Trigonometry
Trigonometry
1.1 ( )
In the diagram below are A 2 ; − 2 3 and AR ⊥ OR . Reflex angle
ˆ = β.
ROA
Calculate:
1.2 If 2sinα = 4m; cosα = −m and 0 α 180 , calculate without the use
of a calculator and using a sketch, the value of m. (5)
[27]
2
QUESTION 2 (EXPRESSIONS)
1 − cos 2 110
2.1 (6)
tan35.sin 2 55
cos 2 45.sin120
2.4 (7)
cos120.sin270
[36]
3
QUESTION 3 (IDENTITIES)
sin x + cos x
3.2 sin( x + 45) = (4)
2
1 − cos 2α
3.3 = tan α (3)
sin 2α
2 tanθ
3.4 sin2θ = (5)
1 + tan 2 θ
sin2 − cos
3.5 = cot (IEB ONLY) (6)
1 − cos 2 − sin
1 cos a
3.6 − = tan a (5)
cos a 1 + sin a
1 (3)
= sec 2 (IEB ONLY)
3.7
(1 − sinθ )(1 + sinθ )
[31]
4
4.2 Determine the general solution of the equation: tan3θ.cot 24 − 1 = 0 (5)
(IEB ONLY)
4.3 Determine the general solution of 3cos x − 2sin x + 2sin2x = 6cos 2 x (8)
[50]
5
5.1 The sketch graph below, shows the curves of the trigonometric
functions f and g for the domain θ 0 ; 360 .
5.1.3 Complete:
(ii) g ( θ ) = −1 (1)
5.2 The sketch below shows the curves of the two functions f ( x ) = −2 sin x
and g ( x ) = tan x for 0 x 270 .
5.2.1 Write down the coordinates of T, the turning point of the curve (2)
f.
5.3
Source: ongtecksheng.blogspot.com
The x − axis represents the time in minutes for the formation of the wave
and the y − axis represents the height of the wave.
8
5.3.2 Give the maximum height that the tsunami wave reached
between 0 minutes and 20 minutes. (1)
5.3.3 By first determining the general solution, determine how long the
tsunami wave was below ground ( x − axis) for the time interval (5)
0 minutes to 20 minutes.
5.4
Source: https://webstockreview.net/explore/bedtime-clipart-sleeping/
During deep sleep, one's breathing is very normal. The volume of air in
the lungs follows a cosine-shaped ratio ranging between 1 000 ml and
5 000 ml over a 5-second interval. The graph below represents the
volume of air in a person's lungs versus the time during deep sleep. The
volume of air in a person's lungs is 3 000 ml before deep sleep.
5.4.1 Determine an equation that relates the volume of air in the lungs
to the time in seconds in the format V ( t ) = acosbt + q . (4)
5.4.2 Give the volume of air in the person's lungs during 6 seconds of
deep sleep. (2)
9
[40]
QUESTION 6 (2D AND 3D TRIGONOMETRY)
6.2 In the figure, AB represents a light pole that leans 5 from the vertical
PB (the original position of the light pole), directly in the direction of
Kevin standing at point C.
Calculate the distance from C to B, rounded off to one decimal digit. (4)
10
6.3 In the diagram below, PQR is an equilateral triangle with sides x units
long. PQ, QR and PR are extended to A, B and C respectively such that
AQ = RQ, RB = PR and CP = PQ. The triangle thus formed is also
equilateral.
6.4 The diagram below shows the boundary lines of a school sports field
QVWR. QV RW and VW ⊥ RW . PQ is a vertical pylon for a floodlight.
ˆ = x and RVW
The angle of elevation of P from R is y . QRV ˆ =y.
PQ cos ( x − y )
6.4.2 Prove that VR = . (6)
sin y
6.4.3 Calculate VR, without using a calculator, if the height of the pylon
is 25 m, x = 75 and y = 30 . Leave your answer in surd form. (4)
6.4.4 The site supervisor at the school wants to determine the area of
QRV. Help the terrain supervisor by calculating the area of this
triangle to the nearest integer. (5)
12
The lid of the box, ABCD is now opened at a 30 angle to position
DCMN, as shown in Diagram 2 below.
6.5.2 Calculate NE, the perpendicular height of P above the base of (3)
the box.
