非线性理论
非线性理论
Lecture # 1
Introduction
ẋ = f (t, x, u)
Special Cases:
Linear systems:
ẋ = A(t)x + B(t)u
y = C(t)x + D(t)u
ẋ = f (x, u)
y = h(x, u)
|f (y) − f (x)|
≤L
|y − x|
ẋ = −x2
f (x) = −x2 is locally Lipschitz for all x
1
x(0) = −1 ⇒ x(t) =
(t − 1)
x(t) → −∞ as t → 1
The solution has a finite escape time at t = 1
In general, if f (t, x) is locally Lipschitz over a domain D and
the solution of ẋ = f (t, x) has a finite escape time te , then
the solution x(t) must leave every compact (closed and
bounded) subset of D as t → te
ẋ = −x3 = f (x)
f (x) is locally Lipschitz on R, but not globally Lipschitz
because f ′ (x) = −3x2 is not globally bounded
Lemma 1.4
The continuously differentiable map z = T (x) is a local
diffeomorphism at x0 if the Jacobian matrix [∂T /∂x] is
nonsingular at x0 . It is a global diffeomorphism if and only if
[∂T /∂x] is nonsingular for all x ∈ Rn and T is proper; that is,
limkxk→∞ kT (x)k = ∞
x(t0 ) = x∗ ⇒ x(t) ≡ x∗ , ∀ t ≥ t0
f (x) = 0
Approximate nonlinearity
Compensate for nonlinearity
Dominate nonlinearity
Use intrinsic properties
Divide and conquer
dx2 f2 (x)
=
dx1 f1 (x)
x2
x + fq (x) = (3, 2)
✟
f (x)✟✟✟
✟✯
q✟
x = (1, 1)
x1
Repeat at every point in a grid covering the plane
x2 0
−1
−2
−2 −1 0 1 2
x1
ẋ = f (x), x(0) = x0
x(t) = Mz(t)
ż = Jr z(t)
M = [v1 , v2 ]
ż1 = λ1 z1 , ż2 = λ2 z2
z1
Stable Node
λ2 > λ1 > 0
Reverse arrowheads ⇒ Unstable Node
v1 v1
x1 x1
(a) (b)
Saddle
z1 x1
(a)
(b)
z2
q
r= z12 + z22 , θ = tan−1
z1
α < 0 ⇒ r(t) → 0 as t → ∞
α > 0 ⇒ r(t) → ∞ as t → ∞
α = 0 ⇒ r(t) ≡ r0 ∀ t
z1 z1 z1
x1 x x1
1
y1 = x1 − p1 y2 = x2 − p2
ẏ ≈ Ay
∂f1 ∂f1
a11 a12 ∂x1 ∂x2 ∂f
A= = =
∂f2 ∂f2 ∂x
a21 a22 ∂x1 ∂x2
x=p
x=p
x = 0 is an equilibrium point
Multiple Equilibria
Example 2.2: Tunnel-diode circuit
iL L s
+ vL
X
X
i,mA
CC iC CC iR 1
R
P
P
P
P
P
i=h(v)
P
P
P
P
P 0.5
+ +
vC C J
J
J
vR
E 0
−0.5
(a) 0 0.5 1 v,V
(b)
x1 = vC , x2 = iL
0
0 0.5 1 v
R
−3.598 0.5
A1 = , Eigenvalues : − 3.57, −0.33
−0.2 −0.3
1.82 0.5
A2 = , Eigenvalues : 1.77, −0.25
−0.2 −0.3
−1.427 0.5
A3 = , Eigenvalues : − 1.33, −0.4
−0.2 −0.3
1.4
1.2
0.8 Q
1 Q
2
0.6
0.4
0.2 Q
3
0
x
1
−0.2
−0.4
−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1 A
0
x1
−1
−2
−3
−4
−8 −6 −4 −2 0 2 4 6 8
x(t + T ) = x(t), ∀ t ≥ 0
❳
❳
✘
✘
i
✟ +
✟
✠ i = h(v)
C L
✟
✠
✟
✠
Resistive
✠ v
Element
❈✄ iC ❈✄ iL
v
−
(a) (b)
λ2 + εh′ (0)λ + 1 = 0
h′ (0) < 0 ⇒ Unstable Focus or Unstable Node
1
vC = x1 and iL = −h(x1 ) − x2
ε
E = 12 C{x21 + [εh(x1 ) + x2 ]2 }
Ė = −εCx1 h(x1 )
ẋ1 = x2
ẋ2 = −x1 + ε(1 − x21 )x2
4 x2 x
3 2
3
2 2
1 1
0 0
x x
1 −1 1
−1
−2 −2
−3
−2 0 2 4 −2 0 2 4
(a) (b)
ε = 0.2 ε=1
3
10 x z
2 2
2
5 1
0
0 z
−1 1
x
1
−5 −2
−3
−5 0 5 10 −2 0 2
(a) (b)
ε=5
x x
1 1
(a) (b)
def
ẏ = ẋ = f (x) = f (y + x̄) = g(y), where g(0) = 0
x x x
x x x
f(x) f(x)
−a b x x
(a) (b)
ẋ = f (x), x(0) = x0
x
2
1.6
1.4
1.2
0.8 Q
1 Q
2
0.6
0.4
0.2 Q
3
0
x
1
−0.2
−0.4
−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x’=y
y ’ = − sin(x)
0
y
−1
−2
−3
−4 −3 −2 −1 0 1 2 3 4
x
4
x2
3 B
1 A
0
x
1
−1
−2
−3
−4
−8 −6 −4 −2 0 2 4 6 8
Definition 3.3
The equilibrium point x = 0 of ẋ = f (x) is exponentially
stable if
kx(t)k ≤ kkx(0)ke−λt , ∀ t ≥ 0
k ≥ 1, λ > 0, for all kx(0)k < c
It is globally exponentially stable if the inequality is satisfied
for any initial state x(0)
ẋ = −x3
The origin is asymptotically stable
x(0)
x(t) = p
1 + 2tx2 (0)
e2λt
|x(t)| ≤ ke−λt |x(0)| ⇒ ≤ k2
1 + 2tx2 (0)
e2λt
Impossible because lim =∞
t→∞ 1 + 2tx2 (0)
∂f
J(x) = (x)
∂x
G(x) → 0 as x → 0
This suggests that in a small neighborhood of the origin we
can approximate the nonlinear system ẋ = f (x) by its
linearization about the origin ẋ = Ax
ẋ = ax3
∂f
A= = 3ax2 x=0
=0
∂x x=0
Stable if a = 0; Asymp stable if a < 0; Unstable if a > 0
When a < 0, the origin is not exponentially stable
V̇ (x) ≤ 0, ∀x∈D
then the origin is a stable
Moreover, if
kxk → ∞ ⇒ V (x) → ∞
D
B
r
0 < r ≤ ε, Br = {kxk ≤ r}
Lyapunov’ Theorem
The origin is stable if there is a continuously differentiable
positive definite function V (x) so that V̇ (x) is negative
semidefinite, and it is asymptotically stable if V̇ (x) is negative
definite. It is globally asymptotically stable if the conditions
for asymptotic stability hold globally and V (x) is radially
unbounded
c3
c2
V (x) = c 1
c 1 <c 2 <c 3
x2 c
x21 c
V (x) = +x2 c
1 + x21 2 c
c
c
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
c
c x1
c
c
c
c
c
Try
1 T
V (x) = 2
x Px
+ a(1 − cos x1)
1 p11 p12 x1
= 2 [x1 x2 ] + a(1 − cos x1 )
p12 p22 x2
D = {|x1 | < π}
V (x) is positive definite and V̇ (x) is negative definite over D.
The origin is asymptotically stable
∂gi ∂gj
= , ∀ i, j = 1, . . . , n
∂xj ∂xi
∂g1 ∂g2
=
∂x2 ∂x1
x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ∈ R
Examples:
Equilibrium points
Limit Cycles
A set M is a positively invariant set with respect to ẋ = f (x)
if
x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ≥ 0
Example; The set Ωc = {V (x) ≤ c} with V̇ (x) ≤ 0 in Ωc
dist(p, M) = inf kp − xk
x∈M
⇒ lim V (x(t)) = a
t→∞
L+ ⊂ M ⊂ E ⊂ Ω
V̇ (x) = 0 ⇒ x2 h2 (x2 ) = 0 ⇒ x2 = 0
S = {x ∈ D | x2 = 0}
Theorem 3.6
Let f (x) be a locally Lipschitz function defined over a domain
D ⊂ Rn ; 0 ∈ D. Let V (x) be a continuously differentiable
function such that
V (x) ≤ c ⇒ k1 kxka ≤ c
Ωc = {V (x) ≤ c} ⊂ { k1 kxka ≤ c} ⊂ D
Ωc is compact and positively invariant; ∀ x(0) ∈ Ωc
k3
V̇ ≤ −k3 kxka ≤ − V
k2
dV k3
≤− dt
V k2
V (x) = xT P x, P = PT > 0
def
V̇ (x) = xT P ẋ + ẋT P x = xT (P A + AT P )x = −xT Qx
If Q > 0, then A is Hurwitz
Or choose Q > 0 and solve the Lyapunov equation
P A + AT P = −Q
P A + AT P = −Q
Lemma 3.2
The region of attraction of an asymptotically stable
equilibrium point is an open, connected, invariant set, and its
boundary is formed by trajectories
4
x
2
2
0
x
1
−2
−4
−4 −2 0 2 4
4
x
2
2
0
x
1
−2
−4
−4 −2 0 2 4
NO
Why?
