Explanation 4
Explanation 4
?kks’k.kk % eSau s uhps fn;s x;s funsZ” k vPNh rjg i<+d j le> fy, gSaA
Declaration: I have read and understand the directions given below..
iqfLrdk esa i`’ Bksa dh la[ ;k iqf Lrdk esa iz” uksa dh la[ ;k le; ?ka V s iw. kkZa d
28 100 2 200
Number of Pages in Booklet Number of Questions in Booklet Time Hours Total Marks
¼d`i;k dkys cky ikWb.V isu dk gh iz;ksx djs½a (Please Use Black Ball Point Pen Only)
1 - mRrj nsus dk rjhdk% 1. Method of Marking Answer
mRrj nsus ds fy;s vks-,e-vkj- mRrj iqfLrdk esa lEcfU/kr iz”u To give an answer, please darken one bubble out of the
ds cktw esas fn;s x;s pkj xksyksa esa ls dsoy ,d xksys dks iwjk given four, in the OMR Answer Sheet against that ques-
dkyk dhft,A tion.
Q.4- ,d bathfu;fjax d‚yst esa eSdsfudy VªsM ls lHkh bathfu;fjax Q.4. In an engineering college the average salary of all engi-
Lukrdksa dk vkSlr osru 2-45 yk[k #i;s çfr o"kZ gS vkSj neering graduates from mechanical trade is Rs.2.45 lacs per
bysDVª‚fuDl VªsM ls bathfu;fjax Lukrdksa dk vkSlr osru 3-56 annum and that of the engineering graduates from Elec-
yk[k #i;s çfr o"kZ gSA lHkh eSdsfudy vkSj bysDVª‚fuDl tronics trade is Rs.3.56 lacs per annum. The average salary
Lukrdksa dk vkSlr osru 3-12 yk[k #i;s çfr o"kZ gSA bl of all Mechanical and Electronics graduates is Rs.3.12 lacs
laLFkku ls mÙkh.kZ gksus okys bysDVª‚fuDl Lukrdksa dh U;wure per annum. Find the least number of Electronics graduates
la[;k Kkr dhft,A passing out from this institute.
(a) 43 (a) 43
(b) 59 (b) 59
(c) 67 (c) 67
(d) fuèkkZfjr ugha fd;k tk ldrk (d) Cannot be determined
Ans: c
Ans: c
Sol: Let the number of mechanical Engineering graduates be M
Sol: ekuk fd eSdfs udy bathfu;fjax Lukrdksa dh la[;k M gS vkSj
and the number of Electronics Engineering graduates be E.
bysDVª‚fuDl bathfu;fjax Lukrdksa dh la[;k E gSA
Then, 2.45M + 3.56E = 3.12(M + E)
fQj] 2.45M + 3.56E = 3.12(M + E)
2.45M + 3.56E = 3.12M + 3.12E
2.45M + 3.56E = 3.12M + 3.12E
0.44E = 0.67M
0.44E = 0.67M
M 0.44 44
M 0.44 44
E 0.67 67
E 0.67 67
Since the ratio 44 : 67 is in the simplest from, so least
pw¡fd vuqikr 44 % 67 vHkkT; gS] blfy, bysDVª‚fuDl
number of Electronics graduates = 67.
Lukrdksa dh U;wure la[;k ¾ 67 gSA
0.032 0.212 0.0652 0.032 0.212 0.0652
Q.5. The value of is
Q.5-
0.0032 0.0212 0.00652 dk eku gS 0.0032 0.0212 0.00652
(a) 0.1
(a) 0-1
(b) 10
(b) 10
(c) 102
(c) 102
(d) 103
(d) 103
Ans: b
Ans: b
0.032 0.212 0.0652
0.032 0.212 0.0652 2 2 2
2 2 2 Sol: Given exp. = 0.03 0.21 0.065
Sol: fn;k x;k gS ¾ 0.03 0.21 0.065
10 10 10
10 10 10
2 2 2
100[(0.03) 2 (0.21) 2 (0.065) 2 ]
100[(0.03) (0.21) (0.065) ]
0.032 0.212 (0.065) 2 = 100 = 10
0.032 0.212 (0.065) 2 = 100 = 10
12
12 Q.6. is equal to
Q.6- ds cjkcj gS 3 5 2 2
3 5 2 2
(a) 1 5 2 10
(a) 1 5 2 10
(b) 1 5 2 10
(b) 1 5 2 10
(c) 1 5 2 10
(c) 1 5 2 10
(d) 1 5 2 10
(d) 1 5 2 10
12 3 ( 5 2 2) 12 3 ( 5 2 2)
Sol: fn;k x;k gS& Sol: Given exp.
