0% found this document useful (0 votes)
30 views37 pages

Bacdeaf 23032025 115708 Split 1

The document outlines the implementation of Naïve Bayes models for predicting heart disease using both a custom Python script and the Scikit-learn library. It details the algorithm steps, including data preprocessing, model training, and evaluation metrics such as accuracy, confusion matrix, F1 score, and ROC curve. Additionally, it introduces Bayesian networks for heart disease prediction, utilizing the BayesPy library for probabilistic modeling.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
30 views37 pages

Bacdeaf 23032025 115708 Split 1

The document outlines the implementation of Naïve Bayes models for predicting heart disease using both a custom Python script and the Scikit-learn library. It details the algorithm steps, including data preprocessing, model training, and evaluation metrics such as accuracy, confusion matrix, F1 score, and ROC curve. Additionally, it introduces Bayesian networks for heart disease prediction, utilizing the BayesPy library for probabilistic modeling.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 37

EX.

NO : 3 IMPLEMENT NAÏVE BAYES MODELS


DATE:

AIM:

ALGORITHM:

Steps in Naïve Bayes Classifier Algorithm:

Step 1: Read the training dataset T;


Step 2: Calculate the mean and standard deviation of the predictor variables in
each class;
Step 3: Repeat Calculate the probability of fi using the gauss density equation in
each class; Until the probability of all predictor variables (f1, f2, f3, .. , fn) has
been calculated.
Step 4: Calculate the likelihood for each class;
Step 5: Get the greatest likelihood;

PROGRAM:

NB_from_scratch.py

import csv
import numpy as np
from sklearn.metrics import confusion_matrix, f1_score, roc_curve, auc
import matplotlib.pyplot as plt
from itertools import cycle
from scipy import interp
import warnings
import random
import math

# convert txt file to csv


with open('heartdisease.txt', 'r') as in_file:
stripped = (line.strip() for line in in_file)
lines = (line.split(",") for line in stripped if line)
with open('heartdisease.csv', 'w', newline='') as out_file:
writer = csv.writer(out_file)
writer.writerow(('age', 'sex', 'cp', 'restbp', 'chol', 'fbs', 'restecg',
'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'num'))
writer.writerows(lines)

warnings.filterwarnings("ignore")
# Example of Naive Bayes implemented from Scratch in Python

# calculating mean of column values belonging to one class


def mean(columnvalues):
s=0
n = float(len(columnvalues))
for i in range(len(columnvalues)):
s = s + float(columnvalues[i])
return s / n

# calculating standard deviation of column values belonging to one class


def stdev(columnvalues):
avg = mean(columnvalues)
s = 0.0
num = len(columnvalues)
for i in range(num):
s = s + pow(float(columnvalues[i]) - avg, 2)
variance = s / (float(num - 1))
return math.sqrt(variance)

# Reading CSV file


filename = 'heartdisease.csv'
lines = csv.reader(open(filename, "r"))
dataset = list(lines)
for i in range(len(dataset) - 1):
dataset[i] = [float(x) for x in dataset[i + 1]]

for z in range(5):
print("\n\n\nTest Train Split no. ", z + 1, "\n\n\n")
trainsize = int(len(dataset) * 0.75)
trainset = []
testset = list(dataset)
for i in range(trainsize):
index = random.randrange(len(testset))
trainset.append(testset.pop(index))

# separate list according to class


classlist = {}
for i in range(len(dataset)):
class_num = float(dataset[i][-1])
row = dataset[i]
if (class_num not in classlist):
classlist[class_num] = []
classlist[class_num].append(row)
# preparing data class wise
class_data = {}
for class_num, row in classlist.items():
class_datarow = [(mean(columnvalues), stdev(columnvalues)) for columnvalues in
zip(*row)]
class_datrow = class_datarow[0:13]
class_data[class_num] = class_datarow

# Getting test vector


y_test = []
for j in range(len(testset)):
y_test.append(testset[j][-1])
# Getting prediction vector
y_pred = []
for i in range(len(testset)):
class_probability = {}
for class_num, row in class_data.items():
class_probability[class_num] = 1
for j in range(len(row)):
calculated_mean, calculated_dev = row[j]
x = float(testset[i][j])
if (calculated_dev != 0):
power = math.exp(-(math.pow(x - calculated_mean, 2) / (2 *
math.pow(calculated_dev, 2))))
probability = (1 / (math.sqrt(2 * math.pi) * calculated_dev)) * power
class_probability[class_num] *= probability

resultant_class, max_prob = -1, -1


for class_num, probability in class_probability.items():
if resultant_class == -1 or probability > max_prob:
max_prob = probability
resultant_class = class_num

y_pred.append(resultant_class)