r2
min xT P x =
|bT x|=r bT P −1 b
ri2
c < min
1≤i≤p bTi P −1bi
λmin (P ) = 0.691
0 x 0
1 x
1
−1
−1
−2
−2 −3
−2 −1 0 1 2 −3 −2 −1 0 1 2 3
(a) (b)
Remark 3.2
we can work with any compact set Γ ⊂ D provided we can
show that Γ is positively invariant. This typically requires
investigating the vector field at the boundary of Γ to ensure
that trajectories starting in Γ cannot leave it
d 2
σ = 2σx2 − 8σ 2 − 2σh(σ) ≤ 2σx2 − 8σ 2 , ∀ |σ| ≤ 1
dt
d 2
On σ = 1, σ ≤ 2x2 − 8 ≤ 0, ∀ x2 ≤ 4
dt
d 2
On σ = −1, σ ≤ −2x2 − 8 ≤ 0, ∀ x2 ≥ −4
dt
c1 = V (x)|x1 =−3,x2 =4 = 10, c2 = V (x)|x1 =3,x2 =−4 = 10
V(x) = 10
0 x
1
V(x) = 1
(3,−4)
−5
−5 0 5
def
Take L < c3 /c4 , γ = (c3 − c4 L) > 0 ⇒
∂V
Ax ≤ −γkxk2 , ∀ kxk < min{r0 , r1 }
∂x
The origin of ẋ = Ax is exponentially stable
V (x) → ∞ as x → ∂RA
∂V
f (x) ≤ −W (x), ∀ x ∈ RA
∂x
and for any c > 0, {V (x) ≤ c} is a compact subset of RA
When RA = Rn , V (x) is radially unbounded
∂β −kr 2
= <0
∂s (ksr + 1)2
∂V ∂V
+ f (t, x) ≤ 0
∂t ∂x
for all t ≥ 0 and x ∈ D, where W1 (x) and W2 (x) are
continuous positive definite functions on D. Then, the origin
is uniformly stable
V (x) = 12 x2
Example 4.3
∂V
V̇ (t, x) ≤ −c3 kxk2 + kg(t, x)k
∂x
≤ −c3 kxk2 + c4 γkxk2
∂V
Ax = −xT Qx ≤ −λmin (Q)kxk2
∂x
∂V
g = k2xT P gk ≤ 2kP kkxkkgk ≤ 2kP kγkxk2
∂x
V̇ (t, x) ≤ −λmin (Q)kxk2 + 2λmax (P )γkxk2
λmin (Q)
The origin is globally exponentially stable if γ < 2λmax (P )
ẋ1 = x2
ẋ2 = −4x1 − 2x2 + βx32 , β≥0
ẋ = Ax + g(x)
0 1 0
A= , g(x) =
−4 −2 βx32
√
The eigenvalues of A are −1 ± j 3
3 1
2 8
P A + AT P = −I ⇒ P =
1 5
8 16
kg(x)k = β|x2 |3
g(x) satisfies the bound kg(x)k ≤ γkxk over compact sets of
x. Consider the compact set
c3 1 0.1
γ< ⇔ β< 2
≈
c4 3.026 × (1.8194) c c
∂V
g(t, x) < W3 (x)
∂x
∂V ∂V
f (x) ≤ −c3 φ2 (x), ≤ c4 φ(x)
∂x ∂x
c3
If kg(t, x)k ≤ γφ(x), with γ <
c4
ẋ = −x3 + g(t, x)
V (x) = x4 is a quadratic-type Lyapunov function for ẋ = −x3
∂V ∂V
(−x3 ) = −4x6 , = 4|x|3
∂x ∂x
φ(x) = |x|3 , c3 = 4, c4 = 4
Example 4.7
ẋ = −x3 + γx
The origin is unstable for any γ > 0
kx(t0 )k ≤ a ⇒ kx(t)k ≤ β, ∀ t ≥ t0
kx(t0 )k ≤ a ⇒ kx(t)k ≤ b, ∀ t ≥ t0 + T
Ω
c
Ω
ε
V̇ (t, x) ≤ −k, ∀ x ∈ Λ, ∀ t ≥ t0 ≥ 0
Ω
c
Ωε
Bb
B
µ
ε = α2 (µ) ⇒ Bµ ⊂ Ωε
What is the ultimate bound?
∂V
f (t, x) ≤ −W3 (x), ∀ x ∈ D with kxk ≥ µ, ∀ t ≥ 0
∂x
where α1 and α2 are class K functions and W3 (x) is a
continuous positive definite function. Choose c > 0 such that
Ωc = {V (x) ≤ c} is compact and contained in D and suppose
µ < α2−1 (c). Then, Ωc is positively invariant and there exists a
class KL function β such that for every x(t0 ) ∈ Ωc ,
1 1
2 2
Z x1
T
V (x) = x x+ 2 (y + y 3 ) dy (Example 3.7)
1 0
2
1
3 1
2 2
V (x) = xT x + 1 x41 def
= xT P x + 12 x41
2
1
2
1
p
c2 /c1 max kx(t0 )ke−(c3 /c2 )(t−t0 )/2 , µ , ∀ t ≥ t0
kx(t)k ≤
If D = Rn , the inequalities hold ∀x(t0 ), ∀µ
|u(t)| ≤ d
Z x1
1 T k k
V (x) = 2
x x+ h(y) dy, 0<k<1
k 1 0
Z x1
2 2
x
3 1
≤ x1 h(x1 ) ≤ x21 , 5 2
x
12 1
≤ h(y) dy ≤ 12 x21 , ∀ |x1 | ≤ 1
0
q
3 2
− 0.1×2 kxk2 0.9×2
kxk2
V̇ ≤ 5
− 5
+ 1+ 5
kxk d
def
≤ 0.1×2
5
kxk2 , ∀ kxk ≥ 3.2394 d = µ
ẋ = f (x), f (0) = 0
Perturbed System:
∂V ∂V
f (x) ≤ −c3 kxk2 , ≤ c4 kxk
∂x ∂x
r
c3 c1
kg(t, x)k ≤ δ < θr, 0 < θ < 1
c4 c2
Then, for all x(t0 ) ∈ {V (x) ≤ c1 r 2 }
x(t0 ) ∈ Ω = {V (x) ≤ c1 r 2 }
r r r r
c1 c3 c1 c2 δc4 c2
µ<r ⇔ δ< θr, b = µ ⇔ b=
c2 c4 c2 c1 θc3 c1
3 1
2 8
V (x) = xT P x = xT x (Example 4.5)
1 5
8 16
5 2
V̇ (t, x) = −kxk2 + 2βx22 81 x1 x2 + 16
x2
+ 2d(t) 18 x1 + 16
5
x2
√ √
2 29 2 2 29δ
≤ −kxk + βk2 kxk + kxk
8 8
√
Suppose β ≤ 8(1 − ζ)/( 29k22 ) (0 < ζ < 1)
√
V̇ (t, x) ≤ −ζkxk2 + 29δ
8
kxk
√
29δ def
≤ −(1 − θ)ζkxk2 , ∀ kxk ≥ 8ζθ
= µ
(0 < θ < 1)
If µ2 λmax (P ) < c, then all solutions of the perturbed system,
starting in Ωc , are uniformly ultimately bounded by
√ s
29δ λmax (P )
b=
8ζθ λmin (P )
x
ẋ = − (Globally asymptotically stable)
1 + x2
4x4
4 ∂V x
V (x) = x ⇒ − = −
∂x 1 + x2 1 + x2
4|x|4
α1 (|x|) = α2 (|x|) = |x|4 ; α3 (|x|) = ; k = 4r 3
1 + |x|2
θα3 (α2−1 (α1 (r))) θα3 (r) rθ 1
= = < 2
k k 1 + r2
x 1
ẋ = − + δ, δ> 2
⇒ lim x(t) = ∞
1 + x2 t→∞
for all t ≥ t0
ISS of ẋ = f (x, u) implies
BIBS stability
x(t) is ultimately bounded by γ supt0 ≤τ ≤t ku(τ )k
limt→∞ u(t) = 0 ⇒ limt→∞ x(t) = 0
The origin of ẋ = f (x, 0) is GAS
∂V
f (x, u) ≤ −W3 (x), ∀ kxk ≥ ρ(kuk) > 0
∂x
∀ x ∈ Rn , u ∈ Rm , where α1 , α2 ∈ K∞ , ρ ∈ K, and W3 (x) is
a continuous positive definite function. Then, the system
ẋ = f (x, u) is ISS with γ = α1−1 ◦ α2 ◦ ρ
Proof
Let µ = ρ(supτ ≥t0 ku(τ )k); then
∂V
f (x, u) ≤ −W3 (x), ∀ kxk ≥ µ
∂x
kx(t)k ≤ max β(kx(t0 )k, t − t0 ), γ sup ku(τ )k
τ ≥t0
ẋ = −x3 + u
V = 21 x2
V̇ = −x4 + xu
= −(1 − θ)x4 − θx4 + xu
1/3
≤ −(1 − θ)x4 , ∀ |x| ≥ |u|
θ
0<θ<1
The system is ISS with γ(r) = (r/θ)1/3
ẋ = −x − 2x3 + (1 + x2 )u2
V = 12 x2
|u| u2
x21 ≥ or x22 ≥ 2 ⇒ −θx41 − θx22 + |x2 | |u| ≤ 0
2θ θ
|u| u2
kxk2 ≥ + 2 ⇒ −θx41 − θx22 + |x2 | |u| ≤ 0
2θ θ
r
r r2
ρ(r) = + 2
2θ θ
V̇ = −x21 + x1 x22 ≤ −(1 − θ)x21 , for |x1 | ≥ x22 /θ, 0 < θ < 1
∂V
f (x, u) ≤ −W3 (x), ∀ kxk ≥ ρ(kuk) > 0
∂x
for all x ∈ Br and u ∈ Bλ , where α1 , α2 , ρ ∈ K and W3 (x) is
a continuous positive definite function. Suppose
α1 (r) > α2 (ρ(λ)) and let Ω = {V (x) ≤ α1 (r)}. Then, the
system ẋ = f (x, u) is regionally input-to-state stable with
respect to Ω × Bλ and γ = α1−1 ◦ α2 ◦ ρ
+ y- P
y
PP
u P
P
P u
(a)
(b)
power inflow = uy
Resistor is passive if uy ≥ 0
u u u
hT =
Vector case: y = h(t, u), h1 , h2 , · · · , hp
y=βu
y=β u
y y
y=αu
u u
y=αu
Definition 5.2
A memoryless function h(t, u) is said to belong to the sector
[0, ∞] if uT h(t, u) ≥ 0
[K1 , ∞] if uT [h(t, u) − K1 u] ≥ 0
[0, K2 ] with K2 = K2T > 0 if hT (t, u)[h(t, u) − K2 u] ≤ 0
[K1 , K2 ] with K = K2 − K1 = K T > 0 if
h1 (u1 )
h(u) = , hi ∈ [αi , βi ], βi > αi i = 1, 2
h2 (u2 )
α1 0 β1 0
K1 = , K2 =
0 α2 0 β2
h ∈ [K1 , K2 ]
β1 − α1 0
K = K2 − K1 =
0 β2 − α2
K1 = L − γI, K2 = L + γI
K = K2 − K1 = 2γI
+✲ ✎☞ ✲ ✲
+✲ ✎☞ ✲
✍✌ K −1 y = h(t, u) ✍✌
+✻ −✻
✲ K1
Feedforward K −1 Feedback
[K1 , K2 ] [0, K] [0, I] [0, ∞]
−→ −→ −→
v2 = h2(i2) L
y
B B B
i2 + v2 iL
- - BB BB BB -
+ + + +
u v1 i1 = h1(v1) vC C v3 i3 = h3(v3)
P
P P
P
P
P
P P
P
P
P
P
PP PP
P
P
P P
i1 ?
i3 ?
