0% found this document useful (0 votes)
798 views13 pages

Maths 2MS

The document is a marking scheme for a Mathematics Paper 2, detailing the marking criteria and solutions for various problems. Each question includes the working steps, marks allocated, and comments on the correctness of the answers. The document covers a range of mathematical topics including logarithms, geometry, algebra, and statistics.

Uploaded by

toneytoronto666
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
798 views13 pages

Maths 2MS

The document is a marking scheme for a Mathematics Paper 2, detailing the marking criteria and solutions for various problems. Each question includes the working steps, marks allocated, and comments on the correctness of the answers. The document covers a range of mathematical topics including logarithms, geometry, algebra, and statistics.

Uploaded by

toneytoronto666
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 13

121/2 MATHEMATICS PAPER 2 – MARKING SCHEME

NO WORKING MARKS COMMENTS


1 Log 559.3 = 2.7476
10 tan 30 = 10 x 0.0524
= 0.524

 2.7476 M1 Working out the


+ 0.5240 denominators to
3.2716 get 3.2716

0.7493 cos2 16.3350


3.2716
No. Std. form Log
0.7493 7.493 x 10-1 1.8747
Cos216.335 2(1.982) 1.9642 + M1 For attempt to
1.8389 add and subtract
3.2716 3.2716 x 100 0.5148 - correctly.
1.3241
-1 + 0.3241
2 M1 Division by 2
= 1.6621

= 10-1 x 4.593

= 0.4593 A1 CAO
04
2 ¼x2 + 1/9
¼ x2 + k + 1/9
a + 2ab + b2
a2 = ¼ x b2 = 1/9
2ab = k
2 x ½ x 1/3 = k
M1
k = 1/3 x A1
02
3
x6, x5 -9 , x4 a 2, x3 -a 3, x2 -a 4 , x -a 5, -a 6
x2 x2 x2 x2 x2 x2
1.x – 6.x a +15x a – 2x a 6 +15x a - 6x a 5 + 1. a 6
6 5 4 2 3 2 4

x2 x2 x2 x2 x2 x2
6 5 4 2 3 3 2 4 5 6 B1 For items and
x – 6ax + 15x a – 20x a + 15x a – 6xa + a coefficients
x2 x4 x6 x8 x10 x12 combined correctly
x6 – 6ax3 + 15a2 20a3 + 15a4 - 6a5 x a6
x3 x6 xa x12
15a2 = 1215
Equating to 1215
a2 = 81 M1
a = +9
C.A.O (+9)
A1
03

1
4

1.75r 24.8cm

θ = 2πr = c
360
1r = 57.2960
1.75 – (1.75 x 57.2960)
= 100.2680
100.26 x D x 22 = 24.8 M1 For substitution
560 7
0.8754D = 24.8
D = 24.8
0.874
D = 28.33cm For diameter
A1
03
5

AL2 = AE2 + EL2


= 52 + (1.5)2
= 27.5 M1
= 5.240

AM = 5.2442 + 42

= 27.5 + 16
M1
= 43.5

= 6.5955

Cos θ = 4
6.596
= 0.6064
θ = cos-1 0.6064 = 52.670 A1
04
2
6.
(0.0054667)½ = (54.667 x 10-4)½
= 7.3939 x 10-2 M1 Use of table, to
= 0.073939 get square root.

= 3
0.043279

= 3 x 0.2305 x 100
M1 Getting
= (69.15)2 reciprocals and
squaring it using
= (6.915 x 101)2 log tables.

= 47.82 x 102

= 4782

 0.073939 + 4782

= 4782.073989 Giving answer to


A1 5 significant
= 4782.1 figure.
03
7 A = P(1 + r)n Period = 4
100 Rate = 4
A = 1250000 ( 1 + 4.5)8
100 M1
= 1250000 (1.045)8
= 1777625.766
M1
Half withdrawn
Remaining 888812.883
A = 888812.883 (1 + 45)10 M1
100

= 888812.883 (1.045)10
= 1380299.229

Interest in phase one


= (1777625.766

Interest in phase two


1380299.229 – 888812.883
= 491486.346

Total interest
(527625.776 + 4914863.436)
=1019112.112
≈ 1019112 A1
03
3
8 16sm2 x + 4 cos x = 10
8sm2 x + 2 cos x = 5
8(1 – cos2x) + 2 cosx = 5
8 – 8 cos2x = 2 cos x = 5
-8 cos 2x + 2 cos x + 3 = 0
8 cos2x – 2 cosx – 3 = 0
Let cos x = y
M1 Accept use of sin
8y2 – 4y – 3 = 0

y=2± (-2)2 – 4 x 8x – 3
16

= 2± 4 + 96
16
= 2 ± 10
16
Cos x = 12 => cos x = 0.75 M1
16
and cos x = -8 => cos x = -1
16 2
Cos x = -0.5 – found in the 2nd and 3rd quadrant.