# Getting Accuracy
count = 0
for i in range(len(testset)):
if testset[i][-1] == y_pred[i]:
count += 1
accuracy = (count / float(len(testset))) * 100.0
print("\n\n Accuracy: ", accuracy, "%")

y1 = [float(k) for k in y_test]


y_pred1 = [float(k) for k in y_pred]
print("\n\n\n\nConfusion Matrix")
cf_matrix = confusion_matrix(y1, y_pred1)
print(cf_matrix)

print("\n\n\n\nF1 Score")
f_score = f1_score(y1, y_pred1, average='weighted')
print(f_score)

# Matrix from 1D array


y2 = np.zeros(shape=(len(y1), 5))
y3 = np.zeros(shape=(len(y_pred1), 5))
for i in range(len(y1)):
y2[i][int(y1[i])] = 1

for i in range(len(y_pred1)):
y3[i][int(y_pred1[i])] = 1

# ROC Curve generation


n_classes = 5
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y2[:, i], y3[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area


fpr["micro"], tpr["micro"], _ = roc_curve(y2.ravel(), y3.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

# Compute macro-average ROC curve and ROC area


print("\n\n\n\nROC Curve")
# First aggregate all false positive rates
lw = 2
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points


mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC


mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves


plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
label='macro-average (area = {0:0.2f})'
''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue', 'red', 'black'])


for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)


plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for multi-class')
plt.legend(loc="lower right")
plt.savefig('Exp-8')
plt.show()

NB_from_Gaussian_Sklearn.py

import csv
import pandas as pd
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import confusion_matrix, f1_score, roc_curve, auc
import matplotlib.pyplot as plt
from itertools import cycle
from scipy import interp

# converting txt file to csv file


with open('heartdisease.txt', 'r') as in_file:
stripped = (line.strip() for line in in_file)
lines = (line.split(",") for line in stripped if line)
with open('heartdisease.csv', 'w') as out_file:
writer = csv.writer(out_file)
writer.writerow(('age', 'sex', 'cp', 'restbp', 'chol', 'fbs', 'restecg',
'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'num'))
writer.writerows(lines)

# reading CSV using Pandas and storing in dataframe


df = pd.read_csv('heartdisease.csv', header=None)

training_x = df.iloc[1:df.shape[0], 0:13]


# print(training_set)

training_y = df.iloc[1:df.shape[0], 13:14]


# print(testing_set)

# converting dataframe into arrays


x = np.array(training_x)
y = np.array(training_y)

for z in range(5):
print("\n\n\nTest Train Split no. ", z + 1, "\n\n\n")
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=None) #
Gaussian function of sklearn
gnb = GaussianNB()
gnb.fit(x_train, y_train.ravel())
y_pred = gnb.predict(x_test)

print("\n\nGaussian Naive Bayes model accuracy(in %):", metrics.accuracy_score(y_test,


y_pred) * 100)

# convert 2D array to 1D array


y1 = y_test.ravel()
y_pred1 = y_pred.ravel()

print("\n\n\n\nConfusion Matrix")
cf_matrix = confusion_matrix(y1, y_pred1)
print(cf_matrix)

print("\n\n\n\nF1 Score")
f_score = f1_score(y1, y_pred1, average='weighted')
print(f_score)

# Matrix from 1D array


y2 = np.zeros(shape=(len(y1), 5))
y3 = np.zeros(shape=(len(y_pred1), 5))
for i in range(len(y1)):
y2[i][int(y1[i])] = 1

for i in range(len(y_pred1)):
y3[i][int(y_pred1[i])] = 1

# ROC Curve generation


n_classes = 5

fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y2[:, i], y3[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area


fpr["micro"], tpr["micro"], _ = roc_curve(y2.ravel(), y3.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

# Compute macro-average ROC curve and ROC area


print("\n\n\n\nROC Curve")
# First aggregate all false positive rates
lw = 2
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points


mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# Finally average it and compute AUC


mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# Plot all ROC curves


plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
label='macro-average (area = {0:0.2f})'
''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue', 'red', 'black'])


for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)


plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for multi-class')
plt.legend(loc="lower right")
plt.show()
RESULT:
EX.NO : 4 IMPLEMENT BAYESIAN NETWORKS
DATE:

AIM:

ALGORITHM:

Step 1: Read the training dataset T;


Step 2: Calculate the mean and standard deviation of the predictor variables in
each class;
Step 3: Repeat Calculate the probability of fi using the gauss density equation in
each class; Until the probability of all predictor variables (f1, f2, f3, .. , fn) has
been calculated.
Step 4: Calculate the likelihood for each class;
Step 5: Get the greatest likelihood;

PROGRAM:

import bayespy as bp
import numpy as np
import csv
from colorama import init
from colorama import Fore, Back, Style
init()
ageEnum = {'SuperSeniorCitizen':0, 'SeniorCitizen':1, 'MiddleAged':2, 'Youth':3, 'Teen':4}
genderEnum = {'Male':0, 'Female':1}
familyHistoryEnum = {'Yes':0, 'No':1}
dietEnum = {'High':0, 'Medium':1, 'Low':2}
lifeStyleEnum = {'Athlete':0, 'Active':1, 'Moderate':2, 'Sedetary':3}
cholesterolEnum = {'High':0, 'BorderLine':1, 'Normal':2}
heartDiseaseEnum = {'Yes':0, 'No':1}
with open('heart_disease_data.csv') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
data = []
for x in dataset:
data.append([ageEnum[x[0]],genderEnum[x[1]],familyHistoryEnum[x[2]],dietEnum[
x [3]],lifeStyleEnum[x[4]],cholesterolEnum[x[5]],heartDiseaseEnum[x[6]]]) data =
np.array(data)
N = len(data)
p_age = bp.nodes.Dirichlet(1.0*np.ones(5))
age = bp.nodes.Categorical(p_age, plates=(N,))
age.observe(data[:,0])
p_gender = bp.nodes.Dirichlet(1.0*np.ones(2))
gender = bp.nodes.Categorical(p_gender, plates=(N,))
gender.observe(data[:,1])
p_familyhistory = bp.nodes.Dirichlet(1.0*np.ones(2))
familyhistory = bp.nodes.Categorical(p_familyhistory, plates=(N,))
familyhistory.observe(data[:,2])
p_diet = bp.nodes.Dirichlet(1.0*np.ones(3))
diet = bp.nodes.Categorical(p_diet, plates=(N,))
diet.observe(data[:,3])
p_lifestyle = bp.nodes.Dirichlet(1.0*np.ones(4))
lifestyle = bp.nodes.Categorical(p_lifestyle, plates=(N,))
lifestyle.observe(data[:,4])
p_cholesterol = bp.nodes.Dirichlet(1.0*np.ones(3))
cholesterol = bp.nodes.Categorical(p_cholesterol, plates=(N,))
cholesterol.observe(data[:,5])
p_heartdisease = bp.nodes.Dirichlet(np.ones(2), plates=(5, 2, 2, 3, 4, 3)) heartdisease =
bp.nodes.MultiMixture([age, gender, familyhistory, diet, lifestyle, cholesterol],
bp.nodes.Categorical, p_heartdisease)
heartdisease.observe(data[:,6])
p_heartdisease.update()
m=0
while m == 0:
print("\n")
res = bp.nodes.MultiMixture([int(input('Enter Age: ' + str(ageEnum))), int(input('Enter
Gender: ' + str(genderEnum))), int(input('Enter FamilyHistory: ' +
str(familyHistoryEnum))), int(input('Enter dietEnum: ' + str(dietEnum))),
int(input('Enter LifeStyle: ' + str(lifeStyleEnum))), int(input('Enter Cholesterol: '
+ str(cholesterolEnum)))], bp.nodes.Categorical,
p_heartdisease).get_moments()[0][heartDiseaseEnum['Yes']]
print("Probability(HeartDisease) = " + str(res))
m = int(input("Enter for Continue:0, Exit :1 "))

OUTPUT:

RESULT:
EX.NO : 5 BUILD REGRESSION MODELS
DATE:

AIM:

ALGORITHM:

Step 1: Read the Given data Sample to X and the curve (linear or non-
linear) to Y
Step 2: Set the value for Smoothening parameter or Free parameter say τ
Step 3: Set the bias /Point of interest set x0 which is a subset of X
Step 4: Determine the weight matrix using :

Step 5: Determine the value of model term parameter β using :

Step 6: Prediction = x0*β.