3 ( 5 2 2) 3 ( 5 2 2) 3 ( 5 2 2) 3 ( 5 2 2)
12(3 5 2 2 ) 3( 5 2 2 3) 12(3 5 2 2 ) 3( 5 2 2 3)
=
= (4 4 10 ) 10 1
(4 4 10 ) 10 1
3( 5 2 2 3) 10 1 3( 5 2 2 3) 10 1
=
= 10 1 10 1
10 1 10 1
3 50 3 5 6 20 6 2 9 10 9 3 50 3 5 6 20 6 2 9 10 9
= =
10 1 10 1
15 2 3 5 12 5 6 2 9 10 9 15 2 3 5 12 5 6 2 9 10 9
= =
9 9
9 2 9 5 9 10 9 9 2 9 5 9 10 9
= =
9 9
= 1 2 5 10 = 1 2 5 10
64 25
Q.7- la[;k 2564 × 6425 ,d çk—r la[;k n dk oxZ gSA n ds vadksa Q.7. The number 25 × 64 is square of a natural number n. The
dk ;ksx gS& sum of the digits of n is :
(a) 7 (a) 7
(b) 14 (b) 14
(c) 21 (c) 21
(d) 28 (d) 28
Ans: b
Ans: b
Sol: n 2 (25) 64 (64) 25 (52 ) 64 (2 6 ) 25
Sol: n 2 (25) 64 (64) 25 (52 ) 64 (2 6 ) 25
= 5128 2150 5128 2128 2 22
= 5128 2150 5128 2128 2 22
n = 5 64 2 64 211 (5 2) 64 211
n = 5 64 2 64 211 (5 2) 64 211
= 10 64 2048
= 10 64 2048
Sum of digits of n = 2 + 0 + 4 + 8 = 14
n ds vadksa dk ;ksx ¾ 2 $ 0 $ 4 $ 8 ¾ 14
Q.8. The average of 25 results is 18. The average of first 12 of
Q.8- 25 ifj.kkeksa dk vkSlr 18 gSA muesa ls igys 12 dk vkSlr 14
those is 14 and the average of last 12 is 17. What is the 13th
gS vkSj vafre 12 dk vkSlr 17 gSA 13oka ifj.kke D;k gksxk\
result?
(a) 74
(a) 74
(a) 75
(b) 75
(a) 69
(c) 69
(a) 78
(d) 78
Ans: d
Ans: d
Sol: çFke 12 ds ifj.kkeksa dk ;ksx ¾ 12 × 14
Sol: Sum of 1st 12 results = 12 × 14
fiNys 12 ifj.kkeksa dk ;ksx ¾ 12 × 17 Sum of last 12 results = 12 × 17
13ok¡ ifj.kke ¾ x ¼ekuk½ 13th result = x (let)
vc] Now,
12 × 14 + 12 × 17 + x = 25 × 18
12 × 14 + 12 × 17 + x = 25 × 18
;k x = 78 or x = 78
DELHI IAS ACADMEY T-4 Page No.: 5
Q.9- ;fn 3x 7 = x 2 P 7 x 5 , gS] rks P dk eku D;k gS\ Q.9. If 3x 7 = x 2 P 7 x 5 , what is the value of P?
