Previous Questions
Organizer
2019
Mathematics-I
Q.1. Choose the correct
answer (any seven):
(a) Determine the type of the following differential equation
d'y +Sin(x + y) = sin x
dx
(1) Linear, homogeneous
(ii) Non-linear, Homogeneous
(ii) Linear, non-homogeneous
(iv) Non-linear, non-homogeneous
Ans. (iv)
(b) The singular solution of p log(px- y)
=
is
(i) y=a(log x- 1) (ii)
(i)y = log x- 1
y=xlogx-1
(iv)y = xlog x
Ans. i)
Ify=o(x)is a particular solution ofy"+ (sinx)y' +2y=e" and
y= y(x) particular solution of y" +(sinx)y' +2y =cos2x,
os a
then particular of
y"+ (sinx)y' +2y= e +2sin*x is given by
(6)
o(x)-vx)+; (i) v(x)-p(x)+
ii) p(x)-y(x) +1 (iv) y(x)-P(x)+1
Ans. (iv)
(d)Let D-
Then the value of {1 / (xD +
1)} x' is
(i) logx (ii) (log x)/x
(ii)(log x)/x (iv)(log x)/x
Ans. (ii)
Previous Questions 12 Organizer
(c) IfP, is the Legendre polynomial of first kind, then the value
of P,P,d i
2 2n 2 2n
(0
(1) 2n +|
2n+1 (2n+1 (iin) 2n+3 (iv) 2n+3
2n+3
Ans. (ii)
The partial differential eqúation
u-(1) u,y =0 is
i) parabolic in {(x, y):x <0} (i) hyperbolic in {(x, y): y> 0}
ii)elliptic in {(x, y) > 0, x2+y2<1}
(iv)parabolic in {(x, y):x>0}
Ans. (ii)
Ifux,t) satisfies the partial differential equation u =4
Ox
then u(x, t) can be of the form
(i) u(x, t)= f{x - 2t) + g(x +2t)
(i) u(x, t)- f(x2- 4t) +g(x2+4t)
(iii) u(x, t) = f(2x - 4t) + g (x + 2t)
(iv) u(x, 1) - f(2x-t) +g(2x + t)
Ans. (i)
(h) If J, is the Bessel's function of first kind, then the value of
2 is
) TCX
-sinxi) 2 sinx - cosx X
(i) Sin x (iv)
2 cOS x
10X
Ans. (ii)
(i) The region in which the following partial diferential equation
ayt3O
u70u, , 0'u
227U + 5u = 0
x Oxoy
acts as parabolie equation is
Previous Questions 13 Organizer
(i) x>
1/3
(Gii)for all values of x (iv) x=
Ans. (iv)
G) Given =6x -0.5x2, y(0) =0, y(12) = 0 The value of
dx
a t y(4) using the finite difference method and a step size
ofh 4 can be approximated by
(i) Gii)6-2y(4)+y(0)
8 16
(ii) Y(12)-2y(8)+y(4) (iv) y4)-y0)
16 4
Ans. (ii)
Q.2. Solve the following differential equations
(a) (xy+e-l )dx- x?ydy = 0
Ans. xy+edx-xydy =0
xy+eAdx =x*ydy
=xy2xy+e-k*
dx
Previous Questions 141 Organizer
Put y2= z then 2y dz
dx dx
I dz
i.e
2 dx -a
dz
dx
Which is linear in z
9 -e/x
Put y2= z then -2y-3 a_ dz
dx dx
dz
+ 2 x z = -2ex
dx
Which is iinear in z
PEx 9 2e
If d =e
The solution is
ze-2e.e dx+e
= 2ldx +e
ye-2x +e
Q.2. Solve the following differential equations:
(b) p+2py cotx = y*
Ans. Given p +2py cot x = y
Previous Questions I5 Organizer
Given Equation can be written as
0
p+(2ycot x)p- y
=
Solving for p we get
-2ycot x t V4ys cot x+
4y
P
2
P = y cot x t y cos ecx
p=yl - sin x
p=y0Scos X* or P -coSX
sinx Sin x
2ysin -2ycos
or P
A
2sin.cos, 2sin.coS
P=ytan or p=-ycot
If p=y tan then
dy=ytan
X
dx
= tandx
y 2
on integrating
-uana
logy=2 log|sec+loge
Previous Questions 161 Organizer
y=csec*
ycos
y(l+cos x) = 2c =c (say)
y(l+cos x)- c =0
If p=-y cot then
2
otdx
y
logy =-2 logl sin+ logc
y C2 vsin?
