An algebraic analysis approach to
mathematical system theory
                  NETCA Workshop:
Verification and Theorem Proving for Continuous Systems
                    Oxford, 26/08/05
                     Alban Quadrat
                  INRIA Sophia Antipolis,
                       CAFE Project,
               2004 route des lucioles, BP 93,
               06902 Sophia Antipolis cedex,
                          France.
            Alban.Quadrat@sophia.inria.fr
   www-sop.inria.fr/cafe/Alban.Quadrat/index.html
Synthesis problems
                Transfer functions
• Finite-dimensional system:
                                                1
ẋ(t) = x(t)+u(t), x(0) = 0 ⇒ x̂(s) =                û(s).
                                             (s − 1)
• Differential time-delay system:
       
       
       
        ẋ(t) = x(t) + u(t), x(0) = 0,
       
       
                 (
                  0,         0 ≤ t ≤ 1,
       
        y(t)  =
       
                  x(t − 1), t ≥ 1,
                         e−s
             ⇒ ŷ(s) =         û(s).
                       (s − 1)
• System of partial differential equations:
         2
         ∂ z (x, t) − ∂ 2 z (x, t) = 0,
          ∂t2          ∂x2
        
        
        
        
        
        
        
          ∂z (0, t) = 0, ∂z (1, t) = u(t),
        
         ∂x                ∂x
        
        
        
         y(t) = ∂z (1, t),
        
        
                   ∂t
                     (1 + e−2 s)
           ⇒ ŷ(s) =       −2 s
                                  û(s).
                     (1 − e     )
• The poles of the transfer functions (1, 1, k π i, k ∈ Z)
belong to C+ = {s ∈ C | Re(s) ≥ 0} ⇒ unstability.
   A module approach of synthesis problems
1. An integral domain A of SISO stable systems is
chosen (e.g., A = RH∞, H∞(C+), Â. . . ).
2. The plant is defined by a transfer matrix:
P ∈ K q×r , K = Q(A) = {n/d | 0 6= d, n ∈ A} .
3. We write P as:
                                        − N ) ∈ Aq×p,
                            (
                                (D
P = D−1 N = Ñ D̃−1,
                                (Ñ T       D̃T )T ∈ Ap×r .
(e.g., D = d Iq , N = d P , D̃ = d Ir , Ñ = d P ).
                                           !
                                       y
                 (D     − N)                    = 0,
               
               
                                        u
               
               
               
3. y = P u ⇔            !               !              (?)
               
                   y             Ñ
               
                           =               z.
                    u             D̃
               
               
4. Synthesis problems are reformulated in terms
of the properties of (?).
• Linear algebra over rings is module theory
 ⇒    a module approach to synthesis problems.
      Stable algebras A of SISO systems
1. RH∞ = n(s)
             n
         d(s)
              ∈ R(s) | deg n(s) ≤ deg d(s),
                       d(s) = 0 ⇒ Re(s) < 0 }
                  
                1
      1 =
h1 = s−1      s+1  ,    1 , s−1 ∈ RH
                                       ∞
               s−1       s+1 s+1
               s+1
            ⇒ h1 ∈ Q(RH∞) = R(s).
2. A = {f (t) + +∞
                 i=0 ai δt−ti | f ∈ L1 (R+ ),
               P
        (ai)i≥0 ∈ l1(Z+), 0 = t0 ≤ t1 ≤ t2...}
and  = {ĝ | g ∈ A} the Wiener algebras.
               e−s
                  
       −s                e−s , s−1 ∈ Â ⇒ h ∈ Q(Â).
     e
h2 = s−1 =    s+1  ,                     2
               s−1       s+1 s+1
               s+1
3. C+ = {s ∈ C | Re s > 0}. The Hardy algebra
H∞(C+) = { holomorphic functions f in C+ |
           k f k∞= sups∈C+ | f (s) |< +∞}.
     (1+e−2 s )
h3 = (1−e−2 s) , 1 + e−2 s, 1 − e−2 s ∈ H∞(C+)
             ⇒ h3 ∈ Q(H∞(C+)).
                        Example
• We consider the transfer matrix:
                            e−s
                                
                         s−1 
                     P =        .
                            e−s
                          (s−1)2
• Let us consider A = H∞(C+) and K = Q(A).
• We have:
                         
          −s               (s−1)       e−s u = 0,
 
  y1 =
        e    u,
                         
                                 y
                          (s+1) 1
                                   −
        (s−1)                         (s+1)
           −s           ⇒      2
  y2 = e
 
               u         
                           s−1           e−s u = 0,
                                   y2 − (s+1)
        (s−1)2                                2
                          s+1
                                          !
                                      y
                        ⇒R                    = 0,
                                      u
                                              e−s
                                                    
            s−1              0            − s+1
           s+1
 with R =                                            ∈ A2×3.
                                 2                  
                                              e−s
                       
