Solution of Differential Equations of First Order and First Degree
Homogeneous Differential Equations
A first-order ordinary differential equation in the form:
                                       𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0
is a homogeneous type if both functions 𝑀(𝑥, 𝑦)and 𝑁(𝑥, 𝑦)are homogeneous functions of the
same degree 𝑛. A homogeneous differential equation of first order and first degree can be written
in the form
                                            𝑑𝑦     𝑦
                                               = 𝑓( )
                                            𝑑𝑥     𝑥
Working rule for solving homogeneous equations
Let the given equation be homogeneous. Then, by definition, the given equation can be put in the
form
                                       𝑑𝑦      𝑦
                                          = 𝑓 ( ) … … … (1)
                                       𝑑𝑥      𝑥
To solve (1), let 𝑦⁄𝑥 = 𝑣 ⇒ 𝑦 = 𝑣𝑥 … … … (2)
Differentiating (2)w.r.to 𝑥,
                                    𝑑𝑦      𝑑𝑣
                                       =𝑣+𝑥    … … … (3)
                                    𝑑𝑥      𝑑𝑥
Using (2) and (3) in (1), we obtain,
                                               𝑑𝑣
                                         𝑣+𝑥      = 𝑓(𝑣)
                                               𝑑𝑥
                                             𝑑𝑣
                                        ⇒𝑥      = 𝑓(𝑣) − 𝑣
                                             𝑑𝑥
                                            𝑑𝑥      𝑑𝑣
                                        ⇒      =
                                             𝑥   𝑓(𝑣) − 𝑣
       1 Solution of Homogeneous Differential Equations
So the equation is reduced to an equation in which variables are separated. Finally, by integrating
we can easily obtain the solution.
Example 01: Solve
                                      (𝑥 2 + 𝑦 2 )𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0
Solution: We have,
                                       (𝑥 2 + 𝑦 2 )𝑑𝑥 = −2𝑥𝑦𝑑𝑦
                                                                             𝑦2
                             𝑑𝑦    (𝑥 2 + 𝑦 2 ) 𝑑𝑦     𝑥 2 (1 + 𝑥 2 )
                           ⇒    =−             ⇒    =−
                             𝑑𝑥        2𝑥𝑦       𝑑𝑥         2𝑥𝑦
                                            𝑦2                        𝑦 2
                          𝑑𝑦       𝑥 (1 + 𝑥 2 )       𝑑𝑦      {1 + (𝑥 ) }
                     ⇒       =−                   ⇒      =−           𝑦     … … … (1)
                          𝑑𝑥           2𝑦             𝑑𝑥          2. 𝑥
To solve (1), let 𝑦⁄𝑥 = 𝑣 ⇒ 𝑦 = 𝑣𝑥 … … … (2)
Differentiating (2)w.r.to 𝑥,
                                       𝑑𝑦      𝑑𝑣
                                          =𝑣+𝑥    … … … (3)
                                       𝑑𝑥      𝑑𝑥
Using (2) and (3) in (1), we obtain,
                                𝑑𝑣    {1 + (𝑣)2 }    𝑑𝑣    (1 + 𝑣 2 )
                          𝑣+𝑥      =−             ⇒𝑥    =−            −𝑣
                                𝑑𝑥       2. 𝑣        𝑑𝑥       2𝑣
                                𝑑𝑣 −1 − 𝑣 2 − 2𝑣 2    𝑑𝑣 −1 − 3𝑣 2
                           ⇒𝑥      =               ⇒𝑥    =
                                𝑑𝑥      2𝑣            𝑑𝑥    2𝑣
                                                   2𝑣 𝑑𝑣     𝑑𝑥
                                            ⇒−           2
                                                           =
                                                  1 + 3𝑣      𝑥
Integrating both sides,
                     1  6𝑣 𝑑𝑣       𝑑𝑥     1
                   ⇒− ∫       2
                                = ∫    ⇒ −   ln(1 + 3𝑣 2 ) + ln 𝐶 = ln 𝑥
                     3 1 + 3𝑣        𝑥     3
                                                        1                           1
                     ⇒ ln 𝐶 = ln 𝑥 + ln(1 + 3𝑣 2 )3 ⇒ ln 𝐶 = ln 𝑥 (1 + 3𝑣 2 )3
                                                                  1
                                                       𝑦2 3
                                         ⇒ 𝐶 = 𝑥 (1 + 3 2 )
                                                       𝑥
       2 Solution of Homogeneous Differential Equations
which is the required general solution.
