
(2 ,, -
I - ,
,
1 +

t) -2 ,, -

= ,
-

I ,
1)
I ,
-

I ,
1 +

f -

2 -

I, +

t ,
-

2 -z
, E -

,
1 + -

2
,
3 ,
-E
, -

,
1 + -

2t , 3t ,
Et
I -

2t ,
-

t +

3t
,
1 -

et

& (10 ,
2, -10) +

t 5 -3 5
,
,

10 2 -10 +

t) 5, -3 , 5- 10 2,
,
-10
, .

10
,
2 -10 ,
+

t(3 ,
-

3 ,
-

5)
10 2 -10 , ,
+

(5t ,
-5t , -

5t)
=(10 +

5t
,
2 -

5t , -

10 -

5t)
33L1X =

f +
t
, y
=
5 +
t
,
z =
-

1 + 2t

(2 x = b +
25
, y
=
11 +

45 ,
z =
-
3 +

4 +

b =
6 +

25 -
(t -

25 =

2)( 1) =

6 +

25 =
-

5 +

t =

11 +

15 -

t -

1s =

b
-

1 +

2t =
-

3 +

5
-

2t -

5 = -

25
=

05 =

E =
-

t -

2 2) -
=
2 ((f +
(- 2)) (5 ( 2))
+ -

(-1 2) 2))
+

, ,

t +

1 =
2 =
(2 3 -5) , ,

t =

2 (2(6 +

2( 2)) (11 ( 2)) , (


,
+ -

-
3 +
( -

2))
=(2 3 , ,
-

5)

3P (1 :

x =

1 +
t , y
=
2 t -

,
z
=

3t
(2 x 2 3 1 5 z 65
y
:
= -
+ =

, ,

1 +

t =
2 -

5 (t +

5
=

1)6 3 +

5 =

1
1 +

3 =

2 -

5 3t -

65 =
0 S
=

1 -

3 =
2 -

1 6t +

65 =

b S = -

2
S = -

2 3t -

65 =

3t =

t 3 =

S = -

xx

* I

X
Problemas 10: * *

1 P (5 =
1 3) r
=

22 -

3y
+

fi *
, , ,

- X
r . =
2(x) +

( -

3)(y) +

1(z) =

ez Az
x
3y y
2x z
2x 3y *
= =
- +
+
= -

2 3

P =
ax +

by +

cz
+

d =
0
2x -

3y +
1z +

d = 0 d =
-

2(5) +

3)1) f(3)
-
=
-

19

P =

3x -

3y
+

&z -

19 =

2 P =
(1 , 2, 5) ,
5 = 1 ,
-

2 ,
0

&
. F =
ex 2y - +
0z =

L =

ex -

2y +
d 0d =

=
-

f(1) 2(2) 0 ex
+
=
= -

2y =
0

3 P =

(6 ,
10 , -

7) ;
=
-

3 , 0, 3

5 P . = ( 5)x
- +

(0)y +

3(2) 0 =
D -

=
3x +

3z +

d =

d =

5(b) -

3) 1) - =

51 P -

=
5x +

3z +

5) =
0

↑ D (0 0 0)
=

, , ,
=

6, -

1 ,
3

[. 6x 3z 0 P 6x 3z d 0
y y
=
= +
- +
+
-
= =

d =

6(0) (0) 3(0) +


-
=

0 D =
6x -

y
+

3z =

0
7 P,
=

(3 ,
5 ,
2) P2 ,
=

(2 ,
3, 1) ,
P3 =) -

1, -

1 , 1)

