DB 115118
DB 115118
____________________________________________________________________________
____________________________________________________________________________
I
____________________________________________________________________________
II
____________________________________________________________________________
III
____________________________________________________________________________
IV
____________________________________________________________________________
V
____________________________________________________________________________
VI
____________________________________________________________________________
VII
____________________________________________________________________________
VIII
____________________________________________________________________________
IX
____________________________________________________________________________
X
____________________________________________________________________________
XI
____________________________________________________________________________
XII
____________________________________________________________________________
XIII
____________________________________________________________________________
XIV
____________________________________________________________________________
XV
____________________________________________________________________________
XVI
____________________________________________________________________________
XVII
____________________________________________________________________
1
____________________________________________________________________
2
____________________________________________________________________
3
____________________________________________________________________
4
____________________________________________________________________
5
____________________________________________________________________
6
____________________________________________________________________
7
____________________________________________________________________
8
____________________________________________________________________
9
____________________________________________________________________
10
____________________________________________________________________
11
____________________________________________________________________
12
____________________________________________________________________
13
____________________________________________________________________
14
____________________________________________________________________
15
____________________________________________________________________
16
____________________________________________________________________
17
____________________________________________________________________
18
____________________________________________________________________
19
____________________________________________________________________
20
____________________________________________________________________
21
____________________________________________________________________
22
____________________________________________________________________
23
____________________________________________________________________
24
____________________________________________________________________
25
____________________________________________________________________
26
____________________________________________________________________
27