1 1
(a) (a)
2 2
1 1
(b) 8 (b) 8
4 4
1 1
(c) 8 (c) 8
2 2
(d) fuèkkZfjr ugha fd;k tk ldrk (d) Cannot be determined
Ans: b Ans: b
Sol: 3 x 7 7 x 5 7 x 3x 2 4 x 2 Sol: 3 x 7 7 x 5 7 x 3x 2 4 x 2
1 1
x . x .
2 2
3 1 3 1
vc] 3x 7 x 2 P 7 P Now, 3x 7 x 2 P 7 P
2 4 2 4
17 1 33 1 17 1 33 1
P = =8 . P = =8 .
2 4 4 4 2 4 4 4
Q.10- ,d flad esa Bhd 12 yhVj ikuh gksrk gSA ;fn flad ls ikuh Q.10. A sink contains exactly 12 litres of water. If water is drained
rc rd fudkyk tkrk gS tc rd fd mlesa fudkys x, ikuh from the sink until it holds exactly 6 litres of water less than
dh ek=k ls Bhd 6 yhVj de ikuh u jg tk,] rks fdrus yhVj the quantity drained away, then how many litres of water
ikuh cg x;k\ were drained away?
(a) 2 (a) 2
(b) 3 (b) 3
(c) 6 (c) 6
(d) 9 (d) 9
Ans: d
Ans: d
Sol: Let the quantity of water drained away be x litres.
Sol: eku yhft, fd cgk, x, ikuh dh ek=k x yhVj gSA
Then, 12 – x = x – 6 2x = 18 x = 9
fQj] 12 – x = x – 6 2x = 18 x = 9
m 4 r 9 3mr nt
m 4 r 9 3mr nt Q.11. If and , the value of is
Q.11- ;fn rFkk gks] rks dk eku gS n 3 t 14 4nt 7 mr
n 3 t 14 4nt 7 mr
1
1 (a) 5
(a) 5 2
2
11
11 (b)
(b) 14
14
1
1 (c) 1
(c) 1 4
4
11
11 (d)
(d) 14
14 Ans: b
Ans: b
m 4 r 9 mr 4 9 6
Sol: and
m 4 r 9 mr 4 9 6 n 3 t 14 nt 3 14 7
Sol: vkSj
n 3 t 14 nt 3 14 7
mr 6
3 1 3 1
mr 6 3mr nt nt 7
3 1 3 1
3mr nt mr 6
nt 7 4nt 7mr
47 4 7
4nt 7mr mr 6 nt 7
47 4 7
nt 7
1 1 1 1
cm cm cm cm
100 Sol: Required fraction = 100 = 100
Sol: vHkh"V fHkUu ¾ 100 =
1km (1000 100)cm 1km (1000 100)cm
1 1
= =
100 1000 100 100 1000 100
1 1
= =
10000000 10000000
= 0.0000001 = 0.0000001
Q.13- oSKkfud ladsru esa O;ä djus ij la[;k 518]000]000 ds Q.13. The number 518,000,000 when expressed in scientific nota-
cjkcj gksrh gS tion, equals
(a) 51.8 × 1010 (a) 51.8 × 1010
(b) 51.8 × 109 (b) 51.8 × 109
(c) 51.8 × 107 (c) 51.8 × 107
(d) 51.8 × 1011 (d) 51.8 × 1011
Ans: c
Ans: c
Sol: 518,000,000 = 5.18 × 100000000 = 5.18 × 108
Sol: 518,000,000 = 5.18 × 100000000 = 5.18 × 108
= 51.8 × 107
= 51.8 × 107
Q.14. 534.596 + 61.472 – 496.708 = ? + 27.271
Q.14- 534.596 + 61.472 – 496.708 = ? + 27.271
(a) 62.069
(a) 62-069
(b) 72.089
(b) 72-089
(c) 126.631
(c) 126-631
(d) 132.788
(d) 132-788
Ans: b
Ans: b Sol: Let 534.596 + 61.472 – 496.708 = x + 27.271
Sol: eku yhft, 534.596 + 61.472 – 496.708 = x + 27.271 Then,
rc] x = (534.596 + 61.472) – (496.708 +27.271)