Lẋ1 = u − h2 (x1 ) − x2
C ẋ2 = x1 − h3 (x2 )
y = x1 + h1 (u)
uy ≥ V̇ + uh1 (u)
uy ≥ V̇ + x1 h2 (x1 ) + x2 h3 (x2 )
∂V
uT y ≥ V̇ = f (x, u), ∀ (x, u)
∂x
Moreover, it is
lossless if uT y = V̇
input strictly passive if uT y ≥ V̇ + uT ϕ(u) for some
function ϕ such that uT ϕ(u) > 0, ∀ u 6= 0
output strictly passive if uT y ≥ V̇ + y T ρ(y) for some
function ρ such that y T ρ(y) > 0, ∀ y 6= 0
strictly passive if uT y ≥ V̇ + ψ(x) for some positive
definite function ψ
ẋ = u, y=x
V (x) = 12 x2 ⇒ uy = V̇ ⇒ Lossless
ẋ = u, y = x + h(u), h ∈ [0, ∞]
ẋ = −h(x) + u, y = x, h ∈ [0, ∞]
ẋ = u, y = h(x), h ∈ [0, ∞]
Z x
V (x) = h(σ) dσ ⇒ V̇ = h(x)ẋ = yu ⇒ Lossless
0
yu = V̇ + xh(x) ⇒ Passive
Z x1
V (x) = α h(σ) dσ + 21 αxT P x
Z0 x1
= α h(σ) dσ + 21 α(p11 x21 + 2p12 x1 x2 + p22 x22 )
0
⇒ Strictly passive
α = 1/c ⇒ uy − V̇ = (b/c)x22 ≥ 0
Lossless when b = 0
Re[G(jω)] ≥ 0, ∀ ω ∈ [0, ∞)
G(s) is Hurwitz
Re[G(jω)] > 0, ∀ ω ∈ [0, ∞)
G(∞) > 0 or
1
G(s) =
s
has a simple pole at s = 0 whose residue is 1
1
Re[G(jω)] = Re = 0, ∀ ω 6= 0
jω
1 1 − ω2
G(s) = , Re[G(jω)] =
s2 + s + 1 (1 − ω 2 )2 + ω 2
G is not PR
2(2+ω 2 )
−2jω
1+ω 2 4+ω 2
G(jω) + GT (−jω) = > 0, ∀ ω ∈ R
2jω 4
4+ω 2 1+ω 2
T 2 0
G(∞) + G (∞) = , q=1
0 0
P A + AT P = −LT L
P B = C T − LT W
W T W = D + DT
P A + AT P = −LT L − εP
P B = C T − LT W
W T W = D + DT
ẋ = Ax + Bu, y = Cx + Du
with
G(s) = C(sI − A)−1 B + D
is
passive if G(s) is positive real
strictly passive if G(s) is strictly positive real
Proof
Apply the PR and KYP Lemmas, respectively, and use
V (x) = 12 xT P x as the storage function
Proof
∂V ∂V
uT y ≥ f (x, u) ⇒ f (x, 0) ≤ 0
∂x ∂x
Proof
The storage function V (x) is positive definite
∂V ∂V
uT y ≥ f (x, u) + ψ(x) ⇒ f (x, 0) ≤ −ψ(x)
∂x ∂x
Why is V (x) positive definite? Let φ(t; x) be the solution of
ż = f (z, 0), z(0) = x
Linear Systems
ẋ = Ax, y = Cx
Observability of (A, C) is equivalent to
Proof
The storage function V (x) is positive definite
∂V ∂V
uT y ≥ f (x, u) + y T ρ(y) ⇒ f (x, 0) ≤ −y T ρ(y)
∂x ∂x
∂V ∂V
f (x) ≤ 0, G(x) = hT (x)
∂x ∂x
∂V ∂V
uT y − V̇ = uT h(x) − f (x) − hT (x)u = − f (x) ≥ 0
∂x ∂x
If V (x) is positive definite, the origin of ẋ = f (x) is stable
Input-Output Models: y = Hu
u(t) is a piecewise continuous function of t and belongs to a
linear space of signals
The space of bounded functions: supt≥0 ku(t)k < ∞
The
R ∞ space of square-integrable functions:
T
0
u (t)u(t) dt < ∞
Norm of a signal kuk:
kuk ≥ 0 and kuk = 0 ⇔ u = 0
kauk = akuk for any a > 0
Triangle Inequality: ku1 + u2 k ≤ ku1 k + ku2 k
sZ
∞
L2 : kukL2 = uT (t)u(t) dt < ∞
0
Z ∞ 1/p
p
Lp : kukLp = ku(t)k dt < ∞, 1 ≤ p < ∞
0
Notation Lm
p :
p is the type of p-norm used to define the space
and m is the dimension of u
Example
t, 0 ≤ t ≤ τ
u(t) = t, uτ (t) =
0, t>τ
u∈
/ L∞ but uτ ∈ L∞e
(Hu)τ = (Huτ )τ
Definition 6.1
A scalar continuous function g(r), defined for r ∈ [0, a), is a
gain function if it is nondecreasing and g(0) = 0
k(Hu)τ kL ≤ g (kuτ kL ) + β, ∀ u ∈ Lm
e and τ ∈ [0, ∞)
k(Hu)τ kL ≤ γkuτ kL + β, ∀ u ∈ Lm
e and τ ∈ [0, ∞)
In this case, we say that the system has L gain ≤ γ. The bias
term β is included in the definition to allow for systems where
Hu does not vanish at u = 0.
Finite-gain L∞ stable
y = tan u
The output y(t) is defined only when the input signal is
restricted to |u(t)| < π/2 for all t ≥ 0
tan r
u(t) ∈ {|u| ≤ r < π/2} ⇒ |y| ≤ |u|
r
tan r
kykLp ≤ kukLp , p ∈ [1, ∞]
r
∂V ∂V
f (x, 0) ≤ −c3 kxk2 , ≤ c4 kxk
∂x ∂x
∂V ∂V
f (x, 0) +
V̇ = [f (x, u) − f (x, 0)]
∂x ∂x
c3 c4 L √
V̇ ≤ −c3 kxk2 + c4 Lkxk kuk ≤ − V + √ kuk V
c2 c1
p
W (x) = V (x)
c3 c4 L
Ẇ ≤ −aW + bku(t)k, a= , b= √
2c2 2 c1
√ √
c1 kxk ≤ W (x) ≤ c2 kxk
r Z t
c2 c4 L
kx(t)k ≤ kx(0)ke−at + e−at ku(τ )k dτ
c1 2c1 0
ẋ = −x − x3 + u, y = tanh x + u
V = 12 x2 ⇒ V̇ = x(−x − x3 ) ≤ −x2
c1 = c2 = 21 , c3 = c4 = 1, L = η1 = η2 = 1
Example 6.5
is L∞ stable
is small-signal L∞ stable
Proof
Use Lemma 4.7 (asymptotic stability is equivalent to local ISS)
ẋ = −x − 2x3 + (1 + x2 )u2 , y = x2 + u
L∞ stable
V̇ ≤ −kxk4 + 2kxk|u|
= −(1 − θ)kxk4 − θkxk4 + 2kxk|u|, 0 < θ < 1
1/3
≤ −(1 − θ)kxk4 , ∀ kxk ≥ 2|u|
θ
⇒ ISS
√
g1 (r) = 2r, g2 = 0, η=0
L∞ stable
ẋ = Ax + Bu, y = Cx + Du
Z τ Z τ
2 2
V (x(τ )) − V (x(0)) ≤ kγ ku(t)k dt − k ky(t)k2 dt
0 0
V (x) ≥ 0
τ Z τ
V (x(0))
Z
2 2
ky(t)k dt ≤ γ ku(t)k2 dt +
0 0 k
r
V (x(0))
kyτ kL2 ≤ γkuτ kL2 +
k
uT y ≥ V̇ + δy T y, δ>0
Proof
V̇ ≤ uT y − δy T y
= − 2δ1 (u − δy)T (u− δy) + 1 T
2δ
u u − 2δ y T y
≤ 2δ δ12 uT u − y T y
f (0) = 0, h(0) = 0
where f and G are locally Lipschitz and h is continuous over
Rn . Suppose ∃ γ > 0 and a continuously differentiable,
positive semidefinite function V (x) that satisfies the
Hamilton–Jacobi inequality
T
∂V 1 ∂V ∂V 1
f (x) + 2 G(x)GT (x) + hT (x)h(x) ≤ 0
∂x 2γ ∂x ∂x 2
∂V ∂V
f (x) + G(x)u =
∂x ∂x
T 2
1 1 ∂V ∂V
− γ 2 u − 2 GT (x) + f (x)
2 γ ∂x ∂x
T
1 ∂V ∂V 1
+ 2 G(x)GT (x) + γ 2 kuk2
2γ ∂x ∂x 2
1 1
V̇ ≤ γ 2 kuk2 − kyk2
2 2
ẋ = Ax + Bu, y = Cx
Suppose there is P = P T ≥ 0 that satisfies the Riccati
equation
1
P A + AT P + P BB T P + C T C = 0
γ2
∂V
V̇ = f (x, u) ≤ k(γ 2 kuk2 − kyk2 ), k, γ > 0
∂x
for x ∈ D ⊂ Rn and u ∈ Du ⊂ Rm , where D and Du are
domains that contain x = 0 and u = 0, respectively. Suppose
further that x = 0 is an asymptotically stable equilibrium point
of ẋ = f (x, 0). Then, there is r > 0 such that for each x(0)
with kx(0)k ≤ r, the system
Assume
uT y ≥ V̇ + δy T y, δ>0
is satisfied for V (x) ≥ 0 in some neighborhood of
(x = 0, u = 0) and the origin is an asymptotically stable
equilibrium point of ẋ = f (x, 0). Then, the system is
small-signal finite-gain L2 stable and its L2 gain is less than or
equal to 1/δ
Assume
T
∂V 1 ∂V ∂V 1
f (x) + 2 G(x)GT (x) + hT (x)h(x) ≤ 0
∂x 2γ ∂x ∂x 2
√
1 2 1 1
V (x) = a x − x4 + x22 ≥ 0 for |x1 | ≤ 6
2 1 12 1 2
V̇ = −kx22 + x2 u = −ky 2 + yu
u = 0 ⇒ V̇ = −kx22 ≤ 0
√
x2 (t) ≡ 0 ⇒ x1 (t)[3−x21 (t)] ≡ 0 ⇒ x1 (t) ≡ 0 for |x1 | < 3
By the invariance principle, the origin is asymptotically stable
when u = 0. By Theorem 6.7, the system is small-signal
finite-gain L2 stable and its L2 gain is ≤ 1/k
y2 + u
❄
✛ ✛ e2 ❧✛+ 2
H2
yi = hi (t, ei )
Proof
Let V1 (x1 ) and V2 (x2 ) be the storage functions for H1 and H2
(Vi = 0 if Hi is memoryless )
ẋ1 = x2 ẋ3 = x4
ẋ2 = −ax31 − kx2 + e1 ẋ4 = −bx3 − x34 + e2
y1 = x2 y2 = x4
| {z } | {z }
H1 H2
a, b, k > 0
V1 = 14 ax41 + 12 x22
V̇1 = ax31 x2 − ax31 x2 − kx22 + x2 e1 = −ky12 + y1 e1
With e1 = 0, y1 (t) ≡ 0 ⇔ x2 (t) ≡ 0 ⇒ x1 (t) ≡ 0
H1 is output strictly passive and zero-state observable
V̇ = −kx22 + x2 e1 − x44 + x4 e2
= −kx22 − x2 x4 − x44 + x4 (x2 − x4 )
= −kx22 − x44 − x24 ≤ 0
H1
+
✲❣ +
✲ ❣✲
R x2
−✻ −✻
h2 (·) ✛
x R ✛
h1 (·) ✛ 1
H2
H2 : ẋ1 = e2 , y2 = h1 (x1 )
Z x1
V2 = h1 (σ) dσ, V̇2 = h1 (x1 )e2 = y2 e2 Lossless
0
We cannot apply Theorem 7.2, but use
Z x1
1
V = V1 + V2 = h1 (σ) dσ + x22
0 2
Proof
Let V1 (x1 ) be (positive definite) storage function of H1 .