For 3rd quadrant


Acute angle = 600
Then x – 1800 = 600
x = 2400 A1
Tan 2400= 1.7321
B1
04
9 (a) P = KL + B K & B where K and B are constants
√C
500 = 16K + B ……….. (i)
4
800 = 25K + B ……… (ii)
M1
5 Attempt to find
K = 2000 = 32.79 the constants.
61
B = -98.56
P = 32.79L - 98.56
√C A1

(b) P = 2000 (81) – 98.56


61 √81 M1
= 1327.87 – 10.95
= 1,316.92
A1
04
4
10

1250
Wall F. Post
(H)
620
70m
(a) Tan 620 = H => H = 131.65m
B1
70
0
(b) Tan 25 = x
70
 x = 70 Tan 250
= 32.64
Therefore (wall) = 131.05 – 32.64 M1
= 99.03m A1
03
11 Log 135 = log 33x5
= 3 log 3 + log 5 M1
= (1.583) + 2.322
= 7.071 A1

02
12 Max. Q = 12.7 = 1.7887
7.1
Min. Q = 12.5 = 1.7123 M1 Both values
7.3
Actual = 12.6 = 1.75
7.2
A.E = ½ (1.7887 – 1.7123) M1

= 0.0383

% Error = 0.0382 x 100


1.75
= 2.1829 A1
03

5
13 H
10
F
8
A E B 8 8 H
B1 Sketch
2 2 2 B1  Labelling
B 8 C
G 10 F 2 G
8
F
10
G

Area of part A = 2 x 10 = 20
Area of part B = 2 x 2 = 4
M1
Area of part C = ½ (2 + 8) 8 x 2 = 80
Area of part D = 8 X 2 = 16
Area of part E = 2 x 8 = 16
A1
Total area = 136cm3
04
x+1 2x+1
14 9 – 54 = 3
(3 ) (32) – 54 = (32x) (31)
2x
M1
Let 32x = y
9y – 54 = 3y
M1
6y = 54 = y = 9
32x = 32 => 2x = 2
A1
Therefore x = 1
04

6
15
B(2, -1)

A(-6,5)

M -6+2, 5 -1
2 2 B1
= M (-2, 2)
MB = 2 – -2 = 4
-1 2 -3

MB = Radius = 42 + (-3)2
=5 M1
(x + 2) + (y – 2)2 = 5
2

x2 + y2 + 4x – 4y – 17 = 0 A1
03
16 y + 2x + 1 = 0
x2 + xy = -6
y = (-2 – 1)
x2 + x (-2x – 1) = -6 M1
-x2 – x + 6 = 0
(x – 2) (x + 3) = 0 M1
x = 2 when y = -5
x = -3 when y = 5 A1
04
17 (a) Tree diagram
4
/5 T ………….RBT
1
B /5 N ………...RBN
4
/15
5
/7 R ……….. RNR B1 Labelling
18
/21 R N
1 2
/15 /7 B2 Indicating all
N ……… RNN probs
3 4
/21 B /5 T ……….. NBT
1
/13
1
N /5 N ……….. RBN
12 5
/13 N /7 R ………. NNR
2
/7 N ………. NNN
(b) (i) P (RNR) or P (RNN) or (RNN) or P (NNR) or (NNN)
6 x 11 x 5 + 6 x 1 x 2 + 3 x 12 x 5 + 3 x 12 x 2
7 15 15 7 15 7 21 13 7 21 13 7 M1

= 2 + 60 + 60 + 23 = 170
49 637 637 637 637 M1 A1

(ii) P (RNR) or P(NNR)


= 6 x 11 x 5 + 3 x 12 x 5
7
7 15 7 21 13 7 M1
= 86
637 A1
(iii) P (R’) = 1 – P (RNR + P (NNR)
= 1 – 86 M1
637
= 557 A1
637
10
18 Total tax = PAYE – Relief
= Ksh. 2172 + 1093 M1
= Ksh. 3265p.m
= Ksh. 39,180 p.a. A1

Tax (K£ p.a.) Taxable income (K£p.a.)


4512 x 2 (9024) 4,512 M1
4512 x 3 (13,536) 4,512 M1
4x = 16,620 (16,2620) 4,155 M1
13,179
Therefore taxable income = Ksh. 13,179 p.a
= Kshs. 21,965p.m. M1
Basic salary = Ksh. 21965 – (5000 + 2000) M1
= Ksh. 14,965p.m. A1
Total deductions = Ksh. 2172 + 320 + 4000
= Ksh. 6,492p.m.
Gross income = Ksh. 21965p.m.
Therefore Koech’s net pay = Ksh. 21965 – 6492 M1
= Kshs. 15,473p.m. A1
10
19
B1 Construction of pt
C
B1 Construction of
ΔABC
B1 Locating the
centre
B1 Bisecting <s
Radius of circle
B1 construction.
Construction of
B1 angles 300.
Centre of circle
B1
Locus L
B1
(d) radius = 4.6 + o.1