AB =
-1 -2 ,
,
-

1 BC =

3 ,
-

1 3 ,

Y AB =
x 1 =
ick =

10 , 6 ,
-

2.
-1 -
2 -

1
-

3 -

1 -

Y .
= 0 4 .
AP A =
3, 5 , 2 P =
x,
y ,
z

10 , 6 -2 x 3 5, z 2 0
y
=
- - -
-

,
,

P =
-

10x +

30 +

by -

18 -

2z +

4 =
0
16 0
=
10x +

by -

2z +
=

8 P CO
. ,
1 ,
0) , PeC0 ,
1
,
1) Ps(1 ,
-3 , 1)

EB =

0 0, 1
,
BC =

1,2 ,
-2

* =

AB x Bi =

=
2, 1 ,
0

- F .
=
0 Y = AP A =

0, 1 0
,
P (x, =

y z) ,

Ep =

x,
y
-

1 ,
z
-

2, 10 ·

x,
y , -1 , z =
0

2x 1 +

02 0 2x 1 =

0
y y
- = -
-
+
+ -
275x -1y -9z 8
=

1
x
1y 3z
+
+
=

* =

⑬ +
c(0+ -

Pi) =
P +
c
=
=
0

N1 =
5 ,
-

1 ,
-

9 N2 = 1, 1
,
3

5 =
N , x N = Ik =

22 -

22y +
20k
-L
12
I

- =
1 -1, ,
1

Six =
0 -

4y
-

9z =

8 4y +

3) 2) -
=
1
Py +

3z =
1 & y =
10
12 5/2
y
=

bz
-
=

z = -
2

x +

&(2) +

3) 2) 1 -

x =
& +

6 -

10

P(0 , , -2) x 1 =
=

10 +

1,= -
c
,
-
2 +

c)
x 2 512 x z 2 2
y
-
=
-
+
=
=

, ,

28L1 =

x +

2y
-

z =
2 Ni =
1 ,
2 ,
-

1
(2 3x 2z 1 N2 3, 1 2
y
+ -
- = =

,
=

I ~k 34 7k
6
5y
=

=
-
-

1 2 -

3 -1 2

x =

0 2 y -

z
=

2
y -

z =

2 32 = 4
2z 1
-zy 1z 1 z 4/3
=
=

y
- + + =

y
+
2(43) =

1
y =
8/3 -

1y 5/3
=

P (0 513 , ,
%3) L1 =

10 +

3x ,
%3 -32 ,
415 -

7x)

X 3x 313 5 z 413 7x
y
= -
-
=
=

-
31 2x -

3y +
27 =
-

7 ; x =
1 +

2t , y
=
2 -

t ,
z =
-

3t

( =
(1 +

27 ,
2 -

t ,
-

3t) Ni =
2 ,3 , 2

2(1 2t) +
-

3(2 t) - +

273t) =
-

2 +

It - 6 +

3t -

6t =

-
7

t =

p(1 +

2( 3) 2 ( ,
-

3) ,
-

3( 3)) =
( 5 -

, 5, 9)

32x y
+

ez 12 x 3 2t 1 6t z 2 1kt
y
+

;
+ -
= - = =
=

, ,

(3 2t) -
+

(1 6t) +
+
1(2 -

Yzt) =
12

12 +

2t =
12 2t 0 =

t 0
=

p (3 1 ,
=

,
2)
X
Problemas 11: -

1x =
2t +

1 , y
=

t2 +
t
X
- -

eI
t -

3 3 X
-

in
-

y x
=

t 1 , zt 1j 1 t 5
y
-
- -

-
-

#123

I
& 5
-

eq

= te 5

-
en I

· y ti : htt I
2
e -
-

s
-

I in I I 'X
2 &
-

j
-

-
I

- -
-

11 11 I 1 1, 1 1

-
-

-
Problemas 12: E
1 x =
3 -

t2 , y
=
t +
5t , t =

1
X
2( 1) 3
Y
y(t) =
-
+

x (t) 3 (1)"-271) 5

2 x 0(t 2t t 1 t 2
y
- +

i
=
= =

y((t) =
b(2)2 - 1
=
23 =
-

23
x (t) -
(2)2
(-f)

3 X +2 1 t1 t 3
y
+ =
=

;
=

y((t) =
1(3)3 =e(33)(2)(2) =

183
x (t) I

2((3) +

1)"