∂V1
V̇1 = f1 (x1 , e1 ) ≤ eT1 y1 − ψ1 (x1 ) = −eT2 y2 − ψ1 (x1 )
∂x1
ẋ = f (x) + G(x)e1
y = σ(e )
y1 = h(x) | 2 {z 2}
| {z } H2
H1
σ(0) = 0, eT2 σ(e2 ) > 0, ∀ e2 6= 0
Suppose H1 is zero-state observable and there is a radially
unbounded positive definite function V1 (x) such that
∂V1 ∂V1
f (x) ≤ 0, G(x) = hT (x), ∀ x ∈ Rn
∂x ∂x
∂V1 ∂V1
V̇1 = f (x) + G(x)e1 ≤ y1T e1
∂x ∂x
y2 e +
❄ u2
✛ ✛ 2 ♥✛+
H2
yi = hi (t, ei )
+✲ ✎☞ ✲ ✲
+✲ ✎☞ ✲
✍✌ K −1 y = h(t, u) ✍✌
+✻ −✻
✲ K1
H2 ✛
H1 is a dynamical system
H2 is a memoryless function in the sector [K1 , K2 ]
K1 ✛
+
❤✛ H2 ✛
−
✻
K1 ✛
K1 ✛
+
❤✛ H2 ✛ K −1 ✛
−
✻
K1 ✛
K1 ✛
+ +
❤✛ H2 ✛ K −1 ✛ ❤✛
− +
✻ ✻
K1 ✛
H̃2
ẋ1 = x2
ẋ2 = −h(x1 ) − ax2 + ẽ1 ỹ2 = σ̃(ẽ2 )
| {z }
ỹ1 = bx2 + ẽ1 H̃2
| {z }
H̃1
Proof
V = V1 + V2 , δ = min{δ1 , δ2 }
Special cases:
ε1 = δ1 = 0, ε2 = γα, δ2 = (1 − γ)/β
The closed-loop map from u to y is finite-gain L2 stable
u1 ✲ e
♥ 1✲
y1 ✲
+ H1
−✻
y2 e +
❄ u2
✛ ✛ 2 ♥✛+
H2
ky1τ kL ≤ γ1 ke1τ kL + β1 , ∀ e1 ∈ Lm
e , ∀ τ ∈ [0, ∞)
Theorem 7.7
The feedback connection is finite-gain L stable if γ1 γ2 < 1
Proof
1
ke1τ kL ≤ (ku1τ kL + γ2 ku2τ kL + β2 + γ2 β1 )
1 − γ1 γ2
1
ke2τ kL ≤ (ku2τ kL + γ1 ku1τ kL + β1 + γ1 β2 )
1 − γ1 γ2
H1 : Hurwitz G(s)
H2 : y2 = ψ(t, e2 ), kψ(t, y)k ≤ γ2 kyk, ∀ t, ∀ y
H1 is finite-gain L2 stable; L2 gain ≤ supw∈R kG(jω)k
H2 is finite-gain L2 stable; L2 gain ≤ γ2
The feedback connection is finite-gain L2 stable if
A is a Hurwitz, −CA−1 B = I, ε ≪ 1, di ∈ L
Model order reduction: ε = 0
v = −CA−1 B(u + d2 ) = u + d2
ẋ = f (t, x, u + d), d = d1 + d2
Disturbance attenuation: Design u = φ(t, x) such that
Assume d˙2 ∈ L
∂φ ∂φ
Assume + f (t, x, φ(t, x) + e1 ) ≤ c1 kxk + c2 ke1 k
∂t ∂x
ky1 kL ≤ γ1 ke1 kL + β1 , γ1 = c1 γ + c2 , β1 = c1 β
By design
kxkL ≤ γke1 kL + β
Hence
γ
kxkL ≤ [kdkL + εγf kd˙2 kL + εγf β1 + β2 ] + β
1 − εγ1 γf
| {z }
→γkdkL +β+γβ2 as ε→0
ψ(·) ✛
Definition 7.1
The system is absolutely stable if the origin is globally
uniformly asymptotically stable for any nonlinearity in a given
sector. It is absolutely stable with finite domain if the origin is
uniformly asymptotically stable
ẋ = Ax + Bu
y = Cx + Du
u = −ψ(t, y)
P A + AT P = −LT L − εP
P B = C T − LT W
W W = D + DT
T
V (x) = 12 xT P x
uT Du = 12 uT (D + D T )u = 21 uT W T W u
V̇ = − 21 εxT P x − 1
2
(Lx + W u)T (Lx + W u) − y T ψ(t, y)
y T ψ(t, y) ≥ 0 ⇒ V̇ ≤ − 12 εxT P x
✲+ ❢ ✲ G(s) ✲ ✲+ ❢ ✲+ ❢ ✲ G(s) ✲
− − −
✻ ✻ ✻
K1 ✛
ψ(·) ✛ ✛ ψ(·) ✛
+
❢
−
✻
K ✛1 ψ̃(·)
✲+ ❢ ✲ G(s) ✲ ✲+ ❢ ✲+ ❢ ✲ G(s) ✲ ❄
✲❢
+ ✲
− − − K +
✻ ✻ ✻
K1 ✛
ψ(·) ✛ ✛ ψ(·) ✛ K −1 ✛ + ❢✛
+
❢ +
−
✻ ✻
K ✛1 ψ̃(·)
ψ ∈ [K1 , K2 ], K1 = −γ2 I, K2 = γ2 I
By the circle criterion, the system is absolutely stable if
Z(∞) + Z T (∞) = 2I
By Lemma 5.1,
H(jω) = [I − γ2 G(jω)]−1
1 + βG(s) 1 βG(s)
= +
1 + αG(s) 1 + αG(s) 1 + αG(s)
D(α,β) q
θ θ
2 1
−1/α −1/β
1
Re[G(jω)] > − , ∀ ω ∈ [0, ∞]
β
The system is absolutely stable if G(s) is Hurwitz and the
Nyquist plot of G(jω) lies to the right of the vertical line
defined by Re[s] = −1/β
The Nyquist plot of G(jω) must lie inside the disk D(α, β).
The Nyquist plot cannot encircle the point −(1/α) + j0.
From the Nyquist criterion, G(s) must be Hurwitz
The system is absolutely stable if G(s) is Hurwitz and the
Nyquist plot of G(jω) lies in the interior of the disk D(α, β)
24
G(s) =
(s + 1)(s + 2)(s + 3)
6
Im G
4
0
Re G
−2
−4
−5 0 5
Apply Case 2
The Nyquist plot is to the right of Re[s] = −0.857
0.4 Im G
0.2
0 G is not Hurwitz
Re G
−0.2 Apply Case 1
−0.4
−4 −2 0
s+2
G(s) = , ψ(y) = sat(y) ∈ [0, 1]
(s + 1)(s − 1)
We cannot conclude absolute stability because case 1 requires
α>0
y/a
✻ ψ(y)✟✟✟
1 ✟
✟✟
✟ ✟ ✲
✟
−a −1 1 a y
✟
✟✟
✟✟
1
−a ≤ y ≤ a ⇒ ψ ∈ [α, 1], α =
a
0.5
0
Re G
−0.5
−2 −1.5 −1 −0.5 0
The Nyquist plot must encircle the disk D(1/a, 1) once in the
counterclockwise direction, which is satisfied for a = 1.818
Loop transformation:
1
u = −αy + ũ, ỹ = (β − α)y + ũ, α= = 0.55, β = 1
a
ẋ = Ax + B ũ, ỹ = Cx + Dũ
where
0 1 0
A= ,B = , C = 0.9 0.45 , D = 1
−0.1 −0.55 1
V1 (x) = xT P1 x, V2 (x) = xT P2 x
0
x1
−0.5
y=−1.818
−1
−1.5 −1 −0.5 0 0.5 1 1.5
ψ(·) ✛
ẋ = Ax + Bu, y = Cx
(A, B) controllable, (A, C) observable
ui = −ψi (yi ), ψi ∈ [0, ki ], 1 ≤ i ≤ m, (0 < ki ≤ ∞)
ψi ∈ [0, ki ], 0 < ki ≤ ∞
M + (I + sΓ)G(s) is SPR
✲ M
H̃1
✲ ❄
+ +
✲ ✐ ✲ G(s) ✲ (I + sΓ) ✐ ✲
+
−
✻
+
ψ(·) ✛ (I + sΓ)−1 ✛ ✛
✐
+
✻
H̃2
M
M + (I + sΓ)G(s)
= M + (I + sΓ)C(sI − A)−1 B
= M + C(sI − A)−1 B + ΓCs(sI − A)−1 B
= M + C(sI − A)−1 B + ΓC(sI − A + A)(sI − A)−1 B
= (C + ΓCA)(sI − A)−1 B + M + ΓCB
= C(sI − A)−1 B + D
A = A, B = B, C = C + ΓCA, D = M + ΓCB
Avk = λk vk
(C + ΓCA)vk = (C + ΓCλk )vk = (I + λk Γ)Cvk
P A + AT P = −LT L − εP
P B = (C + ΓCA)T − LT W
W T W = 2M + ΓCB + B T C T Γ
−1/k Re[G(jω)]
Popov Plot
1
G(s) = , ψ(y) = h(y) − αy
s2 +s+α
α − ω 2 + γω 2
γ>1 ⇒ > 0, ∀ ω ∈ [0, ∞)
(α − ω 2 )2 + ω 2
ω 2(α − ω 2 + γω 2)
and lim =γ −1 >0
ω→∞ (α − ω 2 )2 + ω 2
ω Im G
0.2 slope=1
0
Re G
−0.2
−0.4
−0.6
−0.8
−1
−0.5 0 0.5 1
1 α − ω2 √
+ > 0, ∀ ω ∈ [0, ∞], for k < 1 + 2 α
k (α − ω 2 )2 + ω 2
∂(Lk−1
f h)
Lkf h(x) = Lf Lk−1
f h(x) = f (x)
∂x
ẏ = Lf h(x) + Lg h(x) u
Lg h(x) = 0 ⇒ ẏ = Lf h(x)
∂(Lf h)
y (2) = [f (x) + g(x)u] = L2f h(x) + Lg Lf h(x) u
∂x
Lg Li−1
f h(x) = 0, i = 1, 2, . . . , ρ − 1; Lg Lρ−1
f h(x) 6= 0
Definition 8.1
The system
Lg Li−1
f h(x) = 0, i = 1, 2, . . . , ρ − 1; Lg Lρ−1
f h(x) 6= 0
ẋ1 = d1 (−x1 − x2 x3 + Va )
ẋ2 = d2 [−fe (x2 ) + u]
ẋ3 = d3 (x1 x2 − bx3 )
y = x3
ẋ = Ax + Bu, y = Cx
0 1 0 ... ... 0
0
0 0 1 ... ... 0 0
.. .. .. ..
.
. .
.
..
.
A = ..
, B =
..
. .
.
.. ..
..
. . 0
0 0 1 0
−a0 −a1 . . . . . . −am . . . . . . −an−1 1
C = b0 b1 ... ... bm 0 ... 0
CAi−1 B = 0, i = 1, . . . , n − m − 1, CAn−m−1 B = bm 6= 0
y (n−m) = CAn−m x + CAn−m−1 Bu ⇒ ρ = n − m
1
N(s) N(s) Q(s)
H(s) = = = R(s)
D(s) Q(s)N(s) + R(s) 1+ 1
Q(s) N (s)
u + e 1 y
✲ ❦ ✲ ✲
−✻ Q(s)
w R(s) ✛
N (s)
ξ˙ = (Ac + Bc λT )ξ + Bc bm e, y = Cc ξ
0 1 0 ... 0
0
0 0 1 ... 0 0
.. ..
.. ..
.
Ac = . .
, Bc = , Cc = 1 0 ... 0 0
.. .
0
. 0 1
0 ... ... 0 0 1
η̇ = A0 η + B0 y, w = C0 η
η̇ = A0 η + B0 Cc ξ
ξ˙ = Ac ξ + Bc (λT ξ − bm C0 η + bm u)
y = Cc ξ
φ1 (x)
..