PROGRAM:

from math import ceil


import numpy as np
from scipy import linalg
def lowess(x, y, f, iterations):
n = len(x)
r = int(ceil(f * n))
h = [np.sort(np.abs(x - x[i]))[r] for i in range(n)]
w = np.clip(np.abs((x[:, None] - x[None, :]) / h), 0.0, 1.0)
w = (1 - w ** 3) ** 3
yest = np.zeros(n)
delta = np.ones(n)
for iteration in range(iterations):
for i in range(n):
weights = delta * w[:, i]
b = np.array([np.sum(weights * y), np.sum(weights * y * x)])
A = np.array([[np.sum(weights), np.sum(weights * x)],[np.sum(weights * x),
np.sum(weights * x * x)]])
beta = linalg.solve(A, b)
yest[i] = beta[0] + beta[1] * x[i]
residuals = y - yest
s = np.median(np.abs(residuals))
delta = np.clip(residuals / (6.0 * s), -1, 1)
delta = (1 - delta ** 2) ** 2
return yest
import math
n = 100
x = np.linspace(0, 2 * math.pi, n)
y = np.sin(x) + 0.3 * np.random.randn(n)
f =0.25
iterations=3
yest = lowess(x, y, f, iterations)
import matplotlib.pyplot as plt
plt.plot(x,y,"r.")
plt.plot(x,yest,"b-")

OUTPUT:

Result:
EX.NO : 6 BUILD DECISION TREES AND RANDOM FORESTS
DATE:

AIM:

ALGORITHM:

Steps in CART algorithm:


Step 1: It begins with the original set S as the root node.
Step 2:On each iteration of the algorithm, it iterates through the very unused attribute
of the set S and calculates Gini index of this attribute.
Step 3:Gini Index works with the categorical target variable “Success” or
“Failure”. It performs only Binary splits.
Step 4:The set S is then split by the selected attribute to produce a subset of the data.
Step 5:The algorithm continues to recur on each subset, considering only attributes
never selected before.

PROGRAM:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
data =
pd.read_csv('/Users/ganesh/PycharmProjects/DecisionTree/Social_Network_Ads.csv')
data.head()
feature_cols = ['Age', 'EstimatedSalary']
x = data.iloc[:, [2, 3]].values
y = data.iloc[:, 4].values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=0)
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
x_train = sc_x.fit_transform(x_train)
x_test = sc_x.transform(x_test)
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()
classifier = classifier.fit(x_train, y_train)
y_pred = classifier.predict(x_test)
from sklearn import metrics
print('Accuracy Score:', metrics.accuracy_score(y_test, y_pred))
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
from matplotlib.colors import ListedColormap
x_set, y_set = x_test, y_test
x1, x2 = np.meshgrid(np.arange(start=x_set[:, 0].min()-1, stop=x_set[:, 0].max()+1,
step=0.01), np.arange(start=x_set[:, 1].min()-1, stop=x_set[:, 1].max()+1, step=0.01))
plt.contourf(x1,x2, classifier.predict(np.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),
alpha=0.75, cmap=ListedColormap(("red", "green")))
plt.xlim(x1.min(), x1.max())
plt.ylim(x2.min(), x2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1], c=ListedColormap(("red",
"green"))(i), label=j)
plt.title("Decision Tree(Test set)")
plt.xlabel("Age")
plt.ylabel("Estimated Salary")
plt.legend()
plt.show()
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
dot_data = StringIO()
export_graphviz(classifier, out_file=dot_data, filled=True, rounded=True,
special_characters=True, feature_names=feature_cols, class_names=['0', '1'])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.write_png('decisiontree.png'))
classifier = DecisionTreeClassifier(criterion="gini", max_depth=3)
classifier = classifier.fit(x_train, y_train)
y_pred = classifier.predict(x_test)
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
dot_data = StringIO()
export_graphviz(classifier, out_file=dot_data, filled=True, rounded=True,
special_characters=True, feature_names=feature_cols, class_names=['0', '1'])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.write_png('opt_decisiontree_gini.png'))
RESULT:
EX.NO: 7 BUILD SVM MODELS
DATE:

AIM:

ALGORITHM:
Step 1: Import all the necessary libraries.
Step 2: Read the given csv file which contains the emails which are both
spam and ham.
Step 3: Gather all the words given in that dataset and Identify the stop words
with a mean distribution.
Step 4: Create an ML model using the Support Vector Classifier after
splitting the dataset into training and test set.
Step 5: Display the accuracy and f1 score and print the confusion matrix
for the classification of spam and ham.