    Example 02: Solve
                                 (𝑥 3 + 3𝑥𝑦 2 )𝑑𝑥 + (𝑦 3 + 3𝑥 2 𝑦)𝑑𝑦 = 0
    Solution: We have,
                                 (𝑥 3 + 3𝑥𝑦 2 )𝑑𝑥 + (𝑦 3 + 3𝑥 2 𝑦)𝑑𝑦 = 0
                                          𝑑𝑦   𝑥 3 + 3𝑥𝑦 2
                                        ⇒    =− 3
                                          𝑑𝑥   𝑦 + 3𝑥 2 𝑦
                    𝑦 2
    𝑑𝑦          1+3( ⁄𝑥)
⇒        =−    𝑦 3     𝑦 …    … … (1)
    𝑑𝑥        ( ⁄𝑥) +3( ⁄𝑥)
To solve (1), let 𝑦⁄𝑥 = 𝑣 ⇒ 𝑦 = 𝑣𝑥 … … … (2)
Differentiating (2)w.r.to 𝑥,
                                     𝑑𝑦      𝑑𝑣
                                        =𝑣+𝑥    … … … (3)
                                     𝑑𝑥      𝑑𝑥
                                             𝑑𝑣       1+3𝑣 2
Using (2) and (3) in (1), we obtain, 𝑣 + 𝑥 𝑑𝑥 = − 𝑣3 +3𝑣
                                 𝑑𝑣   1 + 3𝑣 2       𝑣 4 + 6𝑣 2 + 1
                            ⇒𝑥      =− 3       −𝑣 =−
                                 𝑑𝑥   𝑣 + 3𝑣            𝑣 3 + 3𝑣
                                         𝑑𝑥    4𝑣 3 + 12𝑣
                                   ⇒4       =− 4           𝑑𝑣
                                          𝑥   𝑣 + 6𝑣 2 + 1
Integrating, 4𝑙𝑜𝑔𝑥 = −𝑙𝑜𝑔(𝑣 4 + 6𝑣 2 + 1) + 𝑙𝑜𝑔𝑐
                                 ⇒ 𝑙𝑜𝑔𝑥 4 = 𝑙𝑜𝑔[𝑐/(𝑣 4 + 6𝑣 2 + 1)]
                                     ⇒ 𝑥 4 (𝑣 4 + 6𝑣 2 + 1) = 𝑐
⇒ 𝑦 4 + 6𝑥 2 𝑦 2 + 𝑥 4 = 𝑐, as 𝑦⁄𝑥 = 𝑣
Therefore, 𝑦 4 + 6𝑥 2 𝑦 2 + 𝑥 4 = 𝑐 is the required solution.