.
φ (x)
φ(x) η
n−ρ
def def
z = T (x) = − − − = −−− = −−−
h(x) ψ(x) ξ
..
.
ρ−1
Lf h(x)
∂φi
g(x) = 0, for 1 ≤ i ≤ n − ρ, ∀ x ∈ Dx
∂x
η̇ = f0 (η, ξ)
0 1 0 ... 0
0
0 0 1 ... 0 0
.. .. ..
..
Ac =
. . .
, Bc =
.
..
0
. 0 1
0 ... ... 0 0 1
Cc = 1 0 . . . 0 0
Lρf h(x(t))
y(t) ≡ 0 ⇒ ξ(t) ≡ 0 ⇒ u(t) ≡ −
Lg Lρ−1
f h(x(t))
⇒ η̇ = f0 (η, 0)
Definition
The equation η̇ = f0 (η, 0) is called the zero dynamics of the
system. The system is said to be minimum phase if the zero
dynamics have an asymptotically stable equilibrium point in
the domain of interest (at the origin if T (0) = 0)
y(t) ≡ 0 ⇒ x(t) ∈ Z ∗
Non-minimum phase
2 + x23
ẋ1 = −x1 + u, ẋ2 = x3 , ẋ3 = x1 x3 + u, y = x2
1 + x23
ẏ = ẋ2 = x3
ÿ = ẋ3 = x1 x3 + u ⇒ ρ = 2
Z ∗ = {x2 = x3 = 0}
Minimum phase
φ(x) = x1 − x3 − tan−1 x3
y = ξ1
ẋ = Ax + B[ψ(x) + γ(x)u]
u = γ −1 (x)[−ψ(x) + v] ⇒ ẋ = Ax + Bv
Any system that can be represented in the controller form is
said to be feedback linearizable
ψ = −M −1 (C q̇ + D q̇ + g), γ = M −1
ẋ = f (x) + g(x)u
Lg Li−1 n−1
f h(x) = 0, i = 1, 2, . . . , n − 1, and Lg Lf h(x) 6= 0
Lfn−1 h(x)
T (x) = col h(x), Lf h(x), ···
∂g ∂f
[f, g](x) = f (x) − g(x)
∂x ∂x
Notation:
adkf g = (−1)k Ak g
∆ = span{f1 , f2 , . . . , fk }
g1 ∈ ∆ and g2 ∈ ∆ ⇒ [g1 , g2 ] ∈ ∆
[fi , fj ] ∈ ∆, ∀ 1 ≤ i, j ≤ k
∆ is not involutive
ẋ = f (x) + g(x)u
span{g} is involutive
x2 0
−a sin x1 − b(x1 − x3 ) 0
f (x) = , g=
x4 0
c(x1 − x3 ) d
0
∂f 0
adf g = [f, g] = − g=
−d
∂x
0
∂(Li−1
f h) ∂(L3f h)
g = 0, i = 1, 2, 3, g 6= 0, h(0) = 0
∂x ∂x
∂h ∂h
g=0 ⇒ =0
∂x ∂x4
∂h ∂h ∂h
Lf h(x) = x2 + [−a sin x1 − b(x1 − x3 )] + x4
∂x1 ∂x2 ∂x3
∂(Lf h) ∂(Lf h) ∂h
g=0 ⇒ =0 ⇒ =0
∂x ∂x4 ∂x3
d1 (−x1 − x2 x3 + Va ) 0
f = −d2 fe (x2 ) , g = d2 , fe ∈ C 2 for x2 ∈ J
d3 (x1 x2 − bx3 ) 0
d1 d2 x3
adf g = d22 fe′ (x2 )
−d2 d3 x1
d1 d2 x3 (d1 + d2 fe′ (x2 ) − bd3 )
ad2f g = d32 (fe′ (x2 ))2 − d32 f2 (x2 )fe′′ (x2 )
2 2
d1 d2 d3 (x1 − Va ) − d2 d3 x1 fe (x2 ) − bd2 d3 x1
′
∂h ∂(Lf h) ∂(L2f h)
g = 0; g = 0; g 6= 0
∂x ∂x ∂x
ẋ = Ax + ψ(y, u), y = Cx
Observer:
x̂˙ = Ax̂ + ψ(y, u) + H(y − C x̂)
x̃ = x − x̂
x̃˙ = (A − HC)x̃
Design H such that (A − HC) is Hurwitz
Nonlinear Control Lecture # 22 Special nonlinear Forms
Example 8.15 (A single link manipulator with flexible joints)
x2 0
−a sin x1 − b(x1 − x3 ) 0
ẋ = +
0
u, y = x1
x4
c(x1 − x3 ) d
ẋ = Ax + ψ(u, y), y = Cx
0 1 0 0 0
−b 0 b 0 −a sin y
A= 0 0 0 1
, ψ =
0
c 0 −c 0 du
C = 1 0 . . . 0 0 , (A, C) is observable
ẋ = Ax + ψ(u, y), y = Cx
0 1 0
A= , ψ=
0 0 a(sin y + u cos y)
C= 1 0
0 1 0 ... 0
0 0 1 ... 0
.. .. ..
Ac =
. . .,
Cc = 1 0 ... 0 0
..
. 0 1
0 ... ... 0 0
∂T
τ1 τ2 · · · τn = I
∂x
∂T ∂T
ek = (−1)n−k adfn−k τ = (−1)n−k [f, adn−k−1
f τ]
∂x ∂x
∂ f˜
= (−1)n−k [f˜(z), (−1)n−k−1 ek+1 ] = ek+1
∂z
∂ h̃ h n−1 n−2
i
= (−1) Ladn−1 τ h, (−1) L n−2 h,
adf τ · · · Lτ h
∂z f
∂ h̃
= 1, 0, · · · 0 ⇒ h̃ = z1
∂z
ẋ = f (x), y = h(x)
∂T
When will g̃i (z) = gi (x) be independent of z2 to zn ?
∂x x=T −1 (z)
∂T ∂g̃i
[gi , adn−k−1
f τ ] = [g̃i , (−1)n−k−1 ek+1 ] = (−1)n−k
∂x ∂zk+1
∂g̃i
= 0 ⇔ [gi , adn−k−1
f τ] = 0
∂zk+1
" #
0 0
∂(adf τ ) 0
[τ, adf τ ] = τ =− ∂ 2 f2 ∂ 2 f2
∂x ∂x1 ∂x2 ∂x22 1
∂ 2 f2
[τ, adf τ ] = 0 ⇔ = 0 ⇔ f2 (x) = β2 (x1 ) + x2 β3 (x1 )
∂x22
∂T1 ∂T1
= 0 and = 1 ⇒ T1 = x1
∂x2 ∂x1
ż = Az + φ(y) + γ(y)u, y = Cz
0 1
A= , C= 1 0
0 0
Ry
β1 (y) + 0 β3 (σ) dσ b1
φ= , γ=
β2 (y) − β1 (y)β3(y) b2 − b1 β3 (y)
T
Rel deg = ρ ⇔ γ = 0, . . . , 0, γρ , . . . , γn , γρ 6= 0
ẋ = f (x, u)
0 = f (xss , uss )
xδ = x − xss , uδ = u − uss
def
ẋδ = f (xss + xδ , uss + uδ ) = fδ (xδ , uδ )
fδ (0, 0) = 0
ẋ = f (x, u) [f (0, 0) = 0]
find
u = φ(x) [φ(0) = 0]
s.t. the origin is an asymptotically stable equilibrium point of
ẋ = f (x, φ(x))
ẋ = x2 + u
Linearization:
ẋ = u, u = −kx, k > 0
Closed-loop system:
ẋ = −kx + x2
u = −Kx
Typical methods:
Eigenvalue Placement
Eigenvalue-Eigenvector Placement
LQR
u = −Kx
ẋ = f (x, −Kx)
Linearization:
∂f ∂f
ẋ = (x, −Kx) + (x, −Kx) (−K) x
∂x ∂u x=0
= (A − BK)x
θ̈ = − sin θ − bθ̇ + cu
Stabilize the pendulum at θ = δ1
0 = − sin δ1 + cuss
x1 = θ − δ1 , x2 = θ̇, uδ = u − uss
ẋ1 = x2
ẋ2 = −[sin(x1 + δ1 ) − sin δ1 ] − bx2 + cuδ
0 1 0 1
A= =
− cos(x1 + δ1 ) −b x1 =0
− cos δ1 −b
ẋ = f (x) + G(x)u
f (0) = 0, x ∈ Rn , u ∈ Rm
Suppose there is a change of variables z = T (x), defined for
all x ∈ D ⊂ Rn , that transforms the system into the controller
form
ż = Az + B[ψ(x) + γ(x)u]
where (A, B) is controllable and γ(x) is nonsingular for all
x∈D
u = γ −1 (x)[−ψ(x) + v] ⇒ ż = Az + Bv
ż = (A − BK)z
u = γ −1 (x)[−ψ(x) − KT (x)]
∂T
z = T (x) ⇒ (x)fc (x) = (A − BK)T (x)
∂x
∂fc ∂T
(0) = J −1 (A − BK)J, J = (0) (nonsingular)
∂x ∂x
The origin of ẋ = fc (x) is exponentially stable
Is x = 0 globally asymptotically stable? In general No
It is globally asymptotically stable if T (x) is a global
diffeomorphism
Ωc = {z T P z ≤ c} ⊂ T (D)
2a2
3σ 2 σ 2σ 3 0
P = , Q= , c < min z T P z =
σ 1 0 2σ |z2 |=a 3
T −1 (Ωc ) = {3σ 2 x21 + 2σax1 sin x2 + a2 sin2 x2 ≤ c}
u = γ −1 (x)[−ψ(x) − KT (x)] ?