____________________________________________________________________
28
____________________________________________________________________
29
____________________________________________________________________
30
____________________________________________________________________
31
____________________________________________________________________
32
____________________________________________________________________
33
____________________________________________________________________
𝐿(𝒑, 𝒎) = 𝐿(𝒑(𝒎), 𝒎) = 0
𝐿(𝒑, 𝒎)
34
____________________________________________________________________
𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
1
𝐽(𝑝, 𝑚) = ∑ 𝜔𝑖 (𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (𝑝) − 𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )2
2
𝑖=1
𝐽(𝑝, 𝑚)
𝜔𝑖
𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (𝑝)
𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
35
____________________________________________________________________
36
____________________________________________________________________
37
____________________________________________________________________
38
____________________________________________________________________
39
____________________________________________________________________
40
____________________________________________________________________
𝑑𝐽 𝜕𝐽 𝑑𝑝 𝜕𝐽
= ⋅ +
𝑑𝑚 𝜕𝑝 𝑑𝑚 𝜕𝑚
𝑑𝐽 𝜕𝐽 𝑑𝑝 𝜕𝐽
= ⋅ + =0
𝑑𝑚 𝜕𝑝 𝑑𝑚 𝜕𝑚
𝑑𝑝
𝑑𝑚
41
____________________________________________________________________
𝜕𝐿 𝜕𝐿 𝑑𝑝
+ ⋅ =0
𝜕𝑚 𝜕𝑝 𝑑𝑚
𝜕𝐿 𝑑𝑝 𝜕𝐿
⋅ =−
𝜕𝑝 𝑑𝑚 𝜕𝑚
𝑑𝑝
𝑢=
𝑑𝑚
𝜕𝐿
𝐴=
𝜕𝑝
𝜕𝐿
𝑓=−
𝜕𝑚
42
____________________________________________________________________
𝜕𝐽
𝑔𝑇 =
𝜕𝑝
𝐴⋅𝑢 =𝑓
𝑇
𝑔 ∙𝑢
𝐴⋅𝑢 =𝑓
43
____________________________________________________________________
𝑔𝑇 ∙ 𝑢
𝐴𝑇 ⋅ 𝜆 = 𝑔
𝜆𝑇 ⋅ 𝑓 𝑔𝑇 ⋅ 𝑢 =
(𝐴𝑇 ⋅ 𝜆)𝑇 ⋅ 𝑢 = 𝜆𝑇 ⋅ (𝐴 ⋅ 𝑢) = 𝜆𝑇 ⋅ 𝑓
𝐴𝑇 ⋅ 𝜆 = 𝑔
𝜆𝑇 ⋅ 𝑓
𝑔𝑇 ⋅ 𝑢 = (𝐴𝑇 ⋅ 𝜆)𝑇 ⋅ 𝑢 = 𝜆𝑇 ⋅ (𝐴 ⋅ 𝑢) = 𝜆𝑇 ⋅ 𝑓
𝜕𝐽 𝑑𝑝
𝑔𝑇 ∙ 𝑢 = ⋅
𝜕𝑝 𝑑𝑚
𝜕𝐿
𝜆𝑇 ⋅ 𝑓 = 𝜆𝑇 ⋅ (− )
𝜕𝑚
44
____________________________________________________________________
𝜕𝐿 𝑇 𝜕𝐽 𝑇
( ) ⋅λ=( )
𝜕𝑝 𝜕𝑝
∇𝐽(𝒑, 𝒎)
∇𝐽(𝒑, 𝒎)
𝒙 = (𝒑, 𝒎)
𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘 ⋅ ∇J(𝒙𝑘 )
𝛼𝑘
45
____________________________________________________________________
𝛼𝑘
∇𝒗 𝐽(𝑥) 𝒗
‖𝒗‖ = 1
𝒗
∇𝐽(𝒙) 𝒗
𝐽(𝒙 + 𝜀 ⋅ 𝒗) − 𝐽(𝒙)
∇𝒗 𝐽(𝑥) = lim = ∇𝐽𝑇 (𝒙) ⋅ 𝒗
𝜀→0 𝜀
46
____________________________________________________________________
max cos(∇𝐽(𝒙), 𝒗) = 1
𝒗
𝒗 𝒗 ∥ ∇𝐽(𝒙)
47
____________________________________________________________________
48
____________________________________________________________________
49
____________________________________________________________________
50
____________________________________________________________________
51
____________________________________________________________________
Simulation
NO
52
____________________________________________________________________
𝑂𝐹 = 𝐽 (𝑝, 𝑚) = ∑ 𝜔𝑖 ⋅ 𝑀𝑖
𝑖
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 2 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 2
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝛼𝑜 (𝑂𝑖,𝑡 − 𝑂𝑖,𝑡 ) 𝛼𝑤 (𝑊𝑖,𝑡 − 𝑊𝑖,𝑡 )
𝑀𝑖 = ∑ [ +
𝛽𝐿,𝑖 𝛽𝐿,𝑖
𝑡
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 2
𝛼𝑔 (𝐺𝑖,𝑡 − 𝐺𝑖,𝑡 )
+
𝛽𝑔,𝑖
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 2
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝛼𝑝 (𝑝𝑖,𝑡 − 𝑝𝑖,𝑡 )
+ ]
𝛽𝑝,𝑖
53