x = (534.596 + 61.472) – (496.708 +27.271) = 596.068 – 523.979 = 72.089
= 596.068 – 523.979 = 72.089 Q.15. The traffic lights at three different signal points change
Q.15- rhu vyx&vyx flXuy fcanqvksa ij VªSfQd ykbVsa Øe'k% gj after every 45 seconds, 75 seconds and 90 seconds re-
45 lsdaM] 75 lsdaM vkSj 90 lsdaM ds ckn cny tkrh gSaA ;fn spectively. If all change simultaneously at 7:20 : 15 hours,
lHkh ,d lkFk 7 % 20 % 15 ?kaVs ij cnyrs gSa] rks os iqu% ,d then they will change again simultaneously at :
lkFk dc cnysxh& (a) 7 : 27 : 45 hours
(a) 7 % 27 % 45 ?kaVs (b) 7 : 28 : 00 hours
(b) 7 % 28 % 00 ?kaVs (c) 7 : 27 : 30 hours
(c) 7 % 27 % 30 ?kaVs (d) 7 : 27 : 50 hours
(d) 7 % 27 % 50 ?kaVs
5 45 , 75 , 90 5 45 , 75 , 90
3 9 , 15 , 18 3 9 , 15 , 18
Sol: 3 3 , 5, 6 Sol: 3 3 , 5, 6
1, 5, 2 1, 5, 2
5 × 3 × 3 × 5 × 2 = 450 5 × 3 × 3 × 5 × 2 = 450
45] 75] 90 dk y?kqÙke lekiorZd 450 gS LCM of 45, 75, 90 is 450
VªSfQd ykbVsa 7 feuV 30 lsdaM ds ckn ;kuh 7% 27 % 45 Traffic lights will change simultaneously after 7 min-
?kaVs ij ,d lkFk cny tk,axhA utes 30 seconds i.e. at 7 : 27 : 45 hours
Q.16- rhu ifg;s Øe'k% 40] 24 vkSj 16 çfr feuV pDdj yxk ldrs Q.16. Three wheels can complete 40, 24 and 16 revolutions per
gSaA çR;sd ifg;s ij ,d yky èkCck gksrk gS tks ,d fuf”pr minute respectively. There is a red spot on each wheel that
le; esa tehu dks Nwrk gSA fdrus le; ckn ;s lHkh èkCcs ,d touches the ground at time zero. After how much time, all
lkFk iqu% tehu dks Li'kZ djsaxs\ these spots will simultaneously touch the ground again?
1 1
(a) 7 lsd
a M
a (a) 7 sec
2 2
(b) 18 lsdaM (b) 18 sec
1 1
(c) 7 feuV (c) 7 min
2 2
(d) 18 feuV (d) 18 min
Ans: a
Ans: a
Sol: For one complete revolution, the first second and third
Sol: ,d iw.kZ pDdj yxkus esa] igys nwljs vkSj rhljs ifg;s dks
60 60 60 3 5 15
60 60 60 3 5 15 wheels take , , seconds i.e. , , seconds
Øe'k% , , lsdaM ;kuh , , lsdaM yxrs gSaA 40 24 16 2 2 4
40 24 16 2 2 4
respectively.
lHkh yky èkCcksa dks ,d lkFk iqu% tehu dks Nwus esa yxus Time taken for all red spots to touch the ground again
okyk le;A simultaneously.
3 5 15
, , lsdaM dk y?kqRre lekiorZd ysus ij 3 5 15 L.C.M . of 3,5,15
2 2 4 L.C.M of , , sec = H .C.F . of 2,2,4 sec
2 2 4
3] 5] 1] 5 dk y?kqRre lekiorZd
¾ 2] 2] 4 dk egRre lekiorZd lsdaM =
15 1
sec = 7 Sec.