                 0         s−1        − (s+1)2
                           s+1
                 |      {z        }       | {z }
                        D                 −N
• We have:
                 P = D−1 N ∈ K 2.
• Properties of P can be studied by means of the
matrix R with entries in the Banach algebra A.
         Doubly coprime factorizations
 P = D −1 N = Ñ D̃ −1 ∈ K q×r ,
  R = (D − N ) ∈ Aq×p,
         T   T T       p×r
  R̃ = (Ñ       D̃ ) ∈ A            .
• Definition: P admits a doubly coprime factor-
ization if there exist
       0 = (D 0        0 ) ∈ Aq×p,
   
   
   
    R            − N
               T     T
    0
     R̃ = (Ñ 0    D̃0 )T ∈ Ap×r ,
   
                                                such that:
   
    S  = (X T Y T )T ∈ Ap×q ,
   
   
    S̃ = (−Ỹ X̃) ∈ Ar×p,
   
        R0
             !                                  !
                                       Iq 0
                     S R̃0       =                  = Ip.
        S̃                               0 Ir
• Theorem: Let us define the A-modules:
                                                   M = A1×p/(A1×q R),               N =A1×p / A1×r   T
                                                R̃ .
Then, we have the following equivalences:
1. P admits a doubly coprime factorization.
2. The A-modules M/t(M ) and N/t(N ) are free
of rank respectively q and r.
3. The A-modules A1×p RT and A1×p R̃ are free
of rank respectively q and r.
                   Internal stabilizability
• Let A be an integral domain of SISO stable plants.
• K = {n/d | 0 6= d, n ∈ A} field of fractions of A.
• P ∈ K q×r a plant.
• C ∈ K r×q a controller.
• The closed-loop system is defined by:
                  u1   +    e1                            y1
                                        C
                       +
                       y2                      e2 +       u2
                                        P
                                                      +
u1 , u2 : external inputs, e1 , e2 : internal inputs, y1 , y2 : outputs.
         !                       !          ! (
    u1              Iq −P                e1          y1 = e2 − u2,
            =                                   ,
    u2             −C Ir                 e2          y2 = e1 − u1.
• Definition: C internally stabilizes P if the trans-
                            !−1
                  Ir −P
fer matrix T =                   satisfies:
                  −C Ir
            (Iq − P C)−1             (I − Pq C)−1 P
                                                              T =        C(Iq − P C)−1         Ir + C (Iq − P C)−1 P
                                                                   ∈ A(q+r)×(q+r).
                                     
                                      L2 − L2 stability if A = H∞(C+),
• Internal stability ⇔
                                      L − L stability if A = Â.
                                        ∞   ∞
              Internal stabilizability
       −1 N = Ñ D̃ −1 ∈ K q×r ,
 P =D
  R = (D − N ) ∈ Aq×p,
        T   T T       r×p
  R̃ = (Ñ     D̃ ) ∈ A        .
• Theorem: Let us define the A-modules:
                                             M = A1×p/(A1×q R),         N =A1×p / A1×r   T
                                          R̃ .
Then, we have the following equivalences:
1. P is internally stabilizable.
2. The A-modules M/t(M ) and N/t(N ) are pro-
jective of rank respectively q and r.
3. The A-modules A1×p RT and A1×p R̃ are pro-
jective of rank respectively q and r.
• Corollary: P = D−1 N is internally stabilizable
iff ∃ S = (X T Y T )T ∈ K p×q such that:
                           !
             X D −X N
1. S R =                       ∈ Ap×p,
             Y D −Y N
2. R S = D X − N Y = Iq .
The controller C = Y X −1 internally stabilizes P .
                          Example
• We consider the transfer matrix (A = H∞(C+)):
              e−s
                  
           (s−1)    2
       P =    −s  ∈K ,                 K = Q(A).
              e
            (s−1)2
• We have P = D−1 N where R is defined by:
                                       e−s
                                              
        s−1               0          − s+1
       s+1                                       2×3 .
    R=                                        ∈A
                               2              
                                       e−s                     
                0        s−1        − (s+1)2
                         s+1
• The matrix S = (X T           Y T )T ∈ K 3×2 defined by
                     2                               
                                               (s−1)               
                  s−1
              b s+1 + s−1     2      2 (b − 1) (s+1)
                                                      
                 (s−1)      1          2 b + s+1      
   S=                 2 − s−1
               b (s+1)                                 ,
                                      s+1     s−1     
                      (s−1)
                                                      
                  −a (s+1)                   2a
                                          − s+1
                           2
   4 e (5 s − 3)        (s + 1)3 − 4 (5 s − 3) e−(s−1)
a=               ,   b=                                ∈ A,
      (s + 1)                 (s + 1) (s − 1)2
satisfies S R ∈ A3×3 and R S = D X −N Y = I2.
⇒ P is internally stabilized by C = Y X −1, i.e.:
            −4 (5 s − 3) e (s − 1)2
C=                                           (1               2).
                    3
   (s + 1) ((s + 1) − 4 (5 s − 3) e −(s−1) )