____________________________________________________________________
𝑂𝐹
𝛼𝑖 ; 𝜔𝑖
𝑀𝑖
𝛽𝑖
𝑜, 𝑤, 𝑔
𝜕𝐽 (𝑝, 𝑚)
𝜕𝑚
54
____________________________________________________________________
𝐽(𝑝, 𝑚)
𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘 ⋅ ∇J(𝒙𝑘 )
𝛼𝑘
∇J(𝒙𝑘 )
55
____________________________________________________________________
𝑥 𝑘+1
𝑥0
56
____________________________________________________________________
57
____________________________________________________________________
58
____________________________________________________________________
59
____________________________________________________________________
60
____________________________________________________________________
61
____________________________________________________________________
62
____________________________________________________________________
𝝓 𝝓
63
____________________________________________________________________
64
____________________________________________________________________
65
____________________________________________________________________
66
____________________________________________________________________
67
____________________________________________________________________
68
____________________________________________________________________
69
____________________________________________________________________
70
____________________________________________________________________
71
____________________________________________________________________
72
____________________________________________________________________
73
____________________________________________________________________
74
____________________________________________________________________
𝑉𝑝 𝑉𝑏 − 𝑉𝑠
𝜙= =
𝑉𝑏 𝑉𝑏
𝑉𝑝
𝑉𝑏
𝑉𝑠
75
____________________________________________________________________
76
____________________________________________________________________
∆𝑃
𝑘 𝑘 ∆𝑝
𝑞 = −𝐴 ∇𝑝 = −𝐴
𝜇 𝜇 𝐿
77
____________________________________________________________________
𝑞 𝑘
𝑣= = − ∇𝑝
𝐴 𝜇
𝑞 𝑘
𝑣𝑟𝑒𝑎𝑙 = 𝑣/𝜙 = =− ∇𝑝
𝐴𝜙 𝜇𝜙
∇𝑝
𝑣 𝑣𝑟𝑒𝑎𝑙
78
____________________________________________________________________
79
____________________________________________________________________
80
____________________________________________________________________
81
____________________________________________________________________
𝑘 ⋅ 𝑘𝑟𝛼 ∆𝑝𝛼
𝑞𝛼 = ⋅𝐴⋅
𝜇𝛼 ∆𝐿
82
____________________________________________________________________
𝑞𝛼
𝑘𝛼
𝜇𝛼
∆𝑝𝛼
∆𝐿
83
____________________________________________________________________
𝑘𝛼 (𝑆𝛼 )
𝑘𝑟𝛼 =
𝑘
84
____________________________________________________________________
𝑘𝑟𝛼
𝑘𝛼 (𝑆𝛼 )
85
____________________________________________________________________
86
____________________________________________________________________
87
____________________________________________________________________
𝑃𝑐 = 𝑝𝑛𝑤 − 𝑝𝑤
88
____________________________________________________________________
𝑃𝑐
𝑝𝑛𝑤
𝑝𝑤
𝑃𝑐
𝜎12
89
____________________________________________________________________
90
____________________________________________________________________
91
____________________________________________________________________
92
____________________________________________________________________
93
____________________________________________________________________
𝑛𝑤
𝑛𝑤 𝑆𝑤 − 𝑆𝑤𝑐
𝑘𝑟𝑤 (𝑆𝑤 ) = 𝑘𝑟𝑤𝑛 ∙ (𝑆𝑤𝑒𝑓𝑓 ) = 𝑘𝑟𝑤𝑛 ∙ ( )