2 2
15 1 Q.17. A gardener has to plant trees in rows containing equal
¾ lsdaM ¾ 7 lsdaM-
2 2 number of trees. If he plants in rows of 6,8, 10 and 12, then
Q.17- ,d ekyh dks leku la[;k esa isM+ksa okyh iafä;ksa esa isM+ yxkus five tree are left unplanted. But if he plants in rows of 13
gksrs gSaA ;fn og 6]8] 10 vkSj 12 dh iafä;ksa esa ikSèks yxkrk gS] trees each, then no tree is left. What is the number of trees
rks ikap isM+ fcuk yxk, jg tkrs gSAa ysfdu ;fn og 13&13 isMk+ as that the gardener plants?
dh iafä;ksa esa ikSèks yxkrk gS] rks dksbZ Hkh isM+ ugha cprkA ekyh (a) 485
}kjk yxk, x, isM+ksa dh la[;k fdruh gS\ (b) 725
(a) 485 (c) 845
(b) 725 (d) None of these
(c) 845 Ans: c
(d) buesa ls dksbZ ugha Sol: L.C.M of 6, 8, 10, 12 = 120.
Ans: c Required number is of the form 120k + 5.
Sol: 6] 8] 10] 12 dk y?kqRre lekiorZd ¾ 120-
vko';d la[;k 120k $ 5 ds :i esa gSA
3 4 5 21 3 4 5 21
Q.22- 504 dk dk 7 dk 9 dk ¾\ Q.22. of of of of 504= ?
5 24 5 7 9 24
(a) 63 (a) 63
(b) 69 (b) 69
(c) 96 (c) 96
(d) buesa ls dksbZ ugha (d) None of these
Ans: d
Ans: d
3 4 5 21
3 4 5 21 Sol: Given expression = 504 = 84.
Sol: fn;k x;k O;atd ¾ 504 ¾ 84- 5 7 9 24
5 7 9 24
5 6 5 1
5 6 5 1 Q.23. The value of of 1 ÷ 2 3 is
Q.23- dk 1 ÷ 2 3 dk eku gS 7 13 7 4
7 13 7 4
20
20 (a)
(a) 169
169
(b) 1
(b) 1
5
5 (c)
(c) 4
4
119
119 (d) 1
(d) 1 180
180
Ans: c
Ans: c
5 19 19 4 5 19 7 13 5
5 19 19 4 5 19 7 13 5 Sol: Given exp. = = .
Sol: fn;k x;k gS& = . 7 13 7 13 7 13 19 4 4
7 13 7 13 7 13 19 4 4
5 7
7 5 65
6 5 8 11 8 3 13 3
11 8 3 8 3 13 Q.24. The expression 3 of 1 ÷ 2 of equals
Q.24- O;atd 1 dk 3 ÷ dk 2 cjkcj gS& 6 9 9 11 22 5
9 6 5 9 11 22 7 8
8 7
(a) 1
(a) 1
1
1 (b)
(b) 2
2
7
7 (c)
(c) 9
9
5
5 (d)
(d) 12
12 Ans: d
Ans: d
7 8 8 63 3 7 8 8 63 3
= of ÷ of = of ÷ of
8 11 9 22 5 8 11 9 22 5
7 28 3 7 84 7 55 5 7 28 3 7 84 7 55 5
= of = = = = of = = =
11 11 5 11 55 11 84 12 11 11 5 11 55 11 84 12
Q.25- 2a 3 [3a 3 4b 3 {2a 3 (7a 3 )} 5a 3 7b 3 ] dk eku gS Q.25. The value of 2a 3 [3a 3 4b 3 {2a 3 (7a 3 )}
(a) 11a 3 3b 3 5a 3 7b 3 ] is
(b) 7b 3 3a 3 (a) 11a 3 3b 3
(c) 11a 3b
3 3
(b) 7b 3 3a 3
(d) (11a 3 3b 3 ) (c) 11a 3 3b 3
Ans: a (d) (11a 3 3b 3 )
Sol: fn;k x;k gS& Ans: a
= 2a 3 [3a 3 4b 3 {5a 3 } 5a 3 7b 3 ] Sol: Given exp.