ż = (A − BK)z + B∆(z)
Lemma 9.1
Suppose (*) is defined in Dz ⊂ Rn
If k∆(z)k ≤ kkzk ∀ z ∈ Dz , k < 1/(2kP Bk), then the
origin of (*) is exponentially stable. It is globally
exponentially stable if Dz = Rn
If k∆(z)k ≤ kkzk + δ ∀ z ∈ Dz and Br ⊂ Dz , then there
exist positive constants c1 and c2 such that if δ < c1 r and
z(0) ∈ {z T P z ≤ λmin (P )r 2}, kz(t)k will be ultimately
bounded by δc2 . If Dz = Rn , kz(t)k will be globally
ultimately bounded by δc2 for any δ > 0
1 2σ 3
k< p 2 2
⇔ ∆m < √ p
2 p12 + p22 2
[1 + σ σ + 4] 4σ 2 + (σ 2 + 1)2
0.4 0.3951
0.3
RHS
0.2
0.1
0
0 5 10
σ
Example 9.5
ẋ = ax − bx3 + u, a, b > 0
u = h(x1 ) − (k1 x1 + k2 x2 )
s2 + σ ′ (0)s + h′ (0) = 0
One of thep
two roots cannot be moved to the left of
Re[s] = − h′ (0)
Proof
With b > 0 sufficiently small,
p
V (η, ξ) = bV1 (η) + ξ T P ξ, (asymptotic)
η̇ = − 21 (1 + ξ2 )η 3 , ξ˙1 = ξ2 , ξ˙2 = v
1
1 − k 2 te−kt η 3 ,
η̇ = − 2
η(0) = η0
η02
η 2 (t) =
1 + η02 [t + (1 + kt)e−kt − 1]
If η02 > 1, the system will have a finite escape time if k is
chosen large enough
Proof
Apply Lemma 4.6
Lemma 9.4
If η̇ = f0 (η, ξ) is input-to-state stable and k∆(z)k ≤ δ for all
z, for some δ > 0, then the solution of (*) is globally
ultimately bounded by a class K function of δ
Lemma 9.5
If the origin of η̇ = f0 (η, 0) is exponentially stable, (*) is
defined in Dz ⊂ Rn , and k∆(z)k ≤ kkzk + δ ∀ z ∈ Dz , then
there exist a neighborhood Nz of z = 0 and positive constants
k ∗ , δ ∗ , and c such that for k < k ∗ , δ < δ ∗ , and z(0) ∈ Nz ,
kz(t)k will be ultimately bounded by cδ. If δ = 0, the origin of
(*) will be exponentially stable
η̇ = fa (η) + ga (η)ξ
η̇ = fa (η) + ga (η)φ(η)
∂Va
[fa (η) + ga (η)φ(η)] ≤ −W (η)
∂η
∂Va ∂Va
V̇ = [fa (η) + ga (η)φ(η)] + ga (η)z
∂η ∂η
+zF (η, ξ) + zgb (η, ξ)u
∂Va
≤ −W (η) + z ga (η) + F (η, ξ) + gb (η, ξ)u
∂η
V̇ ≤ −W (η) − kz 2
z2 = x2 − φ(x1 ) = x2 + x1 + x21
V̇ = x1 (−x1 − x31 + z2 )
+ z2 [u + (1 + 2x1 )(−x1 − x31 + z2 )]
V̇ = −x21 − x41
+ z2 [x1 + (1 + 2x1 )(−x1 − x31 + z2 ) + u]
def
x3 = −x1 − (1 + 2x1 )(−x1 − x31 + z2 ) − z2 = φ(x1 , x2 )
z3 = x3 − φ(x1 , x2 )
∂Va 2 ∂Va
V̇ = (x1 − x31 + x2 ) + (z3 + φ)
∂x1 ∂x2
∂φ 2 3 ∂φ
+ z3 u − (x − x1 + x2 ) − (z3 + φ)
∂x1 1 ∂x2
∂Va ∂φ 2 ∂φ
u=− + (x1 − x31 + x2 ) + (z3 + φ) − z3
∂x2 ∂x1 ∂x2
ẋ = f0 (x) + g0 (x)z1
ż1 = f1 (x, z1 ) + g1 (x, z1 )z2
ż2 = f2 (x, z1 , z2 ) + g2 (x, z1 , z2 )z3
..
.
żk−1 = fk−1 (x, z1 , . . . , zk−1 ) + gk−1(x, z1 , . . . , zk−1 )zk
żk = fk (x, z1 , . . . , zk ) + gk (x, z1 , . . . , zk )u
gi (x, z1 , . . . , zi ) 6= 0 for 1 ≤ i ≤ k
ẋ = −x + x2 z, ż = u
ẋ = −x + x2 z
V = 21 (x2 + z 2 )
Global stabilization
ẋ = x2 − xz, ż = u
ẋ = x2 − xz
1
z = x + x2 ⇒ ẋ = −x3 , V0 (x) = x2 ⇒ V̇ = −x4
2
1
V = V0 + (z − x − x2 )2
2
V̇ = −x4 + (z − x − x2 )[−x2 + u − (1 + 2x)(x2 − xz)]
u = (1 + 2x)(x2 − xz) + x2 − k(z − x − x2 ), k > 0
∂V
uT y ≥ V̇ = f (x, u)
∂x
Theorem 9.1
If the system is
(1) passive with a radially unbounded positive definite
storage function and
(2) zero-state observable,
then the origin can be globally stabilized by
∂V
V̇ = f (x, −φ(y)) ≤ −y T φ(y) ≤ 0
∂x
∂V ∂V
V̇ =
f (x) + G(x)u ≤ y T u
∂x ∂x
Check zero-state observability
∂V ∂V
Take y = G= = x2
∂x ∂x2
Is it zero-state observable?
is passive
Theorem [20]
The system (*) is locally equivalent to a passive system (with
a positive definite storage function) if it has relative degree
one at x = 0 and the zero dynamics have a stable equilibrium
point at the origin with a positive definite Lyapunov function
V = 12 ėT M(q)ė + 21 eT Kp e
y = ė
Is it zero-state observable? Set v = 0
ė(t) ≡ 0 ⇒ ë(t) ≡ 0 ⇒ Kp e(t) ≡ 0 ⇒ e(t) ≡ 0
u = g(q) − Kp e − φ(ė)
∂V ∂V ∂W
f (z) + G(z)u ≤ y T u, fa (x) ≤ 0
∂z ∂z ∂x
∂W
U̇ ≤ fa (x) − y T φ(y) ≤ 0, U̇ = 0 ⇒ x = 0&y = 0 ⇒ u = 0
∂x
ẋ = −x + x2 z, ż = u
With y = z as the output, the system takes the form of the
cascade connection
ż = u, y=z
ẋ = f (x) + g(x)χ(x)
is asymptotically stable
By the converse Lyapunov theorem, there is V (x) such that
∂V
[f (x) + g(x)χ(x)] < 0, ∀ x ∈ D, x 6= 0
∂x
If u = χ(x) is globally stabilizing, then D = Rn and V (x) is
radially unbounded
Nonlinear Control Lecture # 26 State Feedback Stabilization
∂V
[f (x) + g(x)χ(x)] < 0, ∀ x ∈ D, x 6= 0
∂x
∂V ∂V
g(x) = 0 for x ∈ D, x 6= 0 ⇒ f (x) < 0
∂x ∂x
Definition
A continuously differentiable positive definite function V (x) is
a Control Lyapunov Function (CLF) for the system
ẋ = f (x) + g(x)u if
∂V ∂V
g(x) = 0 for x ∈ D, x 6= 0 ⇒ f (x) < 0 (∗)
∂x ∂x
It is a Global Control Lyapunov Function if it is radially
unbounded and (∗) holds with D = Rn
∂V
V̇ = [f (x) + g(x)φ(x)]
∂x
∂V ∂V
If x 6= 0 and g(x) = 0, V̇ = f (x) < 0
∂x ∂x
∂V
If x 6= 0 and g(x) 6= 0
∂x
q
2 4
V̇ ∂V
= ∂x f − ∂V ∂x
f + ∂V
∂x
f + ∂V
∂x
g
q 2 4
∂V
= − ∂x
f + ∂V ∂x
g <0
ẋ = x − x3 + u
Feedback Linearization:
u = χ(x) = −x + x3 − αx (α > 0)
ẋ = −αx
V (x) = 21 x2 is a CLF
∂V ∂V
g = x, f = x(x − x3 )
∂x ∂x
p
φ(x) = −x + x3 − x (1 − x2 )2 + 1
Compare with
χ(x) = −x + x3 − αx
10
10
0 0
u
f
−10
−10 FL
CLF
−20
−20
−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3
x x
√
α= 2
Lemma 9.7
Suppose f , g, and V satisfy the conditions of Lemma 9.6 and
φ is given by Sontag’s formula. Then, the origin of
ẋ = f (x) + g(x)kφ(x) is asymptotically stable for all k ≥ 21 . If
V is a global control Lyapunov function, then the origin is
globally asymptotically stable
∂V ∂V
V̇ = f+ gkφ
∂x ∂x
∂V ∂V
For x 6= 0, g = 0 ⇒ V̇ = f <0
∂x ∂x
∂V ∂V ∂V
g 6= 0, V̇ = −q + q + f+ gkφ
∂x ∂x ∂x
∂V ∂V
q+ f+ gkφ
∂x ∂x s
2 4
∂V ∂V ∂V
= − k − 12 f+ f + g ≤0
∂x ∂x ∂x
s = ax1 + x2 = 0
V = 12 s2
s > 0, u = −β(x)
√
V̇ ≤ −g0 β0 2V
dV √ p p 1
√ ≤ −g0 β0 2 dt ⇒ V (s(t)) ≤ V (s(0)) − g0 β0 √ t
V 2
s=0
θ̈ + sin θ + bθ̇ = cu
0 ≤ b ≤ 0.2, 0.5 ≤ c ≤ 2
Stabilize the pendulum at θ = π/2
π
x1 = θ − , x2 = θ̇ ⇒ ẋ1 = x2 , ẋ2 = − cos x1 − bx2 + cu
2
s = x1 + x2 , ṡ = x2 − cos x1 − bx2 + cu
1.5
−0.5
θ
s
−1
0.5 −1.5
0 −2
0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1
Time Time
5 5
Filtered u
3
u
0 2
−5 −1
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10
Time Time
ax2 + h(x)
≤ ̺(x), ∀x ∈ D ⊂ R2
g(x)
x2 ✻
s=0
❍ ❍ ❍❍
❍❍ ❍❍
❍❍ ❍c❍
❍❍ ❍❍ c/a
❍❍ ❍ ✲
❍
❍❍ ❍❍ x1
❍❍ ❍❍
❍❍ ❍❍
❍❍ ❍❍
ax2 + h(x)
≤ k1 < k, ∀ x ∈ Ω
g(x)
u = −k sgn(s)
❇ Sliding manifold
❇
❇
❇✁
✁❇
✁✕ ❇
✁
❍❍❇
s < 0 ❍❇❍ ❨ s>0
❇ ✁
✁❇
✁✕ ❇
❍ ❍❍ ❇ a
❇ ❍❍
❇ ❍
❨❍
[ax2 + ĥ(x)]
u=− +v
ĝ(x)
ṡ = δ(x) + g(x)v
g(x) g(x)
δ(x) = a 1 − x2 + h(x) − ĥ(x)
ĝ(x) ĝ(x)
δ(x)
≤ ̺(x), β(x) ≥ ̺(x) + β0
g(x)
v = −β(x) sgn(s)
−x2 + cos x1
u= + v ⇒ ṡ = δ + cv
ĉ
δ 1−b 1 1 1
= − x2 − − cos x1
c c ĉ c ĉ
Take ĉ = 1/1.2 to minimize |(1 − b)/c − 1/ĉ|
δ
≤ 0.8|x2 | + 0.8
c
Dashed lines:
u = −(2.5 + 2|x2 |) sgn(s)
Solid lines:
1.5
−0.5
1
θ
s
−1
0.5 −1.5
0 −2
0 2 4 6 8 10 0 1 2 3
Time Time
−3
x 10
1.575 5
π/2 0
1.57
−5
θ
1.565
−10
1.56 −15
9 9.2 9.4 9.6 9.8 10 9.5 9.6 9.7 9.8 9.9 10
Time Time
With c ≥ µ
Ω = |x1 | ≤ ac , |s| ≤ c is positively invariant
The trajectory reaches the boundary layer {|s| ≤ µ}in
finite time
The boundary layer is positively invariant
µ
x1 ẋ1 ≤ −(1 − θ1 )ax21 , ∀ |x1 | ≥ , 0 < θ1 < 1
θ1 a
The trajectories reach the positively invariant set
µ
Ωµ = {|x1 | ≤ , |s| ≤ µ}
θ1 a
in finite time
1.5 0.05
θ
1 0
s
µ=0.1
0.5 µ=0.001 −0.05
0 −0.1
0 2 4 6 8 10 9.5 9.6 9.7 9.8 9.9 10
Time Time
(c) (d)
2 0.1
1.5 0.05
θ
1 0
s
0.5 −0.05
0 −0.1