6.6 The elevation angle of the Carlton Centre DE, as measured from three
different points on the same horizontal plane A, B and C is α, β and θ
respectively. ABC is a straight line. It is also given that:
1
• tan α = ;
4
1
• tanβ = ;
2
1
• tanθ = ;
3
• AB = 900 m;
• BC = 300 m;
• DE = h and
• DBC ˆ =φ
[61]
14
7.1.1 OA (2)
7.1.2 m (2)
1 1
7.2 If tan x = m + ; 90 x 270 and m 2 + 2 = 1 , calculate the
m m
value(s) of x without the use of a calculator. (6)
3
cos ( m + n ) = − and cos ( m − 2n ) = 1
2 (5)
15
7.5 3 B 1
If sin A = and cos = − for B 0;360 and A 90;180 ,
2 2 2
calculated without the use of a calculator:
B
7.5.1 sin + 30 (5)
2
B
7.5.2 sin 2 + A (4)
2
A
7.5.3 2 sin 2 B − 3 cos (3)
2
cos α 1− x 2 (8)
7.6 If x = , prove that = − sin
1 − sin α 1+ x 2
[57]
16
QUESTION 1
( 2m ) + ( −m ) = 1 Pythagoras
2 2
4m 2 + m 2 = 1
5m 2 = 1
1
m2 =
5
1 5
m = = ( p 0)
5 5
17
1.3 −3 ✓ r =5
tanθ = and θ (180 ; 360 ) ✓ substitute
4
✓ double angles
✓ simplified
✓ answer (5)
r 2 = 25 Pythagoras
r = 5
5 sinθ − sec 2θ
1
= 5 sinθ −
cos 2θ
1
= 5 sinθ −
1 − 2sin 2 θ
−3 1
= 5 −
5 −3
2
1− 2
5
25
= −3 −
7
46
=−
7
1.4.1 sin40 = r ✓ x = 1+ r 2
✓ co-function
x = 1+ r 2 ✓ answer (3)
cos50
= cos(90 − 40)
= sin 40
=r
1.4.2 sin80 ✓ double angle
= sin2 ( 40 ) ✓ substitute
✓ answer (3)
= 2sin 40 cos 40
= 2(r ) ( 1+ r )
2
= 2r 1 + r 2
[27]
18
QUESTION 2
2.1
1 − cos 2 110 ✓ sin 2 110
sin35
tan35.sin 2 55 ✓
cos35
sin 2 110
= ✓ cos 2 35
sin35 ✓ sin70
.sin 2 (90 − 35)
cos35 ✓ 2sin35.cos35
sin110 ✓ 2 (6)
=
sin35
.cos 2 35
cos35
sin(180 − 70)
=
sin35.cos35
sin70
=
sin35.cos35
sin2 ( 35 )
=
sin35.cos35
2 sin35.cos35
=
sin35.cos35
=2
2.2 cos10.cos340 − sin190.sin( −20) ✓ cos20
sin80.cos 20 + cos100.cos70 ✓ − sin10
cos10.cos(360 − 20) − sin(180 + 10). − sin(20) ✓ − sin(20)
= ✓ cos10
sin(90 − 10).cos 20 + cos(90 + 10).cos(90 − 20)
✓ − sin10
cos10 cos 20 − sin10 sin20 ✓
= sin20
cos10 cos 20 − sin10 sin20 ✓ compound angles
cos (10 + 20 ) ✓ answer (8)
=
cos (10 + 20 )
cos30
=
cos30
=1
2.3 ( sin + cos ) 2 + ( sin − cos ) 2 ✓ simplify
✓ 2sin 2 + 2cos 2
= sin 2 + 2 sin cos + cos 2 + sin 2 − 2 sin cos ✓ common factor
+ cos 2 ✓ answer (4)
= 2sin 2 + 2cos 2
(
= 2 sin 2 + cos 2 )
=2
19
QUESTION 3
LHS =
(
1 − 1 − 2sin 2 α )
2sin αcos α
2sin 2 α
LHS =
2sinαcos α
sinα
LHS =
cos α
LHS = RHS
3.4 2 tanθ ✓ 2sinθcosθ
sin 2θ =
1 + tan 2 θ sin θ
✓
LHS = sin 2θ cos θ
LHS = 2 sinθ cosθ sin 2 θ
✓
2 tanθ cos 2 θ
RHS = ✓ identity
1 + tan 2 θ
✓ simplify (5)
2 sinθ
RHS = cosθ2
sin θ
1+
cos 2 θ
2 sinθ cos 2 θ + sin 2 θ
RHS =
cosθ cos 2 θ
2 sinθ cos 2 θ