1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑐
94
____________________________________________________________________
1 − 𝑆𝑤 − 𝑆𝑜𝑟 𝑛
𝑘𝑟𝑜 (𝑆𝑤 ) = 𝑘𝑟𝑜𝑛 ∙ (1 − 𝑆𝑤𝑒𝑓𝑓 )𝑛𝑛𝑤 = 𝑘𝑟𝑜𝑛 ∙ ( ) 𝑛𝑤
1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑐
𝑆𝑤
𝑆𝑤𝑒𝑓𝑓
𝑘𝑟𝑤 (𝑆𝑤 )
𝑘𝑟𝑜 (𝑆𝑤 )
𝑘𝑟𝑤𝑛
𝑘𝑟𝑜𝑛
𝑆𝑤𝑐
𝑆𝑜𝑟
𝑛𝑤
𝑛𝑜
95
____________________________________________________________________
96
____________________________________________________________________
97
____________________________________________________________________
𝑃𝑐 𝑘
𝐽(𝑆𝑤 ) = √
𝜎12 cos 𝛩 𝜙
𝐽(𝑆𝑤 )
𝑃𝑐
𝜎12
98
____________________________________________________________________
𝑘
𝜙
99
____________________________________________________________________
𝜙𝑒𝑓𝑓
𝜙𝑛 = ( )
1 − 𝜙𝑒𝑓𝑓
𝑅𝑄𝐼
𝐹𝑍𝐼 =
𝜙𝑛
𝑆𝑤 − 𝑆𝑤𝑐 𝑐𝑤
𝐴𝑤 ∙ (1 − ) + 𝑆𝑤𝑑 ∙ 𝑟𝑖 + 𝑏𝑖
𝑆𝑤𝑑 − 𝑆𝑤𝑐
𝑃𝑐 = 𝑆𝑤 ∙ 𝑟𝑖 + 𝑏𝑖
1 − 𝑆𝑤 − 𝑆𝑜𝑟 𝑐𝑜
𝐴𝑜 ∙ (1 − ) + 𝑆𝑜𝑑 ∙ 𝑟𝑖 + 𝑏𝑖
{ 1 − 𝑆𝑜𝑑 − 𝑆𝑜𝑟
100
____________________________________________________________________
𝑆𝑤𝑑 ≤ 𝑆𝑤 ≤ 𝑆𝑜𝑑
𝐴𝑤 𝐴𝑜
𝑟𝑖
101
____________________________________________________________________
102
____________________________________________________________________
103
____________________________________________________________________
104
____________________________________________________________________
105
____________________________________________________________________
106
____________________________________________________________________
107
____________________________________________________________________
108
____________________________________________________________________
109
____________________________________________________________________
110
____________________________________________________________________
111
____________________________________________________________________
112
____________________________________________________________________
ϕ
ϕ
113
____________________________________________________________________
Input
(BASE CASE)
Simulation
Correction
Validation
Adjustment of
Rock Type NO
114
____________________________________________________________________
ϕ
ϕ
ϕ
ϕ
115
____________________________________________________________________
116
____________________________________________________________________
117
____________________________________________________________________
118
____________________________________________________________________
119
____________________________________________________________________
120
____________________________________________________________________
Input
(BASE CASE) Identification of
New SATNUM array
Rock Type regions
Simulation
Correction
Validation
Adjustment of
Rock Type NO
121
____________________________________________________________________
𝑋 2 + 𝑌 2 = 𝑅2
𝑋 2 𝑌2
+ =1
𝑅2 𝑅2
(0,0)
𝑅 = √𝑋 2 + 𝑌 2
122
____________________________________________________________________
𝑙
𝑙 =𝑑⋅𝑅 (0,0) 𝑑=
𝑅
𝑋 2 + 𝑌2 = 𝑙2
𝑋 2 + 𝑌 2 = (𝑑 ⋅ 𝑅)2
𝑋 2 𝑌2
+ = 𝑑2
𝑅2 𝑅2
𝑙
𝑑= 𝑙=𝑑⋅
𝑅
𝑅 (0,0) 𝑑
𝑑 = 1,
𝑅 𝑑<1 𝑑>1
𝑝
𝑅𝑝 (0,0)
𝑅𝑝
𝑑𝑝 =
𝑅
(0,0)
123
____________________________________________________________________
𝑋 2 𝑌2
+ =1
𝑎2 𝑏 2
𝑎 𝑏 𝑎≥
𝑏
𝑙 =𝑑⋅𝑎 𝑚 =𝑑⋅𝑏
𝑋 2 𝑌2
+ =1
𝑙 2 𝑚2
𝑋2 𝑌2
+ =1
(𝑑 ⋅ 𝑎)2 (𝑑 ⋅ 𝑏)2
𝑋 2 𝑌2
+ = 𝑑2
𝑎2 𝑏 2
𝑙 𝑚
𝑑= =
𝑎 𝑏
𝑑
𝑑 = 1,
124
____________________________________________________________________
𝑑<1
𝑑>1
𝑝 𝑎𝑝
𝑏𝑝 (0,0)
𝑎𝑝 𝑏𝑝
𝑑𝑝 = =
𝑎 𝑏
(𝑥𝐶 , 𝑦𝐶 )
𝜃 𝑥
𝑎
2
((𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃)