PROGRAM:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import string
from nltk.corpus import stopwords
import os
from wordcloud import WordCloud, STOPWORDS,
ImageColorGenerator from PIL import Image
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import roc_curve, auc
from sklearn import metrics
from sklearn import model_selection
from sklearn import svm
from nltk import word_tokenize
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
from sklearn.metrics import plot_confusion_matrix

class data_read_write(object):
def init (self):
pass
def init (self, file_link):
self.data_frame = pd.read_csv(file_link)
def read_csv_file(self, file_link):
return self.data_frame
def write_to_csvfile(self, file_link):
self.data_frame.to_csv(file_link, encoding='utf-8', index=False, header=True)
return

class generate_word_cloud(data_read_write):
def init (self):
pass
def variance_column(self, data):
return np.variance(data)
def word_cloud(self, data_frame_column, output_image_file):
text = " ".join(review for review in data_frame_column)
stopwords = set(STOPWORDS)
stopwords.update(["subject"])
wordcloud = WordCloud(width = 1200, height = 800, stopwords=stopwords,
max_font_size = 50, margin=0,
background_color = "white").generate(text)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.savefig("Distribution.png")
plt.show()
wordcloud.to_file(output_image_file)
return
class data_cleaning(data_read_write):
def init (self):
pass
def message_cleaning(self, message):
Test_punc_removed = [char for char in message if char not in string.punctuation]
Test_punc_removed_join = ''.join(Test_punc_removed)
Test_punc_removed_join_clean = [word for word in Test_punc_removed_join.split() if
word.lower() not in stopwords.words('english')] final_join = '
'.join(Test_punc_removed_join_clean)
return final_join
def apply_to_column(self, data_column_text):
data_processed = data_column_text.apply(self.message_cleaning)
return data_processed
class apply_embeddding_and_model(data_read_write):
def init (self):
pass
def apply_count_vector(self, v_data_column):
vectorizer = CountVectorizer(min_df=2, analyzer="word", tokenizer=None,
preprocessor=None, stop_words=None)
return vectorizer.fit_transform(v_data_column)
def apply_svm(self, X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
params = {'kernel': 'linear', 'C': 2, 'gamma': 1}
svm_cv = svm.SVC(C=params['C'], kernel=params['kernel'], gamma=params['gamma'],
probability=True)
svm_cv.fit(X_train, y_train)
y_predict_test = svm_cv.predict(X_test)
cm = confusion_matrix(y_test, y_predict_test)
sns.heatmap(cm, annot=True)
print(classification_report(y_test, y_predict_test))
print("test set")
print("\nAccuracy Score: " + str(metrics.accuracy_score(y_test, y_predict_test)))
print("F1 Score: " + str(metrics.f1_score(y_test, y_predict_test))) print("Recall: " +
str(metrics.recall_score(y_test, y_predict_test))) print("Precision: " +
str(metrics.precision_score(y_test, y_predict_test)))

class_names = ['ham', 'spam']


