Network Transforms & Analysis
Network Transforms & Analysis
N
d ( n ) r (t ) M
d ( m ) e(t )
OLDE : an n
a0 bm m
b0
n 1 dt m 1 dt
N M
Laplace Transform : an s R ( s ) bm s m E ( s )
n
n0 m0
M
R( s) m
b
m0
s m
Transfer function : H ( s ) N
E ( s)
n
a
n0
s n
• Equation:
• Transformed equation :
5 2 2
2 3 s I ( s)
s s s
i (t ) e 2t e t
• Transformed equations :
• Inverse transforming
V0 ( s ) I 0 (s)
H ( s) H ( s)
I g ( s) Vg ( s )
1
sL 1
sC
H ( s ) z dp ( s ) R
H ( s ) ydp ( s )
1 1
sL sL R
sC sC
AAU, AAiT, 2019 21
Driving Point Function …
• Ladder Network
1
z11 ( s ) z1 ( s )
1
y2 ( s)
1
z3 ( s )
1
y4 ( s)
...
AAU, AAiT, 2019 22
Transfer Functions
• If the excitation and response are measured at different sets of terminals,
then the corresponding network function is called a transfer function.
Transfer Impedance
V2 ( s )
z 21 ( s ) (Transfer impedance)
I1 ( s )
Transfer Admittance
I 2 (s)
y21 ( s ) (Transfer admittance)
V1 ( s )
V0 ( s ) V0 ( s ) Z 2 ( s ) I ( s )
H (s)
Vg ( s )
Vg ( s ) Z 2 (s)
I (s) H (s)
Z1 ( s ) Z 2 ( s ) Z1 ( s ) Z 2 ( s )
I 0 ( s)
H (s) R sL
I g (s) I g ( s ) I 0 ( s )1
1 sC
I g ( s ) I1 ( s ) I 0 ( s )
I 0 (s) 1 sC
1
I1 ( s ) I 0 ( s )( R sL) I g ( s ) R sL 1 sC
sC
1 s
H (s)
1
sC G C s 2 G s 1
sL C CL
Its transform is 0
I g (S ) 2
s o2
o s
Vo ( s ) I g ( s ) H ( s ) 2 2
s o 2 G 1
C s s
C LC
1 e as s
Vo ( s ) I g ( s ) H ( s )
s 2 G 1
C s s
C LC
1 e as s
Vo ( s ) I g ( s ) H ( s )
s 2 G 1
C s s
C LC
i i
si t
• The terms Ai e are associated with the system ( ) and are called the free
response terms.
• The terms B j e s j t are due to the excitation ( ) and are called the forced
response terms.
AAU, AAiT, 2019 32
Natural and Forced frequencies
• The frequencies are the natural frequency of the system, while the
frequencies are the frequencies of the excitation (forced frequencies).
• Example: Find the natural frequency of the following network.
di
L Ri 0
dt
( sL R ) I ( S ) 0
sL R 0
R
s
L
N
d ( n ) r (t ) M
d ( m ) e(t )
n 1
an
dt n
a0 bm
m 1 dt m
b0
Zeros: roots of ( )
=0
M bM 1 M 1 bM 2 M 2 b1 b0 M
s s s ... s (s z m )
N ( s) bM bM bM bM m 1
H (s) k N
D ( s ) s N a N 1 s M 1 a N 2 s N 2 ... a1 s a0
aN aN aN aN
(s p )
n 1
n
Poles: roots of ( )
AAU, AAiT, 2019 =∞ 38
Poles and Zeros…
• For lumped LTI network
• numerator polynomial ( ) & denominator polynomial ( ) have real
coefficients
• zeros and poles must be real or occur in complex conjugate pairs
• In the complex plane, a pole is denoted by a small cross, and a zero by a
small circle.
• For example if,
• Zeros: Poles:
a. f (t ) u (t )
b. f (t ) e t
0
c. f (t ) cos 0t
d . f (t ) e t cos 0t
0
• Unstable!
• Unstable!
V2 ( s ) 1 / sC 1 RC
H ( s)
V1 ( s ) R 1 / sC s 1 RC
1 RC
H ( j )
j 1 RC
1 RC
H ( j )
2 1 RC
2
( j ) tan 1 (RC )
• As increases to infinity ( )
goes to zero and the phase
approaches −90°.
M 0 M 1M 2
AAU, AAiT, 2019 59
Amplitude and phase from pole-zero diagram…
• Phase
• The phase is
arg( j 1) tan 1
• The phase is
2
( ) tan 1
1 2
20 log 1
2 2
4 2
20 log1 0dB
2 2
20 log 1
2 2 2
4 40 log
2 2