RHS =
cosθ 1
RHS = 2 sinθ cosθ
LHS = RHS
3.5 sin2 − cos ✓ double angle
= cot
1 − cos 2 − sin ✓ common factor
✓ double angle
sin2 − cos
LHS = ✓ simplify
1 − cos 2 − sin ✓ common factor
2sin cos − cos ✓ simplify (6)
LHS =
( )
1 − 1 − 2sin 2 − sin
cos ( 2sin − 1)
LHS =
1 − 1 + 2sin 2 − sin
cos ( 2sin − 1)
LHS =
sin ( 2sin − 1)
LHS = cot
LHS = RHS
22
LHS =
(
1 + sin a − 1 − sin 2 a )
cos a (1 + sin a )
sin a + sin 2 a
LHS =
cos a (1 + sin a )
sin a (1 + sin a )
LHS =
cosa (1 + sin a )
LHS = tan a
LHS = RHS
3.7 1 ✓ simplify denominator
= sec 2 θ
(1 − sinθ )(1 + sinθ ) ✓ identity
✓ reciprocal (3)
1
LHS =
(1 − sinθ )(1 + sinθ )
1
LHS =
1 − sin 2 θ
1
LHS =
cos 2 θ
LHS = sec 2 θ
LHS = RHS
[31]
QUESTION 4
OR
23
OR
OR
GRAPHICAL METHOD:
cos 2 x = 0 or sin x = 0
2 x = 90 + n.360 nZ
x = 45 + n.180
or
0
x = + n.360 nZ
180
x −180; −135; −45;0
OR
OR
26
OTHERWISE:
GRAPHIC METHOD:
sin3 x − sin x = 0
sin3 x = sin x
3 x = x + n.360 nZ
2 x = 0 + n.360
x = 0 + n.180
or
3 x = 180 − x + n.360 nZ
4 x = 180 + n.360
x = 45 + n.90
OR
OR
p 2 = ( 3 ) + ( −3 )
2 2
Pythagoras
p 2 = 18
p = 3 2 p0
[41]
QUESTION 5
OR
y −2;2
5.1.3 (i) f ( 90) = 2 ✓ answer (1)
(ii) g (180 ) = 1 ✓ answer (1)
5.1.4 (i) θ 0;180;360 ✓ answer (1)
(ii) θ 90;270 ✓ answer (1)
29
OR
f decrease:
90 x 270
5.1.6 B (158,5;0,73 ) ✓ 158,5
✓ 0,73 (2)
5.1.7 21,5 θ 158,5 ✓ 21,5 θ
✓ θ 158,5 (2)
5.2.1 T ( 90; −2) ✓ 90
✓ −2 (2)
5.2.2 period = 180 ✓ answer (1)
5.2.3 −2 y 2 ✓ answer (1)
OR
y −2;2
5.2.4 D ( 240;1,73 ) ✓ 40
✓ 1,73 (2)
5.2.5 g (45) = tan ( 45 ) = 1 ✓ 1
f (45) = −2 sin ( 45 ) = − 2 ✓ − 2
✓ 2,41 (3)
( )
PQ = 1− − 2 2,41 units
5.3.1 y = a sin bx + q ✓ q = 10
q = 10 ✓ b = 18
✓ a = −12 (3)
y = a sin bx + 10
360
b= = 18
20
y = a sin18 x + 10
1
a = − 22 − ( −2 ) = 12
2
y = −12sin18 x + 10
5.3.2 max = 22 ✓ answer (1)
5.3.3 y = −12 sin18 x + 10 5
✓ sin18 x =
0 = −12 sin18 x + 10 6
10 ✓ x = 3,14
sin18 x = ✓ x = 6,86
12
✓ difference
5
sin18 x = ✓ answer (5)
6
30
GRAPHICAL METHOD:
18 x = 56,44 + n.360 nZ
x = 3,14 + n.20
or
18 x = 123,56 + n.360 nZ
x x = 6,86 + n.20
Total time = 6,86min − 3,15min
Total time = 3,71 or 4 min
OR
QUESTION 6
6.3.1 1 ✓ substitute
area PQR = x.x.sinBˆ 2 ✓ 60
2
1 ✓ answer (3)
area PQR = x 2 sin ( 60 )
2
3 2
area PQR = x
4
32
area ABC =
1
2
7x ( )(
7 x sin60 )
7 3 7 3x 2
area ABC = x 2 =
2 2 4
6.4.1 ˆ = 90 − y
VRW ✓ 90 − y
ˆ = VRWˆ ✓ 180 − (90 − y ) − x
QVR corr. s; QV RW
✓ answer (3)
ˆ = 90 − y
QVR
ˆ = 180 − (90 − y ) − x
RQV s of
RQVˆ = 90 + y − x
6.4.2 In PQR: PQ
✓ tan y =
PQ QR
tan y =
QR PQ
✓ QR =
PQ tan y
QR =
