0% found this document useful (0 votes)
40 views8 pages

Sma 1108 Lecture 6NOTES

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
40 views8 pages

Sma 1108 Lecture 6NOTES

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

DEPARTMENT OF MATHIMATICS AND

PHYSICAL SCIENCES

SMA 1108: ALGEBRA

Study Guide
BY

DR. KANYI
2020

Page 1 of 8
INDICES
An index is the number of times a number is multiplied
by itself. E.g. 2  2  2  2 . 3 is the index and 2 is the base.
3

LAWS OF INDICES
Given that x  a3 and y  a2 then,
i. in general given a
xy  a 3  a 2  a  a  a  a  a  a 5 m
 a n  a mn
x a3 aaa
ii. 
y a2

aa
 a . in general given a  a  a m n mn

iii.    a a  a
x2  a3
2 3 3 6

In general a   a  a  n m nm m n

e.g. 3  3  2x x 2

CONSEQUENCES OF LAWS OF INDICES


a) a  a  a  a
n n nn 0

n
Also aa  1 n

Therefore a  1 this implies that any number raised to


0

the power of zero is equal to 1.


b) a 0  a n  a 0 n  a  n
a0 1
Also a n
 n
a
1
This implies that a n
 a n

1
e.g. 2 3
 2 3
1
c) a a n

1
e.g. 3
a a 3

 a
3
2

Page 2 of 8
EXERCISE
2

 27  3
 
i. Find the value of  8 

ii. Solve 3  123   27  0


2x x

EXAMPLE

1  x  2  1 x1  x  2
1 1

Simplify 2
1 x
SOLUTION
1  x  2  x
1

21  x  2
1

1 x
21  x  2
1
Multiply numerator and denominator by

Student to work out

 2n
Simplify 3 n 1
 9 n  27  3 

EXERCISE
a) Simplify:
x1  x  2  1  x  2
1 
1 1

i. 2
x2
1  x 3  1 x1  x  3
1 2

ii. 3
1  x  3
2

Page 3 of 8
1 1
1 
 x 2 1  x  2  x 2 1  x  2
1 
1 1

iii. 2
x
2

1 1
xy  x 3  2 y 4
iv.
x y 
1
10 9 12

LOGARITHMS
Logarithm of a number in a given base is the number
of times the base can be multiplied by itself. E.g.
2  32 index notation
5

In logarithmic form log 32  5 2

23  8 log 2 8  3

22  4

21  2

a1  a

101  10

10 2  100

10 3  1000

Logarithms under the base of 10 are known us


common logarithms
NAPERIAN LOGARITHMS/ NATURAL
LOGARITHMS.

Page 4 of 8
Naperian Logarithms are logarithms under the base
of e . e is a mathematical constant. e  2.718281828...
Logarithm under base e is denoted by ln
i.e. log 4  ln 4 .
e

NB.
i. ln e  1
ii. e  y
ln y

EXAMPLE:
Solve for x :

i. ln x  9

e x5  2
ii.
LAWS OF LOGARITHMS
a) log AB  log A  log B
a a a

b) log BA  log A  log B


a a a

c) log a A p  p log a A

EXAMPLE
Prove that log AB  log A  log B
a a a

Proof
Let log A  m and log B  n .  A  a and
a a
m
B  an

AB  a m  a m

AB  a m  n

Take logarithm under base a on both side


Page 5 of 8
log a AB  log a a m  n

Or log AB  (m  n) log a
a a

Or log AB  m  n
a

But log A  m and log B  n


a a

Therefore log AB  log A  log a a a B hence proved.

CHANGE OF THE BASE


EXAMPLE
Evaluate:
a) log 14 2

SOLUTION
Let log 14  x 2

 2 x  14

Take log 10 on both side


log 10 2 x  log 10 14

Or x log 10 2  log 10 14
log 10 14
x
log 10 2

log a m
In general given log b m 
log a b
1
Also log b m 
log m b
1
log 3 x 
e.g. log x 3

Page 6 of 8
EXAMPLE
i. Simplify:
log 2 8  16

SOLUTION
log 2 16  8  log 2 8  log 2 16

 log 2 2 3  log 2 2 4

 3 log 2 2  4 log 2 2

 3 4  7
log 125
ii. log 25

SOLUTION
log 5 3 3 log 5 3
 
log 5 2 2 log 5 2
a 2b 3
iii. Write log in terms of log a , log b and log c
100 c
iv. Solve the equation log x  log 2 x  3  1 5 5

v. Evaluate log 2 7

vi. Solve for x in 3  2 x

vii. If x  log 5 and y  log 5 , find y in terms x.


9 3

EXAMPLE
1 a
i. If log 10 2  a , show that log 8 5 
3a
SOLUTION
10
log 10
log 8 5 
log 10 5
 2  log 10 10  log 10 2
log 10 8 log 10 2 3 3 log 10 2

Page 7 of 8
let log 10 2  a
1 a
log 8 5 
3a
viii. Solve for x if
a) log x  log x  6
3 9
2

b) log x  log 16
2 x

c) 4  62   16  0
x x

d)  23   161
 
1
e) log 2 1  log 4
2
 log 9 x

f) log 8x  log 8x  8
2
3
x
3

g) log x  4 log 3  3  0
3 x

h) ln x  5
i) log 10x  log x  3  2 (ans x=2,5
j) log (3x  1)  4
2 (ans x=5)
k) log (4x  3)  log ( x  6) (ans x=3)
7 7

l) 10  19 3 x 1
(ans x=0.760)
x 3
1
m) 4  
x
(ans x=1)
2

n) e x 5
 1.56

Page 8 of 8

You might also like