ysin" C2
sin
2
y(l-cosx) =2c2 =c (say)
y(1-cos x) -c =
0
Required solution is
(y(1+ cosx)-c) (y(l-cosx)- c) = 0
Q.3. (a) Solve the following differential equation:
e"(p-1) + p e =0
Ans. Given
e(p- 1) +p* e2y =0 )
Put eX X e= Y
eXdx = dx
edy dy
dydye x dy X .
Pdx e'dx y dx y
Organizer
Previous Questions 17
dy
Where Pdx
Hence Equation (i)
Reduce too
p-1P'y-o
p-y+p-0 x0. y=0)
y= px +p
by constant e
Which is elqiraut's form replacing p
ie y Cx +c>
e ' = cex+ e3
to find the
Q.3. (b) Use the method of variation of parameters
solution of the given differential equation
y" =3y'+ 2y =cos(e
Ans. Given (D - 3D + 2 ) y = cos(e")
y2-3y + 2y = cos(e) ...)
Comparing (1) with y2 + p 9 y = R
Whose R cos(e) ..(in)
Auxilary Equation of (i) is
(D-3D+2) 0 giving =
D= 1.2
Hence C.F of (i)
CF = c,ex +c, e2x ...ii)
Where c, and c, being arbitrary constant
Let u = ex =e2x
Now
- 2e- =e #0
Than particular solution for integral of (i)
uf(x)+ vg(x)
Previous Questions 18 Organizer
9.4. (a) Express x + 2xd+2x x-3
in terms of Legendre's polynomials.
Ans. Let
d+2x3+2x- x-3
ap,(x) + bp;(x) + cpi(x) + dp,(x)...(i)
+c(x)+ d(l)
ax-axbx-+Cxd 2
axb d
Equating the coefficients of like
Power of x we get
5a=l a
5
b2 b=
a+c=-1 c=-l-
e-1 =0-6-
1010
-d--3
d--3.-3 -3.14
Putting these values of a, b, c and d in Equation (i) we get
x+2x+2x -x -3
8
PCx)Pa(*)-P()Po)
Previous Questions 191 Organizer
Q.4. (b) Prove that
P(cos)+P,(cos0)+.. =logl+cosec(0/2)
Ans. From the generating function
k=0
Integrating (i) w.r. to x from 0 to I
dz
SP.dz =- 22+2
n=00
i)
Replacing x by cosf on both side (ii) gives
dz
n=0 0 1-22 cos+z
dz
n=0
Vz-cos8 +sin e
Pn os6)=log{z- cos+y[z-cos6) +sin6
i
n+l
n=
log (1-cos0)+ -cos 0) +sin -log(1-cos)
=
log| (1-cos6)+ /2(1 - cos0)-log(1 -cos6)
log(-cos0)+v2/1-cos
1- cos6
= log V-cose1-cos+ 2/1-cos
VI-coseI-cos6
= log- V-cos+V2 2sin+N2
log
VI-cos0
2sin
Previous Questions 10 Organizer
I+9Sin
= log-
Sin
2
Pocos)p,(cos8)+p(cos 6) +.
1+SIn
log-
Sin
2
1+pcos0)+Pa (cos 0) +..