tan y ✓ sine rule
✓ substitute QR
In QRV:
sin y
VR QR ✓
= cos y
sin ( 90 + y − x ) sin ( 90 − y ) ✓ simplify (6)
QR sin ( 90 − ( x − y ) )
VR =
sin ( 90 − y )
PQ
cos ( x − y )
tan y
VR =
cos y
PQcos ( x − y )
VR =
tan y cos y
PQcos ( x − y )
VR =
sin y
cos y
cos y
PQcos ( x − y )
VR =
sin y
33
1 5
NO = 5 = 2,5 cm
2 2
17
NE = 2,5 + 6 = 8,5 cm of cm
2
34
6.5.3 ✓ DN = 13 cm
✓ sine rule
✓ answer (3)
DN 2 = ( 5 ) + (12 )
2 2
( ˆ = 90
Pythagoras NCD )
DN 2 = 169
DN = 13 cm
In NDE:
ˆ
sinDEN ˆ
sinNDE
=
DN NE
ˆ
sinDEN DN 13 26
= = =
ˆ
sinNDE NE 8,5 17
sinDENˆ : sinNDE
ˆ = 26 : 17
6.6.1 In EDC: ✓ substitute
h ✓ answer (2)
tanθ =
DC
1 h
=
3 DC
DC = 3h
6.6.2 ED ✓ Method
tan α = ✓ DB = 2h
DA
1 h ✓ DA = 4h (3)
=
4 DA
DA = 4h
ED
tanβ =
DB
1 h
=
2 DB
DB = 2h
35
QUESTION 7
7.1.1 ✓ Pythagoras
OA = ( −4 ) 2 + ( 7 ) 2 Pythagoras
✓ answer (2)
OA = 65
OA 8,1 units
7.1.2 7 ✓ trig ratio
tan m = ✓ answer (2)
−4
m = 180 − 60,2551187
m = 119,7
7.1.3 OA 8,1 ✓ trig ratio
ˆ = 29,7 ✓ simplify
AOC
✓ OC = 9,3 units
In AOC:
✓ C ( 0; 9,3 ) (4)
8,1
cos 29,7 =
OC
8,1
OC =
cos 29,7
OC = 9,3 units
C ( 0; 9,3 )
7.2 1 ✓ square both sides
tan x = m + ✓ simplify
m
2 ✓ substitute
1 ✓
tan x = m +
2 simplify
m ✓ 120
1 ✓ 240 (6)
tan 2 x = m 2 + 2 +
m2
1
tan 2 x = m 2 + +2
m2
tan 2 x = 1 + 2 = 3
tan x = 3
GRAPHICAL METHOD:
x = 60 + n.180 nZ
x 120;240
OR
OR
38
m − 2n = 0 (only)
m = 2n --- (B )
substitute ( A ) in (B ) :
2n + n = 150
3n = 150
n = 50
m = 100
7.5.1 GRAPHICAL METHOD: B
✓ = 120
B 1 2
cos = −
2 2 ✓ B = 240
B ✓ substitute
= 120 + n.360 nZ ✓ simplify
2
B = 240 + n.720 ✓ special angle (5)
B = 240
240
sin + 30
2
= sin (150 )
= sin ( 30 )
1
=
2
OR
39
240
sin + 30
2
= sin (150 )
= sin ( 30 )
1
=
2
7.5.2 GRAPHICAL METHOD: ✓ A = 120
3 ✓ substitute
sin A = ✓ special angle
2
✓ answer (4)
A = 60 + n.360 n Z
or
A = 120 + n.360 n Z
A = 120
B
sin 2 + A
2
240
= sin 2 + 120
2
= sin 2 ( 240 )
= sin 2 ( 60 )
2
3
=
2
3
=
4
OR
40
3 1
= 2 − 3
4 2
3 3
= −
2 2
=0
41
7.6 1− x 2 ✓ substitute
LHS = ✓ LCD
1+ x 2
✓ simplify numerator
2
cos α ✓ simplify
1−
LHS = 1 − sinα denominator
2 ✓ identity
cos α
1+ ✓ common factor
1 − sin α ✓ common factor
cos 2 α ✓ answer (8)
1− 2
LHS = 1 − 2sin α + sin α
cos 2 α
1+ 2
1 − 2sin α + sin α
1 − 2sin α + sin 2 α − cos 2 α
1 − 2sin α + sin 2 α
LHS =
1 − 2sin α + sin α + cos α
2 2
1 − 2sin α + sin 2 α
sin 2 α + cos 2 α − 2sinα + sin 2 α − cos 2 α
LHS =
1 − 2sin α + sin 2 α + cos 2 α
2sin 2 α − 2sinα
LHS =
2 − 2sin α
2sin α ( sinα − 1)
LHS =
2 (1 − sin α )
−2sin α (1 − sinα )
LHS =
2 (1 − sinα )
LHS = − sin α
42
OR
43