DEPARTMENT OF MATHIMATICS AND
PHYSICAL SCIENCES
SMA 1108: ALGEBRA
Study Guide
BY
DR. KANYI
2020
Page 1 of 8
INDICES
An index is the number of times a number is multiplied
by itself. E.g. 2 2 2 2 . 3 is the index and 2 is the base.
3
LAWS OF INDICES
Given that x a3 and y a2 then,
i. in general given a
xy a 3 a 2 a a a a a a 5 m
a n a mn
x a3 aaa
ii.
y a2
aa
a . in general given a a a m n mn
iii. a a a
x2 a3
2 3 3 6
In general a a a n m nm m n
e.g. 3 3 2x x 2
CONSEQUENCES OF LAWS OF INDICES
a) a a a a
n n nn 0
n
Also aa 1 n
Therefore a 1 this implies that any number raised to
0
the power of zero is equal to 1.
b) a 0 a n a 0 n a n
a0 1
Also a n
n
a
1
This implies that a n
a n
1
e.g. 2 3
2 3
1
c) a a n
1
e.g. 3
a a 3
a
3
2
Page 2 of 8
EXERCISE
2
27 3
i. Find the value of 8
ii. Solve 3 123 27 0
2x x
EXAMPLE
1 x 2 1 x1 x 2
1 1
Simplify 2
1 x
SOLUTION
1 x 2 x
1
21 x 2
1
1 x
21 x 2
1
Multiply numerator and denominator by
Student to work out
2n
Simplify 3 n 1
9 n 27 3
EXERCISE
a) Simplify:
x1 x 2 1 x 2
1
1 1
i. 2
x2
1 x 3 1 x1 x 3
1 2
ii. 3
1 x 3
2
Page 3 of 8
1 1
1
x 2 1 x 2 x 2 1 x 2
1
1 1
iii. 2
x
2
1 1
xy x 3 2 y 4
iv.
x y
1
10 9 12
LOGARITHMS
Logarithm of a number in a given base is the number
of times the base can be multiplied by itself. E.g.
2 32 index notation
5
In logarithmic form log 32 5 2
23 8 log 2 8 3
22 4
21 2
a1 a
101 10
10 2 100
10 3 1000
Logarithms under the base of 10 are known us
common logarithms
NAPERIAN LOGARITHMS/ NATURAL
LOGARITHMS.
Page 4 of 8
Naperian Logarithms are logarithms under the base
of e . e is a mathematical constant. e 2.718281828...
Logarithm under base e is denoted by ln
i.e. log 4 ln 4 .
e
NB.
i. ln e 1
ii. e y
ln y
EXAMPLE:
Solve for x :
i. ln x 9
e x5 2
ii.
LAWS OF LOGARITHMS
a) log AB log A log B
a a a
b) log BA log A log B
a a a
c) log a A p p log a A
EXAMPLE
Prove that log AB log A log B
a a a
Proof
Let log A m and log B n . A a and
a a
m
B an
AB a m a m
AB a m n
Take logarithm under base a on both side
Page 5 of 8
log a AB log a a m n
Or log AB (m n) log a
a a
Or log AB m n
a
But log A m and log B n
a a
Therefore log AB log A log a a a B hence proved.
CHANGE OF THE BASE
EXAMPLE
Evaluate:
a) log 14 2
SOLUTION
Let log 14 x 2
2 x 14
Take log 10 on both side
log 10 2 x log 10 14
Or x log 10 2 log 10 14
log 10 14
x
log 10 2
log a m
In general given log b m
log a b
1
Also log b m
log m b
1
log 3 x
e.g. log x 3
Page 6 of 8
EXAMPLE
i. Simplify:
log 2 8 16
SOLUTION
log 2 16 8 log 2 8 log 2 16
log 2 2 3 log 2 2 4
3 log 2 2 4 log 2 2
3 4 7
log 125
ii. log 25
SOLUTION
log 5 3 3 log 5 3
log 5 2 2 log 5 2
a 2b 3
iii. Write log in terms of log a , log b and log c
100 c
iv. Solve the equation log x log 2 x 3 1 5 5
v. Evaluate log 2 7
vi. Solve for x in 3 2 x
vii. If x log 5 and y log 5 , find y in terms x.
9 3
EXAMPLE
1 a
i. If log 10 2 a , show that log 8 5
3a
SOLUTION
10
log 10
log 8 5
log 10 5
2 log 10 10 log 10 2
log 10 8 log 10 2 3 3 log 10 2
Page 7 of 8
let log 10 2 a
1 a
log 8 5
3a
viii. Solve for x if
a) log x log x 6
3 9
2
b) log x log 16
2 x
c) 4 62 16 0
x x
d) 23 161
1
e) log 2 1 log 4
2
log 9 x
f) log 8x log 8x 8
2
3
x
3
g) log x 4 log 3 3 0
3 x
h) ln x 5
i) log 10x log x 3 2 (ans x=2,5
j) log (3x 1) 4
2 (ans x=5)
k) log (4x 3) log ( x 6) (ans x=3)
7 7
l) 10 19 3 x 1
(ans x=0.760)
x 3
1
m) 4
x
(ans x=1)
2
n) e x 5
1.56
Page 8 of 8