22 t
=
2

15 x +3 t t
2

y
= -

,
t -

=
2 t = -

2
Para (3t-1) FO * t
=

1 A

y(t) =
2t t = -

x (t) 3t -
1 Pl ,) Pl ,)
Recta horizontal t -
=
Vertical t = -
-

horizontal P(0 0)
,
t 0 =

y((t) 2t 0 t 0
=
=
=

Recta vertical

X(t) =
3t2 -

1 =
03t2 =
1 +2 =

!t =

11
11 3
t
=I
=
=

X = t3 -
t x =
0 t(t -1) t =

0 ,
t =
-1 ,
t =
1
2
0
y
t

y
=
=
z
16 x 1 t 2t
y
-

= + =

- 2

I(*
-

2 = t 13

= 0
X = +

1 =

= 1+ =
-
8t =
-

t t(t 2) + 0 t= 2
y 2t 0 0
- =
=
- =
=

Y(t)
x (t)
=

()
2t -2 =16t
3t
-

2
2
Para todo 3t
t =
0
O
x'
=3
X =

0 t =
-

2(0 8) y
/
Horizontal (8 -1)
,

,
Vertical (1 0)
0 t 2(1 0) (2 0)
,

t 0
y
= =

,
, , ,

Horizontal
y((t) =
2t 22t 2 -
- =
02t 2 t =
=

1p(8 ,
-

1)
Vertical
04 (1 0)
x(t)
zt 0 t = =
= =

t = 3 -
(1 %8 ,
3)

17 X t 1 t3 3t2
y
= - -
=

Ordenada al origen
x =
t -

1 =
0 + =
1(0 2) ,
-

t 3 t2 0 +(t 3) t 0; t 3( 1
0) (2 0)
y
-
- -
=
=

=
=
, , ,

y((t) =
3t -
6t = 3t2 -
6t
x (t] I
-

12t =
3
X

Horizontal
y((t) 3t2 =
-

6t 0 =
t(3t -6) 0 =
t 0 =

+ 2
=

a al
( -
1 ,
0) ,
(1 ,
-

2) Horizont ,
t
Vertical =
0

aft)
5

a
x (t) 1 = -

- IF0 No hay vertical


Problemas 13: X

*
1 r(t) =
(2 cost) +

(2 sent) +
5t , 02tπ

r(t) =-2 sent 5


+2
cost
+

r(t) = ( 2sent)"
-

+ (2cost)2 +

(5)
*

vi(t) =

-(te
1c0st 3 +
+
=

((sent +cost) +5 =

s(t) =

j 3dt = 3t

s(t)
fdt 3i
=

2 vit) =
(6 sen2t) +

(6cos2t) +

(5t) ,
Oct =
π

vi(t) =

(12 cos 2t) -

(12 sen 2t) +

517

v(t) = (12cos 2 ti) +

(-12 sen 2t)2 +

(5K) 2

r(t) =

144c0s"2t +141se 2t +

25
=

164

viCt) =
13
/Bdt=13π
3r(t) =
ti +

(2/3) + 4 , 0 t 18

vi(t) =
e +

4(x)t"y =

e +
t

(i) (t
(t) y) 1 t (1 t)"
=
+
+
= +
=

181 +

tdt =
2(1 +

t)/ = 18 =

)) = 18
3

& r(t) (2 =
+

t)e -
(t +

1) y +

tR ,
0 <t <
3

vi(t) 2 = -

y
+
4

r(t) =
/(1)2
(1)2 +
=

L =

13 3dt =

3 .

3 =

33
11 r(t) =
(Pcost) +
(Psenty +3t4 ,
02t /1
viCt) =
-

Psenti +costy +3
v(t) =
(-bsent) +

(Icosty)2+ (3K)
r(t) =
-(+
16c0st 9 +
=

25 =
5

5(t) =

(5dt =

5t

s() =

12 v(t) =

(Cost+ Esent) +
(sent-tcosty : /2 = t - π

~(t) =

(-sent + Sent + Ecost) +

(cost-cost + Esent) j
viCt) = t cost +

Esent y

~(t) =

(Acoste) + (tsent) = +
tisent =

serty= t

s(t) =J dt
=
↑22t2π sit) =

(Y -
) =

I I = -
Problemas 14:
+
5 Movimiento en la Circunferencia x
y2 =

r(t) =

(sent) +
(Cost)Y :
t -&
=
"
y T2
~(t) =
cost
-senty
~() cos() -sen()
=

= -
y

· *
X

'

x
*
X
X

You might also like