𝑎2
(−(𝑥 − 𝑥𝐶 ) ⋅ sin 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ cos 𝜃)2
+ =1
𝑏2
(𝑥, 𝑦) (𝑥𝐶 , 𝑦𝐶 ) 𝜃
𝑥 𝑥𝐶 cos 𝜃 −sin 𝜃 𝑋
(𝑦) = (𝑦 ) + ( )⋅( )
𝐶 sin 𝜃 cos 𝜃 𝑌
𝑥 = 𝑥𝐶 + 𝑋 ⋅ cos 𝜃 − 𝑌 ⋅ sin 𝜃
𝑦 = 𝑦𝐶 + 𝑋 ⋅ sin 𝜃 + 𝑌 ⋅ cos 𝜃
125
____________________________________________________________________
𝑋 = (𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃
2
((𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃)
𝑎2
(−(𝑥 − 𝑥𝐶 ) ⋅ sin 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ cos 𝜃)2
+ = 𝑑2
𝑏2
(𝑥𝐶 , 𝑦𝐶 ) 𝑎
𝑏 𝑎≥𝑏 𝜃
𝑥
𝑑
𝑝 𝑎𝑝
𝑏𝑝 (𝑥𝐶 , 𝑦𝐶 )
𝜃
𝑎𝑝 𝑏𝑝
𝑑𝑝 = =
𝑎 𝑏
126
____________________________________________________________________
𝑥
𝒙𝑇 ⋅ 𝒙 = ( 𝑥 𝑦) ⋅ ( ) = 𝑥 2 + 𝑦 2 = 𝑅 2
𝑦
𝑥 2 𝑦2
+ = 𝑑2
𝑅2 𝑅2
2 𝑥
𝒙𝑇 ⋅ 𝐴 ⋅ 𝒙 = ( 𝑥 𝑦 ) ⋅ ( 1⁄𝑅 0
) ⋅ (𝑦 ) = 𝑑 2
0 1⁄𝑅 2
𝑥 2 𝑦2
+ = 𝑑2
𝑎2 𝑏 2
2 𝑥
𝒙𝑇 ⋅ 𝐴 ⋅ 𝒙 = ( 𝑥 𝑦) ⋅ (1⁄𝑎 0
2 ) ⋅ (𝑦 ) = 𝑑 2
0 1⁄ 𝑏
127
____________________________________________________________________
(𝑥𝐶 , 𝑦𝐶 ) 𝜃
2
((𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃)
𝑎2
(−(𝑥 − 𝑥𝐶 ) ⋅ sin 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ cos 𝜃)2
+ = 𝑑2
𝑏2
𝒙𝑇 ⋅ 𝐴 ⋅ 𝒙 = (𝑥 − 𝑥𝐶 𝑦 − 𝑦𝐶 )
cos 2 𝜃 sin2 𝜃 1 1
+ ( 2 − 2 ) ⋅ cos 𝜃 ⋅ sin 𝜃
⋅ 𝑎2 𝑏2 𝑎 𝑏
1 1 sin2 𝜃 cos 2 𝜃
( − ) ⋅ cos 𝜃 ⋅ sin 𝜃 +
( 𝑎2 𝑏 2 𝑎2 𝑏2 )
𝑥 − 𝑥𝐶
⋅ (𝑦 − 𝑦 ) = 𝑑 2
𝐶
𝒙 𝑇 ⋅ 𝐴 ⋅ 𝒙 = 𝒙𝑇 ⋅ 𝑅 ⋅ 𝐷 ⋅ 𝑅 𝑇 ⋅ 𝒙
2
= (𝑥 − 𝑥𝐶 𝑦 − 𝑦𝐶 ) ⋅ (cos 𝜃 − sin 𝜃) ⋅ (1⁄𝑎 0
)
sin 𝜃 cos 𝜃 0 1⁄𝑏 2
cos 𝜃 sin 𝜃 𝑥 − 𝑥𝐶 2
⋅( ) ⋅ (𝑦 − 𝑦 ) = 𝑑
−sin 𝜃 cos 𝜃 𝐶
cos 𝜃 − sin 𝜃
𝑅=( ) 𝐷=
sin 𝜃 cos 𝜃
2
1⁄𝑎 0
( )
0 1⁄ 𝑏 2
𝐴 𝑅−1 𝑅−𝑇
128
____________________________________________________________________
𝐴 = 𝑅 ⋅ 𝐷 ⋅ 𝑅𝑇 ⟹ 𝑅 −1 ⋅ 𝐴 ⋅ 𝑅−𝑇 = (𝑅 −1 ⋅ 𝑅) ⋅ 𝐷 ⋅ (𝑅𝑇 ⋅ 𝑅 −𝑇 ) = 𝐷
𝐷 = 𝑅𝑇 ⋅ 𝐴 ⋅ 𝑅
ϕ
𝝁𝑅𝑇 ϕ
−1 (𝒙
𝑑𝑀,𝑅𝑇 (𝒙, 𝝁𝑅𝑇 ) = √(𝒙 − 𝝁𝑅𝑇 )𝑇 𝚺RT − 𝝁𝑅𝑇 )
−𝟏
𝚺𝑹𝑻 ϕ
129
____________________________________________________________________
(𝑥 ′ , 𝑦 ′ )
(𝜎𝑥2′ , 𝜎𝑦2′ )
1/𝜎𝑥2′ 0
̃𝑹𝑻
𝚺 −𝟏
=( 2)
0 1/𝜎𝑦′
2 2
1/𝜎𝑥2′ 0 𝑥′ 𝑥′ 𝑦′
(𝑥 ′ 𝑦′) ⋅ ( ) ⋅ ( ) = ( ) + ( 2
) = 𝑑𝑀,𝑅𝑇
0 1/𝜎𝑦2′ 𝑦′ 𝜎𝑥 ′ 𝜎𝑦 ′
130
____________________________________________________________________
131
____________________________________________________________________
𝜎
𝑥̅ ~𝑁 (𝜇, )
√𝑛
𝑛
2
1
𝑠 = ⋅ ∑(𝑥𝑖 − 𝑥̅ )2
𝑛−1
𝑖=1
𝜎 𝑠
𝜇 = 𝑥̅ ± 𝑧𝛼/2 ≈ 𝑥̅ ± 𝑡𝛼/2
√𝑛 √𝑛
𝑧𝛼/2 𝑡𝛼/2
𝑧𝛼/2 ≈ 1.96
𝑛 ≥ 30
132
____________________________________________________________________
𝜒𝑘2
2
𝑛 ≥ 30 𝑇𝑘,𝑛−1
𝑛 < 30
133
____________________________________________________________________
−1
𝑃 ((𝒙 − 𝝁𝑅𝑇 )𝑇 ⋅ 𝚺RT ⋅ (𝒙 − 𝝁𝑅𝑇 ) ≤ 𝐶𝐷𝐹𝑇−1
2 (1 − 𝛼 )) = 1 − 𝛼 = 0.95
2,n−1
ϕ 𝑛>
30 𝒩(0,1)
𝑛 ≤ 30
𝑡𝑛−1
𝛼
𝑃 (𝜇𝑅𝑇 − 𝑡𝑛−1,𝛼 ⋅ 𝜎𝑅𝑇 ≤ 𝑥 ≤ 𝜇𝑅𝑇 + 𝑡𝑛−1,𝛼 ⋅ 𝜎𝑅𝑇 ) = 1 − 2 ⋅ = 0.95
2 2 2
𝛼
𝑃 (𝜇𝑅𝑇 − 𝑧𝛼 ⋅ 𝜎𝑅𝑇 ≤ 𝑥 ≤ 𝜇𝑅𝑇 + 𝑧𝛼 ⋅ 𝜎𝑅𝑇 ) = 1 − 2 ⋅ = 0.95
2 2 2
134
____________________________________________________________________
135
____________________________________________________________________
136
____________________________________________________________________
137
____________________________________________________________________
2
((𝑥 − 𝑥𝑖 ) ⋅ cos 𝜃𝑖 + (𝑦 − 𝑦𝑖 ) ⋅ sin 𝜃𝑖 )
𝑎𝑖2
(−(𝑥 − 𝑥𝑖 ) ⋅ sin 𝜃𝑖 + (𝑦 − 𝑦𝑖 ) ⋅ cos 𝜃𝑖 )2
+ = 𝑑𝑖2
𝑏𝑖2
(𝑥𝑖 , 𝑦𝑖 ) 𝑖 𝑎𝑖
𝑏𝑖 𝑎𝑖 ≥ 𝑏𝑖 𝜃𝑖
𝑥
𝑑12 = 𝑑22
𝐴 ⋅ 𝑥 2 + 2 ⋅ 𝐵 ⋅ 𝑥 ⋅ 𝑦 + 𝐶 ⋅ 𝑦2 + 2 ⋅ 𝐷 ⋅ 𝑥 + 2 ⋅ 𝐸 ⋅ 𝑦 + 𝐹 = 0
𝑑12 = 𝑑22
138
____________________________________________________________________
𝑑12 = 𝑑22
139
____________________________________________________________________
140
____________________________________________________________________
141