titles_options = [("Confusion matrix, without normalization", None),
("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:
disp = plot_confusion_matrix(svm_cv, X_test, y_test,
display_labels=class_names,
cmap=plt.cm.Blues,
normalize=normalize)
disp.ax_.set_title(title)
print(title)
print(disp.confusion_matrix)
plt.savefig("SVM.png")
plt.show()
ns_probs = [0 for _ in range(len(y_test))]
lr_probs = svm_cv.predict_proba(X_test)
lr_probs = lr_probs[:, 1]
ns_auc = roc_auc_score(y_test, ns_probs)
lr_auc = roc_auc_score(y_test, lr_probs)
print('No Skill: ROC AUC=%.3f' % (ns_auc))
print('SVM: ROC AUC=%.3f' % (lr_auc))
ns_fpr, ns_tpr, _ = roc_curve(y_test, ns_probs)
lr_fpr, lr_tpr, _ = roc_curve(y_test, lr_probs)
pyplot.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
pyplot.plot(lr_fpr, lr_tpr, marker='.', label='SVM')
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
pyplot.legend()
pyplot.savefig("SVMMat.png")
pyplot.show()
return
data_obj = data_read_write("emails.csv")
data_frame = data_obj.read_csv_file("processed.csv")
data_frame.head()
data_frame.tail()
data_frame.describe()
data_frame.info()
data_frame.head()
data_frame.groupby('spam').describe()
data_frame['length'] = data_frame['text'].apply(len)
data_frame['length'].max()
sns.set(rc={'figure.figsize':(11.7,8.27)})
ham_messages_length = data_frame[data_frame['spam']==0]
spam_messages_length = data_frame[data_frame['spam']==1]
ham_messages_length['length'].plot(bins=100, kind='hist',label
= 'Ham') spam_messages_length['length'].plot(bins=100,
kind='hist',label = 'Spam') plt.title('Distribution of Length of
Email Text')
plt.xlabel('Length of Email Text')
plt.legend()
data_frame[data_frame['spam']==0].text.values
ham_words_length = [len(word_tokenize(title)) for title in
data_frame[data_frame['spam']==0].text.values]
spam_words_length = [len(word_tokenize(title)) for title in
data_frame[data_frame['spam']==1].text.values]
print(max(ham_words_length))
print(max(spam_words_length))
sns.set(rc={'figure.figsize':(11.7,8.27)})
ax = sns.distplot(ham_words_length, norm_hist = True, bins = 30, label = 'Ham')
ax = sns.distplot(spam_words_length, norm_hist = True, bins = 30, label =
'Spam') plt.title('Distribution of Number of Words')
plt.xlabel('Number of Words')
plt.legend()
plt.savefig("SVMGraph.png")
plt.show()
def mean_word_length(x):
word_lengths = np.array([])
for word in word_tokenize(x):
word_lengths = np.append(word_lengths, len(word))
return word_lengths.mean()
ham_meanword_length =
data_frame[data_frame['spam']==0].text.apply(mean_word_length)
spam_meanword_length =
data_frame[data_frame['spam']==1].text.apply(mean_word_length)
sns.distplot(ham_meanword_length, norm_hist = True, bins = 30, label = 'Ham')
sns.distplot(spam_meanword_length , norm_hist = True, bins = 30, label = 'Spam')
plt.title('Distribution of Mean Word Length')
plt.xlabel('Mean Word Length')
plt.legend()
plt.savefig("Graph.png")
plt.show()
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
def stop_words_ratio(x):
num_total_words = 0
num_stop_words = 0
for word in word_tokenize(x):
if word in stop_words:
num_stop_words += 1
num_total_words += 1
return num_stop_words / num_total_words
ham_stopwords = data_frame[data_frame['spam'] == 0].text.apply(stop_words_ratio)
spam_stopwords = data_frame[data_frame['spam'] == 1].text.apply(stop_words_ratio)
sns.distplot(ham_stopwords, norm_hist=True, label='Ham')
sns.distplot(spam_stopwords, label='Spam')
print('Ham Mean: {:.3f}'.format(ham_stopwords.values.mean()))
print('Spam Mean: {:.3f}'.format(spam_stopwords.values.mean()))
plt.title('Distribution of Stop-word Ratio')
plt.xlabel('Stop Word Ratio')
plt.legend()
ham = data_frame[data_frame['spam']==0]
spam = data_frame[data_frame['spam']==1]
spam['length'].plot(bins=60, kind='hist')
ham['length'].plot(bins=60, kind='hist')
data_frame['Ham(0) and Spam(1)'] = data_frame['spam']
print( 'Spam percentage =', (len(spam) / len(data_frame) )*100,"%")
print( 'Ham percentage =', (len(ham) / len(data_frame) )*100,"%")
sns.countplot(data_frame['Ham(0) and Spam(1)'], label = "Count")
data_clean_obj = data_cleaning()
data_frame['clean_text'] = data_clean_obj.apply_to_column(data_frame['text'])

data_frame.head()

data_obj.data_frame.head()

data_obj.write_to_csvfile("processed_file.csv")

cv_object = apply_embeddding_and_model()
spamham_countvectorizer = cv_object.apply_count_vector(data_frame['clean_text'])
X = spamham_countvectorizer
label = data_frame['spam'].values
y = label
cv_object.apply_svm(X,y)

OUTPUT:
RESULT:
EX.NO: 8 IMPLEMENT ENSEMBLING TECHNIQUES
DATE:

AIM:

ALGORITHM:

1. Split the training dataset into train, test and validation dataset.
2. Fit all the base models using train dataset.
3. Make predictions on validation and test dataset.
4. These predictions are used as features to build a second level model
5. This model is used to make predictions on test and meta-features.