0 2 4 6 8 10 9.5 9.6 9.7 9.8 9.9 10
Time Time
(a) & (b) without and (c) & (d) with actuator dynamics
x1 = θ − π, x2 = θ̇, s = x1 + x2
ṡ = x2 + sin x1 − bx2 + cu
1 1
V1 = x21 + s2
2 2
T
|x1 | 1 −3/2 |x1 |
V̇1 ≤ −
|s| −3/2 (1/µ − 1) |s|
s = ξ − φ(η) = 0, φ(0) = 0
ṡ = G(x)v + ∆(t, x, v)
∆(t, x, v)
≤ ̺(x)+κ0 kvk, ∀ (t, x, v) ∈ [0, ∞)×D×Rm
λmin (G(x))
̺(x) ≥ 0, 0 ≤ κ0 < 1 (Known)
s
v = −β(x) Sat
µ
V
0
c0
α(⋅)
α(c)
α(µ)
µ c |s|
mo
ẋ1 = x2 , u, x1 ≥ 0, −2 ≤ u ≤ 0
ẋ2 = 1 +
m
We want to stabilize the system at x1 = 1. Nominal
steady-state control is uss = −1
m − mo mo
ṡ = x2 + + u
m m
x2 + (m − mo )/m m m − mo
= x2 + ≤ 13 (4|x2 | + 1)
mo /m mo mo
m − mo mo (x1 + x2 )
ẋ1 = x2 , ẋ2 = −
m mµ
which has a unique equilibrium point at
µ(m − mo )
x1 = , x2 = 0
mo
for |s| ≤ µ
With µ = 0.029, it can be verified that V̇1 is less than a
negative number in the set {0.0012 ≤ V1 ≤ 0.12}. Therefore,
all trajectories starting in Ω1 = {V1 ≤ 0.12} enter
Ω2 = {V1 ≤ 0.0012} in finite time. Since Ω2 ⊂ Ω, our earlier
analysis holds and the ultimate bound of |x1 | is 0.01. The new
estimate of the region of attraction, Ω1 , is larger than Ω
∂V1
fa (η, φ(η)) ≤ −c3 kηk2
∂η
∂V1
≤ c4 kηk
∂η
in some neighborhood Nη of η = 0
β(x) T
sT ṡ = − s G(x)s + sT ∆(t, x, v)
µ
βλmin (G) 2 κ0 βksk
≤ − ksk + λmin (G) ̺ + ksk
µ µ
λ0 β0 (1 − κ0 )
≤ − ksk2 + λmin (G)̺ksk
µ
W = V1 (η) + 12 sT s
4c3 λ0 β0 (1 − κ0 )
µ<
4c3 k3 + (c4 k1 + k2 )2
The basic idea of the foregoing proof is that, inside the
boundary layer, the control
β(x)s
v=−
µ
acts as high-gain feedback for small µ. By choosing µ small
enough, the high-gain feedback stabilizes the origin
η̇ = fa (η, ξ) + δa (η, ξ)
ξ˙ = fb (η, ξ) + G(x)u + δ(t, x, u) + δb (η, ξ)
s = ξ − φ(η)
Reduced-order model on the sliding manifold:
s = x2 + kx1 , k>a
ẋ1 = x1 + (1 − θ1 )x2
Design x2 to robustly stabilize the origin x1 = 0
ṡ = G(x)v + ∆(t, x, v)
∆i (t, x, v)
gi (x) ≥ g0 > 0 ≤ ̺(x) + κ0 max |vi |
gi (x) 1≤i≤m
1
Vi = s2i
2
{|si | ≤ µ, 1 ≤ i ≤ m}
in finite time
Nonlinear Control Lecture # 29 Robust State Feedback Stabilization
Results similar to Theorems 10.1 and 10.2 can be proved with
̺(x)
β(x) ≥ ⇒ w T v + w T δ ≤ 0 ⇒ V̇ ≤ −W (x)
(1 − κ0 )
β(x)kwk ≥ µ ⇒ V̇ ≤ −W (x)
For β(x)kwk < µ
2 w T
V̇ ≤ −W (x) + w −β · + δ
µ
2
β
≤ −W (x) − kwk2 + ̺kwk + κ0 kwkkvk
µ
β2 κ0 β 2
= −W (x) − kwk2 + ̺kwk + kwk2
µ µ
Theorem 10.3
Under the foregoing assumptions, for any
x(t0 ) ∈ {V (x) ≤ α1 (r)}, the solution of the closed-loop
system satisfies
kx(t)k ≤ max {β1 (kx(t0 )k, t − t0 ), b(µ)}
ϕ(0) = 0 ⇒ ̺(0) = 0
When β(x)kwk < µ
β 2 (x)(1 − κ0 )
V̇ ≤ −W (x) − kwk2 + ̺(x)kwk
µ
−W (x) = −(1 − θ)W (x) − θW (x) ≤ −(1 − θ)W (x) − θϕ2 (x)
0<θ<1
0 ≤ b0 ≤ 0.2, 0.5 ≤ c ≤ 2
The system is feedback linearizable
ẋ = Ax + B[− sin(x1 + δ1 ) − b0 x2 + cu]
(c − ĉ) sin δ1 c − ĉ
̺0 ≥ 2
, ̺1 ≥ (1 + k1 )
ĉ ĉ2
b0 c − ĉ c − ĉ
̺2 ≥ + 2
k2 , κ0 ≥
ĉ ĉ ĉ
̺0 + ̺1 |x1 | + ̺2 |x2 |
Assume κ0 < 1, β(x) ≥ β0 + , β0 > 0
1 − κ0
1
1
2
0
θ
x
−1
0.5
−2
0 −3
0 2 4 6 −3 −2 −1 0 1 2 3
Time x1
when β|w| ≥ µ, w ẇ ≤ −w 2
µṡ = −G(x)s + µ∆
Example 10.6
Recall Example 10.1 where the pendulum is stabilized at
θ = π/2 and s = θ − π/2 + θ̇
Sliding Mode: u = −(2.5 + 2|θ̇|) sat(s/µ)
3 30
−0.5
2
u
s
20
−1 1
0 10
−1.5 −1
0
−2
0 0.5 1 0 2 4 0 0.2 0.4
Time Time Time
by
β 2 (x)w
µ
x̃ = x − x̂
⇒ kx(t) − xss k ≤ ε ∀ t ≥ 0
∂f ∂h
A=
(xss , uss), C= (xss )
∂x ∂x
Assume that (A, C) is detectable. Design H such that
A − HC is Hurwitz
Proof
Z 1
∂f
f (x, u) − f (x̂, u) = (x − σx̃, u) dσ x̃
0 ∂x
kf (x, u)−f (x̂, u)−Ax̃k =
Z 1
∂f ∂f ∂f ∂f
(x − σx̃, u) − (x, u) + (x, u) − (xss , uss) dσ x̃
0 ∂x ∂x ∂x ∂x
≤ L1 ( 21 kx̃k + kx − xss k + ku − uss k)kx̃k
P (A − HC) + (A − HC)T P = −I
V = x̃T P x̃
x̃ = x − x̂
∂f ∂h
A(t) = (x̂(t), u(t)), C(t) = (x̂(t))
∂x ∂x
Remarks:
Assumption 11.1 cannot be checked offline
The observer and Riccati equations are solved
simultaneously in real time
Proof
V = x̃T P −1 x̃
d −1
P = −P −1 Ṗ P −1
dt
V (x) = xT P1 x
⇒ {kxk ≤ 0.8081} ⊂ Ω
⇒ Ω is positively invariant
Q = R = P (0) = I
Ṗ = AP + P AT + I − P C T CP, P (0) = I
p11 p12
P =
p12 p22
Components of P(t)
0.5 0.8
Estimation Error
0.6
p22
0 0.4
0.2
−0.5 0 p12
−0.2
−1 −0.4
0 1 2 3 4 0 1 2 3 4
Time Time
(A, C) observable
x̂˙ = Ax̂ + ψ(u, y) + H(y − C x̂)
x̃ = x − x̂
x̃˙ = (A − HC)x̃
Design H such that A − HC is Hurwitz
limt→∞ x̃(t) = 0, ∀ x̃(0)
1
L< ⇒ limt→∞ x̃(t) = 0, ∀ x̃(0)
2kP k
εV̇ = −η T η + 2εη T P Bδ
≤ −kηk2 + 2εLkP Bkkηk2 + 2εMkP Bkkηk
kη(t)k ≤ max ke−at/ε kη(0)k, εcM , ∀t≥0
Peaking Phenomenon:
x1 (0) 6= x̂1 (0) ⇒ η1 (0) = O(1/ε)
x and Estimates
0.8
0.6 20
0.4
10
2
0.2 ε = 0.1
0
0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time Time
(c) (d)
0.04
0
ε = 0.1
Estimation Error of x2
Estimation Error of x2
ε = 0.1 0.02
−10
ε = 0.01
0
−20
ε = 0.01
−30 −0.02
−40 −0.04
0 0.1 0.2 0.3 0.4 5 6 7 8 9 10
Time Time
ε ε
1
i
X
|ψi (x1 , . . . , xi , u) − ψi (z1 , . . . , zi , u)| ≤ Li |xk − zk |
k=1
αi
x̂˙ i = x̂i+1 + ψ1 (x̂1 , . . . , x̂i , u) + i (y − x̂1 )
ε
α ρ
x̂˙ ρ = φ0 (x̂, u) + ρ (y − x̂1 )
ε
Lemma 11.3
For sufficiently small ε
b
|x̃i | ≤ max e−at/ε , ερ+1−i cM
εi−1
V = η T P η, P F + F T P = −I
εV̇ = −η T η + 2εη T P δ
By Theorem 4.5, kη(t)k ≤ max ke−at/ε kη(0)k, εcM
ẋ = Ax + Bu y = Cx
∂f ∂f ∂h
A= , B= , C=
∂x x=0,u=0 ∂u x=0,u=0 ∂x x=0
GC F
By Theorem 3.2, the origin is exponentially stable
z
φ(·) ✛ ✛
s
τ s+1
+ u y ẏ
✲ ❥ ✲ Plant ✲ s ✲
−✻
z
φ(·) ✛ 1
τ s+1
✛
Note that
τi żi = −zi + ẏi
is
V = 12 ėT M(q)ė + 21 eT Kp e
u = g(q) − Kp (q − qr ) − Kd z
Kd is positive diagonal matrix. Compare with state feedback
u = g(q) − Kp (q − qr ) − Kd q̇
Observer:
x̂˙ = f (x̂, u) + H[y − h(x̂)]
x̃ = x − x̂
def
x̃˙ = f (x, u) − f (x̂, u) − H[h(x) − h(x̂)] = g(x, x̃)
g(x, 0) = 0
u = γ(x̂)
Closed-loop system:
ẋ = f (x, γ(x − x̃)), x̃˙ = g(x, x̃) (⋆)
∂V0 1 ∂V1
V̇ = b f (x, γ(x − x̃)) + √ g(x, x̃)
∂x 2 V1 ∂ x̃
f (x, γ(x − x̃)) = f (x, γ(x)) + [f (x, γ(x − x̃)) − f (x, γ(x))]
∂V0 ∂V1
V̇ = b f (x, γ(x − x̃)) + g(x, x̃)
∂x ∂ x̃
≤ −ba3 kxk2 + ba4 L1 kxkkx̃k − c3 kx̃k2
T
kxk ba3 −ba4 L1 /2 kxk
= −
kx̃k −ba4 L1 /2 c3 kx̃k
| {z }
Q
High-gain observer
x̂˙ 1 = x̂2 + (α1 /ε)(y − x̂1 ), x̂˙ 2 = φ0 (x̂, u) + (α2 /ε2 )(y − x̂1 )
OFB ε = 0.01
x
−1
−1.5
OFB ε = 0.005
−2
0 1 2 3 4 5 6 7 8 9 10
−1
2
x
−2
−3
0 1 2 3 4 5 6 7 8 9 10
−100
u
−200
−300
−400
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t
0.2
0
x1
−0.2
−0.4
−0.6
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−200
x2
−400
−600
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
2000
1000
u
−1000
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
t
Saturate u at ±1
SFB
0.15
OFB ε = 0.1
0.1 OFB ε = 0.01
OFB ε = 0.001
x1
0.05
−0.05
0 1 2 3 4 5 6 7 8 9 10
0.05
0
x2
−0.05
−0.1
0 1 2 3 4 5 6 7 8 9 10
0
u
−0.5
−1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t
1
x2
−1
−2
−3 −2 −1 0 1 2 3
x1
0.5
x2
−0.5
−1
−2 −1 0 1 2
x1
η ✻
O(1/ε)
q q
❉ ❉
❉ ❉
❉ ❉
❉ ❉
❉ ❉
❉ ❉
O(ε) ❉ ❉
❲ ❲
✲
✛ Ωb ✲ x
✛ Ωc ✲
∂V
f0 (η, y) ≤ −α3 (kηk), ∀ kηk ≥ α4 (|y|)
∂η
Sliding Mode Control: Sliding surface y = 0
u = ψ(y) + v
0 ≤ κ0 < 1
̺(y)
β(y) ≥ + β0
1 − κ0
y
v = −β(y) sat
µ
y
u = ψ(y) − β(y) sat
µ
All the assumptions hold in a domain D
z = col η, ξ1 , . . . ξρ−2 , ξρ−1
Zero Dynamics (s = 0):
ż = f¯0 (z, 0)
⇔ η̇ = f0 (η, ξ) , ζ̇ = F ζ
Pρ−1
ξρ =− i=1 ki ξi
0 1 0 ··· 0
ξ1
ξ2
0 0 1 ··· 0
.. ..