1+Sin
= log 2
Sin
2
Since po (cos6) =
1| i)
ie
1P (cos0)+ P;(cos0)+. =log I+cosee
Q.5. (a) Solve the following differential equation :
z{x + y) p + z(x - y) q =x2+ y2
Ans. Given z(x + y) pt z(x - y)q=x +y2
The Lagrange's subsidiary equation are
dx
z(x + y) z(x -
dy y) x
dz
+y2
ChoosingX - Y1 - Z as multipliers we get
xdx - y d y - zdz
xdx -
ydy zdz
xz(x+ y)- yz(x -
y)-z(x* -
y^)
Previous Questions Organizer
x d x - y d y - zdz =0
2xdx-2ydy -2zdz =0
on integrating
y Z e
Where c, is an arbitrary constant
Again choosing y, X -z as multipliers
ydx +xdy-zdz
yz(x+y)+ xz(x - y) -z(x* - y*)
ydx+ xdy-zdz
y d x + xdy - zdz=0
2d(xy) -2zdz =0
on integrating
2xy z C where c, is an arbitrary constant
Hence Required Solution are
ox-y-, 2xy-z)=0
Q.5. (b) Find the complete integral of
zp?y +6zpxy + 2zqx2+ 4x?y =d
Aas. z<p'y + 6zpxy + 2zqx + 4x-y =0
f F z p í y + 6zpxy+ 2zqx- + 4x*y
6zpy+ 4zqx +8xy
OX
=z'p*+ 6zpx +4x
2zp y+ 6pxy 2qx*
+
d- 2pz?y + 6zxy
of 2zx
Previous Questions |12 Organizer
Charpits Auxiliary Equations are
dq dz
dp
of
dx dy
of p
op cq
dp
6zpy + 4zqx +8xy + p(2zp°y +6pxy+ 2qx*)
zp +6zpx +4x +q(2zp'y +6pxy+2qx*)
dz
-P(2pz y +6zxy) - q(2zx<)
dx dy dp
-(2pz^y +6zxy) -2zx
From the first and last members we
get
dp =0 P
z ' a ' y +6zaxy + 2zqx* + 4x^y = 0
2zqx=-z'a'y + 6zaxy + 4x*y
(zay +6zaxy +4x y
2
dz= pdx + qdy
dz .za'y+ 6zaxy +4x*y
=adx + (-)
2 dy
Previous Questions |13 Organize
on integrating
Z a
za'y 3axy 2x y
4 2z
differential equations:
Q.6. Find the solution of following partial
(a) r - t = tan' x tan y- tanx tany
Ans. Given r - t = tan' x tany- tanx tan'y
tan'x tan y - tan x tan" y
y
Auxiliary Equation is m2-1 =0 m=+|
CF y+x)+ f,y-)
PI tan x tan
y| sec x
-
sec y
D- D
D+DD_nitan xsec x tan y
tan x tan y secs y]
tan xsec xtan(c-x)dx
D+D'L.
tan x tan(c-x)seci(c x)dx
-
Where y c-x
D.D
D+D'|
tan(c -x) see x(c-x)
tan dx +tan xtan2 X
2
e* xtan? d«
Previous Questions 141 Organizer
tan(cx)tan' x + tan s
tan'(c -y)
see (e-xXsecx -1)dx
-ssee-*)-1]ak
1 tan(c-x)
2/0.Dtan(c x)tan* x tan
-
secx -se e-x)
. t a n ( c - x ) tan* x+ tan xtan (c-x)
2D+D')
+tan x +tan(c x)]
[tan xsec(c-x)+ tan(c-x)sec- x]
2(D+D)
tanx secy+ tan ysecs x]
2(D+D')
where cy+z
- tan x sec (b+ xdk +| tan(b+ x)sec? dk
where y =b+x
tan(b + x)dx
tan x. tan(b x)-| sec
+ x
+tan(b+x)sec*xdx
=tan x tan(b + x)
Organizer
Previous Questions
t a n x tan y
where b y- x
Hence complete solution is
z
=
CF +
pf f,(y+x)+ f,(y
-
x) +
, tan xtan y
differential equations
Q.6. Find the solution of following partial
(b) (2D -3D' + 7) (D2 +3D') z 0
=
(2D -3D'+7} (D2 +3D') z 0
=
Ans. Given
Put D m D' 1
Auxiliary Equation are
(2m-3+7) (m+3) 0 =
(2m+4) (2m +4) (m3 +3) =0
= 2m +4 0 m=-2
2m +4 0 m=-2
m2+3 0 m=+ V3i
CF f(4-2x)+x f,(4-2x) +f,(4 t 3 ix)
+4-3 ix)
Q.7. (a) Classify the partial differential equation
axet*2
Ans. u +t +x +2 6u = 0
o ôx
Let us consider the general form of second order linear partial
differential equation
autbuy
Now
t cu,
b=t,
du, t eu, +fu= yx, u) +
a =
1, c =
x, d =2, e =
1, f=6
Cannot all be zero.