____________________________________________________________________
ф~𝒩(𝜇ф , 𝜎𝜙2 )
142
____________________________________________________________________
143
____________________________________________________________________
RELATIVE PERMEABILITY
krwRT1 kroRT1
0.8
0.7
0.6
kr [fraction]
0.5
0.4
0.3
0.2
0.1
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sw [fraction]
144
____________________________________________________________________
CAPILLARY PRESSURE
PcowRT1 PcowRT2
0.4
0.3
0.3
Pcow [bar]
0.2
0.2
0.1
0.1
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sw [fraction]
145
____________________________________________________________________
146
____________________________________________________________________
147
____________________________________________________________________
148
____________________________________________________________________
149
____________________________________________________________________
150
____________________________________________________________________
151
____________________________________________________________________
kr Pc
ϕ k kr
Pc
kr
ϕ Pc
k Pc
k kr
kr Pc
kr
ϕ Pc
kr Pc
152
____________________________________________________________________
153
____________________________________________________________________
154
____________________________________________________________________
k, 𝜙
𝑘𝑟 , 𝑝𝑐
155
____________________________________________________________________
156
____________________________________________________________________
157
____________________________________________________________________
158
____________________________________________________________________
159
____________________________________________________________________
160
____________________________________________________________________
161
____________________________________________________________________
162
____________________________________________________________________
163
____________________________________________________________________
164
____________________________________________________________________
165
____________________________________________________________________
166
____________________________________________________________________
167
____________________________________________________________________
168
____________________________________________________________________
169
____________________________________________________________________
170
____________________________________________________________________
171
____________________________________________________________________
172
____________________________________________________________________
173
____________________________________________________________________
174
____________________________________________________________________
175
____________________________________________________________________
176
____________________________________________________________________
177
____________________________________________________________________
178
____________________________________________________________________
179
____________________________________________________________________
𝑅2
𝑓 𝑦
𝑆𝑆𝑟𝑒𝑠
𝑅2 = 1 −
𝑆𝑆𝑡𝑜𝑡
𝑆𝑆𝑟𝑒𝑠
𝐹𝑉𝑈 = 1 − 𝑅2 =
𝑆𝑆𝑡𝑜𝑡
𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − 𝑓𝑖 )2
𝑖
𝑆𝑆𝑟𝑒𝑠 𝑆𝑆𝑡𝑜𝑡
180