Example 03: Solve
                        𝑥𝑐𝑜𝑠(𝑦⁄𝑥)(𝑦𝑑𝑥 + 𝑥𝑑𝑦) = 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)(𝑥𝑑𝑦 − 𝑦𝑑𝑥)
         3 Solution of Homogeneous Differential Equations
Solution: We have,
                      𝑥𝑐𝑜𝑠(𝑦⁄𝑥)(𝑦𝑑𝑥 + 𝑥𝑑𝑦) = 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)(𝑥𝑑𝑦 − 𝑦𝑑𝑥)
           ⇒ 𝑥𝑐𝑜𝑠(𝑦⁄𝑥 )𝑦𝑑𝑥 + 𝑥𝑐𝑜𝑠(𝑦⁄𝑥)𝑥𝑑𝑦 = 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)𝑥𝑑𝑦 − 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)𝑦𝑑𝑥
           ⇒ 𝑥𝑐𝑜𝑠(𝑦⁄𝑥 )𝑦𝑑𝑥 + 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)𝑦𝑑𝑥 = 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)𝑥𝑑𝑦 − 𝑥𝑐𝑜𝑠(𝑦⁄𝑥)𝑥𝑑𝑦
              ⇒ {𝑥𝑐𝑜𝑠(𝑦⁄𝑥) + 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)}𝑦𝑑𝑥 = {𝑦𝑠𝑖𝑛(𝑦⁄𝑥) − 𝑥𝑐𝑜𝑠(𝑦⁄𝑥)}𝑥𝑑𝑦
                                   𝑦{𝑥𝑐𝑜𝑠(𝑦⁄𝑥) + 𝑦𝑠𝑖𝑛(𝑦⁄𝑥)} 𝑑𝑦
                               ⇒                           =
                                   𝑥{𝑦𝑠𝑖𝑛(𝑦⁄𝑥) − 𝑥𝑐𝑜𝑠(𝑦⁄𝑥)} 𝑑𝑥
                                                         𝑦
                                 𝑑𝑦 𝑦𝑥 {𝑐𝑜𝑠(𝑦⁄𝑥) + 𝑥 𝑠𝑖𝑛(𝑦⁄𝑥)}
                               ⇒   =
                                 𝑑𝑥 𝑥 2 {𝑦 𝑠𝑖𝑛(𝑦⁄𝑥) − 𝑐𝑜𝑠(𝑦⁄𝑥)}
                                             𝑥
                                   𝑦              𝑦
                          𝑑𝑦 𝑥 {𝑐𝑜𝑠(𝑦⁄𝑥) + 𝑥 𝑠𝑖𝑛(𝑦⁄𝑥)}
                        ⇒    = 𝑦                       … … … (1)
                          𝑑𝑥   {𝑥 𝑠𝑖𝑛(𝑦⁄𝑥) − 𝑐𝑜𝑠(𝑦⁄𝑥)}
To solve(1), let 𝑦⁄𝑥 = 𝑣 ⇒ 𝑦 = 𝑣𝑥 … … … (2)
Differentiating (2)w.r.to 𝑥,
                                       𝑑𝑦      𝑑𝑣
                                          =𝑣+𝑥    … … … (3)
                                       𝑑𝑥      𝑑𝑥
Using (2) and (3) in (1), we obtain,
                                          𝑑𝑣 𝑣(𝑐𝑜𝑠𝑣 + 𝑣𝑠𝑖𝑛𝑣)
                                   𝑣+𝑥       =
                                          𝑑𝑥   𝑣𝑠𝑖𝑛𝑣 − 𝑐𝑜𝑠𝑣
                                        𝑑𝑣 𝑣(𝑐𝑜𝑠𝑣 + 𝑣𝑠𝑖𝑛𝑣)
                                   ⇒𝑥      =               −𝑣
                                        𝑑𝑥   𝑣𝑠𝑖𝑛𝑣 − 𝑐𝑜𝑠𝑣
                               𝑑𝑣 𝑣𝑐𝑜𝑠𝑣 + 𝑣 2 𝑠𝑖𝑛𝑣 − 𝑣 2 𝑠𝑖𝑛𝑣 + 𝑣𝑐𝑜𝑠𝑣
                         ⇒𝑥       =
                               𝑑𝑥           𝑣𝑠𝑖𝑛𝑣 − 𝑐𝑜𝑠𝑣
                                            𝑑𝑣    2𝑣𝑐𝑜𝑠𝑣
                                       ⇒𝑥      =
                                            𝑑𝑥 𝑣𝑠𝑖𝑛𝑣 − 𝑐𝑜𝑠𝑣
                                        𝑣𝑠𝑖𝑛𝑣 − 𝑐𝑜𝑠𝑣      2𝑑𝑥
                                    ⇒                𝑑𝑣 =