PROGRAM:

import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
import xgboost as xgb
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
df = pd.read_csv("train_data.csv")
target = df["target"]
train = df.drop("target")
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.20)
train_ratio = 0.70
validation_ratio = 0.20
test_ratio = 0.10
x_train, x_test, y_train, y_test = train_test_split(
train, target, test_size=1 - train_ratio)
x_val, x_test, y_val, y_test = train_test_split(
x_test, y_test, test_size=test_ratio/(test_ratio + validation_ratio))
model_1 = LinearRegression()
model_2 = xgb.XGBRegressor()
model_3 = RandomForestRegressor()
model_1.fit(x_train, y_train)
val_pred_1 = model_1.predict(x_val)
test_pred_1 = model_1.predict(x_test)
val_pred_1 = pd.DataFrame(val_pred_1)
test_pred_1 = pd.DataFrame(test_pred_1)
model_2.fit(x_train, y_train)
val_pred_2 = model_2.predict(x_val)
test_pred_2 = model_2.predict(x_test)
val_pred_2 = pd.DataFrame(val_pred_2)
test_pred_2 = pd.DataFrame(test_pred_2)
model_3.fit(x_train, y_train)
val_pred_3 = model_1.predict(x_val)
test_pred_3 = model_1.predict(x_test)
val_pred_3 = pd.DataFrame(val_pred_3)
test_pred_3 = pd.DataFrame(test_pred_3)
df_val = pd.concat([x_val, val_pred_1, val_pred_2, val_pred_3], axis=1)
df_test = pd.concat([x_test, test_pred_1, test_pred_2, test_pred_3], axis=1)
final_model = LinearRegression()
final_model.fit(df_val, y_val)
final_pred = final_model.predict(df_test)
print(mean_squared_error(y_test, pred_final))

OUTPUT:

RESULT:
EX.NO: 9 IMPLEMENT CLUSTERING ALGORITHMS
DATE:

AIM:

Algorithm:

Step-1: Select the number K of the neighbors


Step-2: Calculate the Euclidean distance of K number of neighbors
Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.
Step-4: Among these k neighbors, count the number of the data points in each
category.
Step-5: Assign the new data points to that category for which the number of the
neighbor is maximum.
Step-6: Our model is ready.

PROGRAM:

from sklearn.model_selection import train_test_split


from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

import pandas as pd
import numpy as np
from sklearn import datasets

iris=datasets.load_iris()
iris_data=iris.data
iris_labels=iris.target

x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20))


classifier=KNeighborsClassifier(n_neighbors=6)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)

print("accuracy is")
print(classification_report(y_test, y_pred))
OUTPUT:

Result:
EX.NO: 10 IMPLEMENT EM FOR BAYESIAN NETWORKS
DATE:

AIM:

ALGORITHM:

Initialize θ randomly Repeat until convergence:


E-step:
Compute q(h) = P(H = h | E = e; θ) for each h (probabilistic
inference) Create fully-observed weighted examples: (h, e) with
weight q(h)
M-step:
Maximum likelihood (count and normalize) on weighted examples to get θ

PROGRAM:

from sklearn.cluster import KMeans


from sklearn import preprocessing
from sklearn.mixture import GaussianMixture
from sklearn.datasets import load_iris
import sklearn.metrics as sm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

dataset=load_iris()
# print(dataset)

X=pd.DataFrame(dataset.data)
X.columns=['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'
] y=pd.DataFrame(dataset.target)
y.columns=['Targets']
# print(X)

plt.figure(figsize=(14,7))
colormap=np.array(['red','lime','black'])

# REAL PLOT
plt.subplot(1,3,1)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y.Targets],s=4
0) plt.title('Real')

# K-PLOT
plt.subplot(1,3,2)
model=KMeans(n_clusters=3)
model.fit(X)
predY=np.choose(model.labels_,[0,1,2]).astype(np.int64)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[predY],s=40)
plt.title('KMeans')
# GMM PLOT
scaler=preprocessing.StandardScaler()
scaler.fit(X)
xsa=scaler.transform(X)
xs=pd.DataFrame(xsa,columns=X.columns)
gmm=GaussianMixture(n_components=3)
gmm.fit(xs)
y_cluster_gmm=gmm.predict(xs)
plt.subplot(1,3,3)
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y_cluster_gmm],s=4
0) plt.title('GMM Classification')

OUTPUT:

RESULT:
EX.NO: 11 BUILD SIMPLE NN MODELS.
DATE:

AIM:

ALGORITHM:

1. Image Acquisition: The first step is to acquire images of paper documents with the
help of optical scanners. This way, an original image can be captured and stored.
2. Pre-processing: The noise level on an image should be optimized and areas outside
the text removed. Pre-processing is especially vital for recognizing handwritten
documents that are more sensitive to noise.
3. Segmentation: The process of segmentation is aimed at grouping characters into
meaningful chunks. There can be predefined classes for characters. So, images can
be scanned for patterns that match the classes.
4. Feature Extraction: This step means splitting the input data into a set of features,
that is, to find essential characteristics that make one or another pattern
recognizable.
5. Training an MLP neural network using the following steps:
1. Starting with the input layer, propagate data forward to the output layer.
This step is the forward propagation.
2. Based on the output, calculate the error (the difference between the
predicted and known outcome). The error needs to be minimized.
3. Backpropagate the error. Find its derivative with respect to each weight
in the network, and update the model.
6. Post processing: This stage is the process of refinement as an OCR model can
require some corrections. However, it isn’t possible to achieve 100% recognition
accuracy. The identification of characters heavily depends on the context.

PROGRAM:

from future import print_function


import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.optimizers import RMSprop, SGD
from keras.optimizers import Adam
from keras.utils import np_utils
from emnist import list_datasets
from emnist import extract_training_samples
from emnist import extract_test_samples
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
np.random.seed(1671) # for reproducibility
# network and training
NB_EPOCH = 30
BATCH_SIZE = 256
VERBOSE = 2
NB_CLASSES = 256 # number of outputs = number of
classes OPTIMIZER = Adam()
N_HIDDEN = 512
VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for
VALIDATION DROPOUT = 0.20
print(list_datasets())
X_train, y_train = extract_training_samples('byclass')
print("train shape: ", X_train.shape)
print("train labels: ",y_train.shape)
X_test, y_test = extract_test_samples('byclass')
print("test shape: ",X_test.shape)
print("test labels: ",y_test.shape)
#for indexing from 0
y_train = y_train-1
y_test = y_test-1
RESHAPED = len(X_train[0])*len(X_train[1])
X_train = X_train.reshape(len(X_train), RESHAPED)
X_test = X_test.reshape(len(X_test), RESHAPED)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# normalize
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train,
NB_CLASSES) Y_test =
np_utils.to_categorical(y_test, NB_CLASSES)
# M_HIDDEN hidden layers
# 35 outputs
# final stage is softmax
model = Sequential()
model.add(Dense(N_HIDDEN,
input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()

model.compile(loss='categorical_crossentropy',
optimizer=OPTIMIZER,
metrics=['accuracy'])
history = model.fit(X_train, Y_train,
batch_size=BATCH_SIZE, epochs=NB_EPOCH,
verbose=VERBOSE,
validation_split=VALIDATION_SPLIT) score =
model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("\nTest score:", score[0])
print('Test accuracy:', score[1])

# list all data in history


print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

OUTPUT:
RESULT:
EX.NO: 12 BUILD DEEP LEARNING NN MODELS

DATE: .

AIM:

ALGORITHM:
Steps in CNN Algorithm:
Step-1: Choose the Dataset.
Step-2: Prepare the Dataset for training.
Step-3: Create training Data.
Step-4: Shuffle the Dataset.
Step-5: Assigning Labels and Features.
Step-6: Normalising X and converting labels to categorical data.
Step-7: Split X and Y for use in CNN.
Step-8: Define, compile and train the CNN Model.
Step-9: Accuracy and Score of the model.

PROGRAM:
import cv2 as cv
import math
import time
from google.colab.patches import cv2_imshow
def getFaceBox(net, frame, conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True,
False) net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0),
int(round(frameHeight/150)), 8)
return frameOpencvDnn, bboxes
faceProto = "/content/opencv_face_detector.pbtxt"
faceModel = "/content/opencv_face_detector_uint8.pb"
ageProto = "/content/age_deploy.prototxt"
ageModel = "/content/age_net.caffemodel"
genderProto = "/content/gender_deploy.prototxt"
genderModel = "/content/gender_net.caffemodel"
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)
def age_gender_detector(frame):
# Read frame
t = time.time()
frameFace, bboxes = getFaceBox(faceNet, frame)
for bbox in bboxes:
# print(bbox)
face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-
1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]blob =
cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
# print("Gender Output : {}".format(genderPreds))
print("Gender : {}, conf = {:.3f}".format(gender,
genderPreds[0].max()))ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
print("Age Output : {}".format(agePreds))
print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))label = "{},{}".format(gender,
age)
cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8,
(0,
255, 255), 2, cv.LINE_AA)
return frameFace
from google.colab import files
uploaded = files.upload()
input = cv.imread("2.jpg")
output = age_gender_detector(input)
cv2_imshow(output)

OUTPUT:

RESULT:

You might also like