Itsdiscriminate to beb- 4ac
Previous Questions 16 Organizer
Now Ifb:-4ac > 0 then the equation is called haperbola, If b2.
4ac 0, then the equation is called parabolic, Ifb-4ac <0 then
the equation is called elliptic
In general elliptic equation describe processes in equilibrium
while the hyperbolic and parabolic equations model processes
which evolve over time
Q.7. (b) ind the solution of Laplace's equation in cylindrical
coordinates.
Ans. Laplace equation in cylindrical coordinates is
u1u 1 8u 1)
Let u(r,0,z) =
R(r) F(0)z(2) ...(2)
or u= RFZ be solution
a
of (1)
Putting it in (1) we get
RFZ+R'FZ+RF°Z + RFZ" =
0
Dividing by RFZ
1 d'R 1 dR1 dF id'z_0
R dr? rdrPF do 2 i ..3)
F
Assuming = -n^F and =k'z .(4)
de dz
Equation (3) reduces to
d'R,dK
Rdr
+k0
dR dR
(k-n
dr dr )R =0
This is Bessels Equation
It solution is R
=C/, (kr) C^ Y, (kr)
+
The solution
of equation (3) are
Previous Questions |17 Organizer
F=C3 COS ne + C4 sin ne
Z=ce +c,e-kz
Hence equation (1) is
u=
[ei, (kr) +c2 y, (kr))
cosn+c sin 0] (,e" +c,e
Which is known as a
cylindrical harmonic
Q.8. The points of trisection ofa string are pulled aside
through
the same distance on opposite sides of the
position of
equilibrium and the string is released from rest. Derive an
expression for thedisplacement of the string at subsequent
time and show that the midpoint of the
string always remains
at rest.
Ans. The Equation for the vibration of the
string is
ot .1)
The solution of Equation (1) is
y(x. t)= (c,cos cpt + c,sin cpt) (c, c sin
L be the length of
cos pxt px) .2)
Equation of OB is
string
y- h-0 x-0)
-0 3n
..3)
(2)
7u.o
Previous Questions 18 Organizer
Equation of BC is
y-h= -2h
y-h=-oh
y= 3h ..4)
Equation of CA is
y+h-
3hx 2h
y= 3 5)
Hence boundary conditions are
y(0, t)= 0
y, t)=0
Cy=0 whent =
0
3h
0sxs
and y(x, o) -2x)xs
3h
From (2)
y(0, t)= (c,cos cpt t c, sin cpt) (c3)
Previous Questions |19 Organizer
From (2)
y(x, t)= (c, cos cpt + c, sin cpt)c sin px
.(6)
yl.t)=0=(c, coscpt+c, sin cpt) c sin pl
sin p/ = 0 sin na (n e J)
rom (6) y(x,t) =C, S nCL Sin nzctin nzx
...(7)
sin ntct cosTnct C nTX
+C2
ot
At t=0 -0-e,Sin
C0
ntct nTx
From (7) yx, t)= Cq.C4COSsin
nTx
=
b, cos C -Sin
The most general solution is
nict nTX
y (x, ) =
, cosSin
n=
nTX
y (x, 0) =
2b, sin- where
y x.0)sindx
Previous Questions 201 Organizer
dx -2x)sindx
/3
x-)sindx
2//3
-2h nT 6h
nT-cOs 22 S
2hcos
cos 2nt,2
coscos
nT
12h 2nT
n?2S1n- s i n
l
18h 18h 2nT
2 Sin-3 n 2 - Sin
3
18h
3 nun
18h Sinar 18h nit
n?2SIn
Sn coSnTT
3
n
18h
n22Si
+cos n7)
36h nt
n2 3
When n
is even
0 when n is odd
PreviousQuestions 121 Organizer
sincos sinx
y(x,t) = n
n
2mTs S 2mrx
ml m
Where n= 2m ..(9)
Which is the required expression for
y(x. t)
Putting x =; in equation (6) we get
2mt 1 2mtct
CoS-
Sin ma = 0
m=
Hence mid point of the string is always at rest.