                                           𝑣𝑐𝑜𝑠𝑣           𝑥
                                        𝑣𝑠𝑖𝑛𝑣   𝑐𝑜𝑠𝑣        2𝑑𝑥
                                   ⇒(         −      ) 𝑑𝑣 =
                                        𝑣𝑐𝑜𝑠𝑣 𝑣𝑐𝑜𝑠𝑣          𝑥
      4 Solution of Homogeneous Differential Equations
                                               1       2𝑑𝑥
                                      ⇒ (𝑡𝑎𝑛𝑣 − ) 𝑑𝑣 =
                                               𝑣        𝑥
Integrating both sides,
                                                1         𝑑𝑥
                                    ∫ 𝑡𝑎𝑛𝑣𝑑𝑣 − ∫ 𝑑𝑣 = 2 ∫
                                                𝑣          𝑥
                                   ⇒ 𝑙𝑛𝑠𝑒𝑐𝑣 − 𝑙𝑛𝑣 + 𝑙𝑛𝐶 = 2𝑙𝑛𝑥
                                                𝐶. 𝑠𝑒𝑐𝑣
                                         ⇒ 𝑙𝑛           = 𝑙𝑛𝑥 2
                                                   𝑣
                                                𝐶. 𝑠𝑒𝑐𝑣
                                           ⇒            = 𝑥2
                                                   𝑣
                                           ⇒ 𝐶. 𝑠𝑒𝑐𝑣 = 𝑥 2 𝑣
                                      ⇒ 𝐶. 𝑠𝑒𝑐(𝑦⁄𝑥) = 𝑥 2 . 𝑦⁄𝑥
                                                   1
                                         ⇒𝐶             = 𝑥𝑦
                                               𝑐𝑜𝑠(𝑦⁄𝑥)
                                          ⇒ 𝑥𝑦𝑐𝑜𝑠(𝑦⁄𝑥) = 𝐶
which is the required general solution.
Exercise from homogeneous equations:
1. Solve the following differential equation:
                                           𝑑𝑦 √𝑥 2 − 𝑦 2 + 𝑦
                                              =
                                           𝑑𝑥       𝑥
                     𝑦
𝐴𝑛𝑠𝑤𝑒𝑟: 𝑠𝑖𝑛−1          = 𝑙𝑛𝑥 + 𝐶
                     𝑥
2. Solve
𝑑𝑦    𝑦          𝑦
     = + 𝑡𝑎𝑛
𝑑𝑥    𝑥          𝑥
                 𝑦
𝐴𝑛𝑠𝑤𝑒𝑟: 𝑥 = 𝑐𝑠𝑖𝑛( ⁄𝑥).
3. Solve:
                                                       𝑑𝑦
                                        (𝑥 2 + 𝑦 2 )      = 𝑥𝑦
                                                       𝑑𝑥
          𝑥2
𝐴𝑛𝑠𝑤𝑒𝑟: − 2 + ln 𝑦 = 𝐶
         2𝑦
          5 Solution of Homogeneous Differential Equations
4. Solve
                                    𝑥𝑑𝑦 − 𝑦𝑑𝑥 = √𝑥 2 + 𝑦 2 𝑑𝑥
𝐴𝑛𝑠𝑤𝑒𝑟: 𝑥 2 𝐶 = 𝑦 + √𝑥 2 + 𝑦 2
5. Solve (𝑥 + 𝑦)𝑑𝑦 + (𝑥 − 𝑦)𝑑𝑥 = 0
                    𝑦    1
   Answer: tan−1 (𝑥 ) + 2 ln(𝑥 2 + 𝑦 2 ) = 𝑐.
      6 Solution of Homogeneous Differential Equations