ζ = .. , F =
. .
.
0 ··· 0 1
ξρ−1
−k1 −k2 · · · −kρ−2 −kρ−1
When ρ = n, the zero dynamics are ζ̇ = F ζ
is Hurwitz
α1 (kzk) ≤ V (z) ≤ α2 (kzk)
∂V ¯
f0 (z, s) ≤ −α3 (kzk), ∀ kzk ≥ α4 (|s|)
∂η
We have converted the relative degree ρ system into a relative
degree one system that satisfies the earlier assumptions
u = ψ(ξ) + v
̺(ξ)
β(ξ) ≥ + β0 , β0 > 0
1 − κ0
s
u = ψ(ξ) − β(ξ) sat = γ(ξ)
µ
Scheme 2:
Mψ = max{|ψ(ξ)|}, Mβ = max{|β(ξ)|}
Ω Ω
ˆ γs (ξ)
u = γs (ξ), ˆ is given by
!
ˆ ˆ
ˆ sat( ŝ ) or Mu sat ψ(ξ) − β(ξ) sat(ŝ/µ)
ˆ − βs (ξ)
ψs (ξ)
µ Mu
ρ−1
ki ξˆi + ξˆρ
X
ŝ =
i=1
θ̈ + sin θ + bθ̇ = cu
0 ≤ b ≤ 0.2, 0.5 ≤ c ≤ 2
Simulation:
b = 0.01, c = 0.5, x1 (0) = −π, x2 (0) = x̂i (0) = 0
0 Figures (a) & (b)
φ0 (x̂) =
− sin(x̂1 + π) − 0.1x̂2 + 1.25u Figures (c) & (d)
3
3
2.5
ω
θ
2
1.5
SF
1
OF ε = 0.05 1
0.5
OF ε = 0.01
0 0
0 1 2 3 0 1 2 3
(c) (d)
3.5 4
3
3
2.5
2
ω
θ
2
1.5
1
1
0.5
0 0
0 1 2 3 0 1 2 3
Time Time
η ∈ Dη ⊂ Rn−ρ , ξ = col(ξ1 , . . . , ξρ ) ∈ Dξ ⊂ Rρ
Tracking Problem: Design a feedback controller such that
lim [y(t) − r(t)] = 0
t→∞
b(η, ξ) ≥ b0 > 0, ∀ η ∈ Dη , ξ ∈ D ξ
Assumption 13.2
η̇ = f0 (η, ξ) is bounded-input–bounded-state stable over
Dη × Dξ
ṙ = y2 , r̈ = ẏ2
Assumption 13.3 is satisfied when uc (t) is piecewise
continuous and bounded
η̇ = f0 (η, ξ)
ėi = ei+1 , for 1 ≤ i ≤ ρ − 1
ėρ = a(η, ξ) + b(η, ξ)u − r (ρ)
Feedback linearization:
u = −a(η, ξ) + r (ρ) + v /b(η, ξ)
η̇ = f0 (η, ξ), ė = Ac e + Bc v
v = −Ke, Ac − Bc K is Hurwitz
⇒ ξ = e + R is bounded ⇒ η is bounded
e1 = x1 − r, e2 = x2 − ṙ
1
u = [sin x1 + bx2 + r̈ − k1 e1 − k2 e2 ]
c
K = [k1 , k2 ] assigns the eigenvalues of Ac − Bc K at desired
locations in the open left-half complex plane
Reference (dashed)
√
Low gain: K = 1 1 , λ = −0.5 ± j0.5 3, (solid)
√
High gain: K = 9 3 , λ = −1.5 ± j1.5 3, (dash-dot)
1.5 1.5
Output
Output
1 1
0.5 0.5
0 0
−0.5 −0.5
0 2 4 6 8 10 0 2 4 6 8 10
Time Time
(c) (d)
2
5
1.5
Control
Output
1 0
0.5
−5
0
−10
−0.5
0 2 4 6 8 10 0 2 4 6 8 10
Time Time
η̇ = f0 (η, ξ)
ėi = ei+1 , 1≤i≤ρ−1
ėρ = a(η, ξ) + b(η, ξ)u + δ(t, η, ξ, u) − r (ρ) (t)
∆(t, η, ξ, v)
Suppose ≤ ̺(η, ξ) + κ0 |v|, 0 ≤ κ0 < 1
b(η, ξ)
s ̺(η, ξ)
v = −β(η, ξ) sat , β(η, ξ) ≥ + β0 , β0 > 0
µ (1 − κ0 )
Inside Ωµ ,
|e1 | ≤ kµ
√
k = kLP −1/2 k ρ1 , L = 1 0 ... 0
s = e1 + e2
ṡ = e2 − sin x1 − bx2 + cu − r̈
= (1 − b)e2 − sin x1 − bṙ − r̈ + cu
b = 0.03, c = 1 (solid)
Reference (dashed)
1
0.6
s
0.5 0.4
0.2
0
0
−0.5 −0.2
0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1
Time Time
η̇ = f0 (η, ξ)
ξ˙i = ξi+1 , 1 ≤ i ≤ ρ − 1
ξ˙ρ = a(η, ξ) + b(η, ξ)u
y = ξ1
Equilibrium point:
0 = ¯
f0 (η̄, ξ)
0 = ξ¯i+1 , 1 ≤ i ≤ ρ − 1
0 = ¯
a(η̄, ξ̄) + b(η̄, ξ)ū
ȳ = ξ¯1
ξ¯ = col(ȳ, 0, · · · , 0)
¯
a(η̄, ξ)
¯
0 = f0 (η̄, ξ), ū = − ¯
b(η̄, ξ)
¯ has a unique solution η̄ in the domain of
Assume 0 = f0 (η̄, ξ)
interest
η̄ = φη (ȳ), ū = φu (ȳ)
By assumption (and without loss of generality)
φη (0) = 0, φu (0) = 0
Is this allowed ?
Take r = y ∗ , for t ≥ 0
r (i) = 0 for i ≥ 2
Feedback Linearization:
e(0) = 0 ⇒ e(t) ≡ 0
r = z1 , ṙ = z2 , . . . . . . r (ρ−1) = zρ
ρ
X
(ρ)
r =− aρ−i+1 zi + aρ uc
i=1
0 T
T/2
−a
r(1)
at a(T−t)
aT2/4
r
−aT2/4+aTt−at2/2
at2/2
Constraint : |u(t)| ≤ 2
1.5 1.5
Output
Output
1 1
output output
0.5 0.5
reference reference
0 0
0 1 2 3 4 5 0 1 2 3 4 5
τ = 0.2 τ = 0.8
2 2
1 1
Control
Control
0 0
−1 −1
−2 −2
0 1 2 3 4 5 0 1 2 3 4 5
Time Time
¯ w) def
a(η̄, ξ,
ū = − ¯ w) = φu (r, w)
b(η̄, ξ,
Augment the integrator ė0 = y − r
e1 ξ1 − r
e2 ξ2
z = η − η̄, e = .. = ..
. .
eρ ξρ
∆(η, ξ, r, w)
≤ ̺(η, ξ)
b(η, ξ, w)
s
v = −β(η, ξ) sat , β(η, ξ) ≥ ̺(η, ξ) + β0 , β0 > 0
µ
Assumption 13.6
∂V1 ˜
f0 (z, e, r, w) ≤ −α3 (kzk), ∀ kzk ≥ α4 (kek)
∂z
Assumption 13.7
z = 0 is an exponentially stable equilibrium point of
ż = f˜0 (z, 0, r, w)
e1 = x1 − r, e2 = x2
s = e0 + 2e1 + e2
1.58
1.5
Output
Output
1.56
1
1.54
0.5
1.52
0 1.5
0 2 4 6 8 10 9 9.2 9.4 9.6 9.8 10
Time Time
Regulation:
η̇ = f0 (η, ξ, w)
ξ˙i = ξi+1 , 1≤i≤ ρ−1
ξ˙ρ = a(η, ξ, w) + b(η, ξ, w)u
y = ξ1
ė0 = e1 = y − r
β is allowed to depend only on ξ rather than the full state
vector. On compact sets, the η-dependent part of ̺(η, ξ) can
be bounded by a constant
e → ê
ξ → ξˆ = ê + R
ˆ → βs (ξ)
β(ξ) ˆ (saturated)
Regulation:
ˆ sat k0 e0 + k1 ê1 + · · · + kρ−1 êρ−1 + êρ
u = −βs (ξ)
µ
Ω = {ζ T P ζ ≤ ρ1 c2 } × {|s| ≤ c}
is positively invariant. Take c = 4 and 1/θ = 1.003
Ω = {ζ T P ζ ≤ 55} × {|s| ≤ 4}
Over Ω,
|e0 + 2e1 | ≤ 22.25 ⇒ |e2 | ≤ |e0 + 2e1 | + |s| ≤ 26.25
1.4
1.5
1.2
Output
Output
1
1
0.8 0.5
0.6
0
0 1 2 3 4 0 2 4 6
Time Time