Area = 120 x 22 x 4.6 x 4.6 M1


360 7
= 22.17cm2 A1
10
20
8
x -30 0 30 60 90
+ cos 2x 2.0 4.0 2 -2.0 -4.0 B2 All 6
3 sin (x+30) 0 1.5 2.6 3.0 2.6

120 150 150 210 240 270


-2.0 2.0 -4.0 2.0 -2.0 -4 B1 At least 4
1.5 0 -1.5 -2.6 -3.0 -2.6

(c) (i) x = 240, 1380, 3520 + 0.5 B2 all


B1 2
(ii) 3 sin (x + 300) = y
3 sin (x + 30) = y -y = y x = 168 + 0.5 B1

(iii) 4 cos 2x = y 2x = 360


x = 1800
Therefore period = 1800 B1
10
21 (a) 4800 = 80 0

60 M1
90 – 65 = 250
80 – 25 = 550
90 – 55 = 350 M1
R = 350 ………… A1

(b) X (650N, 360E)


Y (650N, 1440W)
Angle difference
144 + 36 = 1800 M1
Small circle
Therefore 1800 x 600 cos 650
9
= 4564.28nm

Then: (650N, 1440W)


(350N, 1440W)
Angle difference
65 – 35 = 300 M1
Current circle
30 x 60 = 1800nm

Total distance
4564.28 + 1800
= 6364.28nm A1

Direct route
Angle difference = 800
Along a great circle (Longitude)
A1
Therefore 80 x 60 = 4800nm
Route difference in distance
6364.28 – 4800 = 1564.28nm A1

(c) Route difference in distance = 1564.28nm


Angle difference = 1564.28 = 26.070 M1
60
 35 + 26.07 = 61.070
0 0

(61.070N, 1440W) A1

10
2
22 (a) y = x + 2
y = 10 – x2
x2 + 2 = 10 – x2
x2 + x2 = 10 -2
2x2 = 8
x2 = 4
x = +2
x=2
y2 = x + 2 y = 10 – 2
y= 4 + 2 or y = 10 – 4
y=6 y=6
Q(2, 6) …………………………….. A1
(b) h = 2 – 0 = 2 = ¼ or 0.25
8 8

For y = 10 – x2
x 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10 10 10 10 10 10 10 10 10 10 T2
-x2 0.00 -0.0625 -0.25 -0.5625 -1.00 -1.5625 -2.25 -3.0625 -4.00
y 10.00 9.9375 9.75 9.4375 9 8.4375 7.75 6.9375 6
9.96875 9.4375 9.59375 9.21875 8.71875 8.09375 7.34375 6.46875

= 0.25(9.96875+09.84375+9.59375+9.21875+8.71875+8.09375+7.34375+6.46875)
= 0.25 (69.25)
= 17.3125…………………. A1

10
For y = x2 + 2
X 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 T1
x2 0.00 0.0625 0.25 0.5625 1.00 1.5625 2.25 3.0625 4.00
2 2 2 2 2 2 2 2 2 2
y 2.00 2.0625 2.25 2.5625 3.00 3.5625 4.25 5.0625 6.00
3.03125 2.15625 2.40625 2.78125 3.28125 3.90625 4.65625 5.53125

=0.25(3.08125+2.15625+2.40625+2.78125+3.28125 + 3.90625 + 4.65625+5.53125)


= 0.25 (27.75) A1
= 6.9375…………………..

Shaded region:
17.3125 – 6.9375 A1
= 10.375

(c) y = 10 – x2
2
(10x – x2)dx
0 2
M1
10x – x3
3 0
M1
3 3
10(2) – (2) – (10(0) – (0)
3 3
(20 – 2.6667) – 0 A1
17.3333

10
23 (a) p = krn
Log p = Log rn + log k
Log p = n logg r + log k B1
(b)
p 1.2 1.5 2.0 2.5 3.5 4.5
r 1.58 2.25 3.39 4.74 7.86 11.5
Log p 0.792 0.1761 0.3010 0.3979 0.5441 0.6532
Log r 0.1987 0.3522 0.5302 0.6758 0.8954 1.0607 T2

n = the gradient

n = 0.3522 – 0.1987 = 0.1535 = 1.58


0.1761 – 0.0792 0.0969 M1 A1
Log k = 0.9
No Log
k 0.9
7.943
k = 7.943 ……………….

(b) A1

A1

11
Log p

(c) P = 7.943r1.58

10

12
24 Scale 1cm rep 100km

B3 For locating ABC

B1 For locating D

A
(a) AC => 12.5cm
12.5 x 100
= 1250km A1 For 1250km

S=D
T
200 = 1250
T
T = 1250 = 6.25 M1 For correct
200 substitution
= 6 hours 15 minutes A1

(b) 1490 B1

(c) 8.3cm
8.3 x 100 = 830km A1
10

13

You might also like