T I G E R G X F N
+3 +3 +3 +3 +3
T I G E R
W L J H U +3 +3 +3 +3 +3
Q.27- ;fn 'TIGER' dks '27136' vkSj 'TRAIN' dks '26879' ds :i esa W L J H U
dksfMr fd;k x;k gSA vki 'GREAT' dks dSls dksfMr djsaxs\ Q.27. If ‘TIGER’ is coded as ‘27136’ and ‘TRAIN’ as ‘26879. How
(a) 16283 will you code ‘GREAT’?
(b) 16823 (a) 16283
(c) 16223 (b) 16823
(d) 16382 (c) 16223
Ans: d (d) 16382
Sol: bl ç'u esa T dks 2 ds :i esa n'kkZ;k x;k gS] I dks 7 ds :i Ans: d
esa n'kkZ;k x;k gS] G dks 1 ds :i esa n'kkZ;k x;k gS bR;kfnA Sol: In this question T indicate as 2, I indicates as 7, G indicates
rks] 'GREAT' dk dksM ¾ 16382 as 1 and so on,
So, Code of ‘GREAT’ = 16382
Q.30- ;fn fdlh fuf'pr dksM es]a "ADVENTURE" dks "BFYISZBZN" Q.30. If in a certain code, “ ADVENTURE” is coded as
ds :i esa dksfMr fd;k tkrk gS] rks ml dksM esa "COUNTRY" “BFYISZBZN”, how is “COUNTRY” coded in that code?
dks dSls dksfMr fd;k tk,xk\ (a) E Q W P V T A
(a) E Q WPVTA (b) D Q X R Y X F
(b) DQ XRYXF (c) B N T M S Q X
(c) BN TMSQX (d) D P V O U S Z
Ans: b
(d) DPVOUSZ
Ans: b A D V E N T U R E
+1 +2 +3 +4 +5 +6 +7 +8 +9
A D V E N T U R E Sol:
+1 +2 +3 +4 +5 +6 +7 +8 +9 B F Y I S Z B Z N
Sol:
B F Y I S Z B Z N C O U N T R Y
+1 +2 +3 +4 +5 +6 +7
C O U N T R Y
+1 +2 +3 +4 +5 +6 +7 D Q X R Y X F
D Q X R Y X F
mijksä rkfydk ls ge ns[k ldrs gSa fd gjh'k igyh eafty From the above table we can see Harish Lives on the first
ij jgrk gSA floor.
Q.34- fuEufyf[kr esa ls dkSu lkroha eafty ij jgrk gS\ Q.34. Who among the following lives on the seventh floor?
(a) ,êh (a) Etti
(b) i`Foh (b) Prithvi
(c) xksiky (c) Gopal
(d) pqUuw (d) Chunnu
Ans: c Ans: c
Sol: eaf ty l a[ ; k O; f ä Sol: Floor Number Person
8 vk#"k 8 Aarush
7 xksiky 7 Gopal
6 ,êh 6 Etti
5 i`Foh 5 Prithvi
4 fcUnq 4 Bindu
3 pqUuw 3 Chunnu
2 fnO;k 2 Divya
1 gjh'k 1 Harish
mijksä rkfydk ls ge ns[k ldrs gSa fd xksiky lkroha eafty From the above table we can see Gopal lives on the sev-
ij jgrk gSA enth floor.
Q.35- fuEufyf[kr esa ls dkSu lk dFku lR; gS@gSa\ Q.35. Which of the following statements is/are true?
(a) vk#"k NBh eafty ij jgrk gSA (a) Aarush lives on the sixth floor.
(b) fnO;k lcls Åijh eafty ij jgrh gSA (b) Divya lives on the topmost floor.
(c) i`Foh vkSj pqUuw ds chp nks yksx gSaA (c) There are two people between Prithvi and Chunnu.
(d) pqUuw rhljh eafty ij jgrk gSA (d) Chunnu lives on the third floor.