Q.9. (a) Solve the initial value problem yy'=x, y(0)= 1, using the
Eulermethod in 0Sxs0.8,with h 0.2 and h= 0.1. Compare
the results with the exact solution at x= 0.8. Extrapolate the
result.
Ans. We have y' = f(x, y) = (wly)
Euler method gives
Y+, + hf [x, y] =
y, +
Initial condition gives x% =0 Y%=
When h 0.2 We get
Yi Y+
0.2x
yi
Now
y(x)= y(0.2) = yi = Yot 0.2x0 10
Yo
Previous Questions 22 Organizer
y(x2)= y(0.4) = y2 = y+ 0.2x
= 1.0+0.2X0.2)
1.0
1.04
Yx3)= y(0.6) = yy = y2 + 0.2x2
Y2
=1.04+20.4) 1.11
1.04
y(x) = y(0.8)
y4y3 +
0.2(x3)
y2
=1.11+.2(0.6)
1.11
=1.22
When h 0.1 we get
Yi+Yi
0.Ix1
y1
y(x)= y(O.1) = Y1 = Yot-
0.1X01.0
Yo
y(x2)= y(0.2) = y2 = y i t 0.1X1
= 1.0
1.0
y(x)= y(0.3) = ys = Y2t- 0.1x2
y2
Organizer
Previous Questions 1231
= 1.01+ o.I(0.2) - 1.02
1.01
0. Ix3
+
y(x)= y(0.4) =y4
=
Ys
Y3
=1.02+ .I(0.3)=
1.02
|.05
y(xs)= y(0.5) = ys = Y4 + 0.1x4
Y4
= 1.05+(0.4)=1.09
1.05
t 0.1xs
yx)= y(0.6) =
Ys =
Ys
Ys
1.09+.0.1(0.3)1.14
1.09
0. Ixg
y(x7)= y(0.7) = y7 = Ys +
Y6
= 1.14+ 0.10.6) 1.19
1.14
0.1x7
y(xg)=y(0.8) =ys =
y7 +
y7
=1.19+ 21.25
=1.19*1.19
The exact solution is y =vx2 +I
Atx = 0.8 the exact value is y(0.8) = VI.64=1.28
Previous Questions
24
Organizer
The magnitudes of the errors in the solution the
h 0.2 |1.280- 1.2241 =0.05
are
following
h =0.1 |1.28-1.25|
=0.02
Now extrapolated result as
y(0.8) = 12 yp (h/2)- y (h)
= 2(1.25)-1.22 1.28
The magnitude of the error in Extrapolated result is givenn by
|1.280 1.282] = 0.001
Q.9. (b) Write the bound on the truncation error of the Taylor
series method.
Ans. The n terms of the approximation are simply the first n terms of
the exact expansion
x
e = 1+x+
2
So the function f(x) can be written as the Taylor's series
approximation plus an error (Truncation) term
f(x) = f, (x) + E, (x)
Where E, (x) =
(E)
*
(x-c
n+