____________________________________________________________________
∑𝑖 (𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙𝑖 )2
𝐹𝑉𝑈𝜙 [%] = 100 ⋅
∑𝑖(𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙̅𝑡𝑟𝑢𝑒 )2
∑𝑖(𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘𝑖 )2
𝐹𝑉𝑈𝑘 [%] = 100 ⋅ 2
∑𝑖(𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘̅ 𝑡𝑟𝑢𝑒 )
∑𝑖 (log10 𝑘 𝑡𝑟𝑢𝑒
𝑖 − log10 𝑘 𝑖 )2
𝐹𝑉𝑈log10 𝑘 [%] = 100 ⋅ 2
∑𝑖(log10 𝑘 𝑡𝑟𝑢𝑒
𝑖 − ̅̅̅̅̅̅̅̅̅
log10 𝑘 𝑡𝑟𝑢𝑒 )
𝜙 𝑖 , 𝑘𝑖
𝜙𝑖𝑡𝑟𝑢𝑒 , 𝑘𝑖𝑡𝑟𝑢𝑒
𝐹𝑉𝑈 𝜙, 𝑘
∑𝑖 (𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙𝑖 )2 + ∑𝑖 (𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘𝑖 )2
𝐹𝑉𝑈𝜙,𝑘 [%] = 100 ⋅ 2
∑𝑖(𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙̅𝑡𝑟𝑢𝑒 )2 + ∑𝑖(𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘̅ 𝑡𝑟𝑢𝑒 )
181
____________________________________________________________________
182
____________________________________________________________________
𝑛𝐹𝐼𝑁𝐴𝐿
𝑉𝑅𝑇 [%] = ⋅ 100
𝑛𝐵𝐴𝑆𝐸
𝑛𝐹𝐼𝑁𝐴𝐿
𝑛𝐵𝐴𝑆𝐸
183
____________________________________________________________________
184
____________________________________________________________________
𝑛𝑣𝑎𝑙𝑖𝑑
𝑉𝑀𝐷 [%] = ⋅ 100
𝑛𝑡𝑜𝑡𝑎𝑙
𝑛𝑣𝑎𝑙𝑖𝑑
𝑛𝑡𝑜𝑡𝑎𝑙
185
____________________________________________________________________
186
____________________________________________________________________
187
____________________________________________________________________
188
____________________________________________________________________
189
____________________________________________________________________
190
____________________________________________________________________
191
____________________________________________________________________
192
____________________________________________________________________
193
____________________________________________________________________
194
____________________________________________________________________
195
____________________________________________________________________
196
____________________________________________________________________
197
____________________________________________________________________
𝑘𝑒𝑓𝑓 = 𝑘 ⋅ 𝑘𝑟
198
____________________________________________________________________
199
____________________________________________________________________
200
____________________________________________________________________
201
____________________________________________________________________
202
____________________________________________________________________
203
____________________________________________________________________
204
____________________________________________________________________
205
____________________________________________________________________
206
____________________________________________________________________
207
____________________________________________________________________
208
____________________________________________________________________
209
____________________________________________________________________
210
____________________________________________________________________
211
____________________________________________________________________
212
____________________________________________________________________
213
____________________________________________________________________
214
____________________________________________________________________
215