Ans: d Ans: d
Sol: Sol:
mijksä rkfydk ls ge ns[k ldrs gSa fd pqUuw rhljh eafty ij From the above table we can see Chunnu lives on the third
jgrk gS & ;g ,dek= lR; dFku gSA floor - is the only true statement.
Q.36- uhps ,d ikls dh nks fLFkfr;k¡ fn[kkbZ xbZ gSaA 5 vad okys Qyd Q.36. Two positions of a dice are shown below. Which number
ds foijhr Qyd ij dkSu lk vad fn[kkbZ nsxk\ will appear on the face opposite to the face with the num-
ber 5?
(a) 4
(b) 1 (a) 4 (b) 1
(c) 2 (c) 2 (d) 3
Ans: b
(d) 3
Sol: As the numbers 2, 3, 4 and 5 are adjacent to 6. Hence the
Ans: b
number on the face opposite to 6 is 1.
Sol: pw¡fd la[;k,¡ 2] 3] 4 vkSj 5] 6 ds vklUu gSaA blfy, 6 ds
Q.38. Here two positions of dice are shown. If there are two dots
foijhr Qyd ij la[;k 1 gSA
in the bottom, then how many dots will be on the top?
Q.38- ;gka iklksa dh nks fLFkfr;k¡ fn[kkbZ xbZ gSaA ;fn uhps nks fcanq gSa
rks Åij fdrus fcanq gksaxs\
(a) 2
(a) 2
(b) 3
(b) 3
(a) 1 (a) 1
(b) 2 (b) 2
(c) 3 (c) 3
(d) 4 (d) 4
Ans: c Ans: c
Sol: In these 2 positions one common face with number 3, is in
Sol: bu 2 fLFkfr;ksa esa la[;k 3 okyk ,d mHk;fu"B Qyd ,d gh
same position. 1 is opposite to 6 and 4 is opposite to 2.
fLFkfr esa gSA 1] 6 ds foijhr gS vkSj 4] 2 ds foijhr gSA blfy,
Therefore 5 is opposite to 3.
5] 3 ds foijhr gSA
Q.40. You are given three positions of dice then which face is
Q.40- vkidks iklksa dh rhu fLFkfr;k¡ nh xbZ gSa rks dkSu lk Qyd v{kj
opposite to the face with alphabet B?
B okys Qyd ds foijhr gS\
(a) E
(b) F
(a) E
(c) D
(b) F
(d) A
(c) D
Ans: b
(d) A
Sol: From figures (i) and (ii), we can conclude that the alpha-
Ans: b
bets C, D, A and E lie adjacent to the alphabet F. So, the
Sol: vk—fr;ksa ¼i½ vkSj ¼ii½ ls] ge ;g fu"d"kZ fudky ldrs gSa fd
alphabet B lies opposite F and conversely F lies opposite
v{kj C, D, A vkSj E v{kj F ds vklUu gSaA blfy,] v{kj B] F B.
ds foijhr gS vkSj blds foijhr F, B ds foijhr gSA Q.41. An accurate clock shows 7 o'clock in the morning. Through
Q.41- ,d ?kM+h lqcg 7 cts lVhd le; fn[kkrh gSA tc ?kM+h esa
how may degrees will the hour hand rotate when the clock
nksigj ds 3 cts gksx
a s rks ?kaVs dh lqbZ fdrus fMxzh rd ?kwe pwdh shows 3 o'clock in the afternoon?
gksxh\ (a) 244º
(a) 244º
(b) 250º
(b) 250º
(c) 268º
(c) 268º
(d) 240º
(d) 240º Ans: d
Ans: d Sol: In 1 hour hand moves 30º
Sol: 1 ?kaVs esa lqbZ 30º pyrh gS Angle traced by the hour hand in 8 hours
?kaVs dh lqbZ }kjk 8 ?kaVs esa dks.k dk irk yxk;k x;k
ekWMy vkalj osclkbV ij viyksM fd;k tk,xkA VsLV iqfLrdk % ewY; 30@&
Website : www.delhiias.com
DELHI IAS ACADMEY T-4 Page No.: 25