0% found this document useful (0 votes)
7 views239 pages

DB 115118

The document appears to be a structured outline or template with numerous sections labeled with Roman numerals and mathematical symbols. It includes references to mathematical equations and concepts, likely related to optimization or sensitivity analysis. However, the content is largely obscured by placeholders and does not provide specific information or context.

Uploaded by

Igor Celso Celso
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views239 pages

DB 115118

The document appears to be a structured outline or template with numerous sections labeled with Roman numerals and mathematical symbols. It includes references to mathematical equations and concepts, likely related to optimization or sensitivity analysis. However, the content is largely obscured by placeholders and does not provide specific information or context.

Uploaded by

Igor Celso Celso
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 239

____________________________________________________________________________

____________________________________________________________________________
____________________________________________________________________________

I
____________________________________________________________________________

II
____________________________________________________________________________

III
____________________________________________________________________________

IV
____________________________________________________________________________

V
____________________________________________________________________________

VI
____________________________________________________________________________

VII
____________________________________________________________________________

VIII
____________________________________________________________________________

IX
____________________________________________________________________________

X
____________________________________________________________________________

XI
____________________________________________________________________________

XII
____________________________________________________________________________

XIII
____________________________________________________________________________

XIV
____________________________________________________________________________

XV
____________________________________________________________________________

XVI
____________________________________________________________________________

XVII
____________________________________________________________________

1
____________________________________________________________________

2
____________________________________________________________________

3
____________________________________________________________________

4
____________________________________________________________________

5
____________________________________________________________________

6
____________________________________________________________________

7
____________________________________________________________________

8
____________________________________________________________________

9
____________________________________________________________________

10
____________________________________________________________________

11
____________________________________________________________________

12
____________________________________________________________________

13
____________________________________________________________________

14
____________________________________________________________________

15
____________________________________________________________________

16
____________________________________________________________________

17
____________________________________________________________________

18
____________________________________________________________________

19
____________________________________________________________________

20
____________________________________________________________________

21
____________________________________________________________________

22
____________________________________________________________________

23
____________________________________________________________________

24
____________________________________________________________________

25
____________________________________________________________________

26
____________________________________________________________________

27
____________________________________________________________________

28
____________________________________________________________________

29
____________________________________________________________________

30
____________________________________________________________________

31
____________________________________________________________________

32
____________________________________________________________________

33
____________________________________________________________________

𝐿(𝒑, 𝒎) = 𝐿(𝒑(𝒎), 𝒎) = 0

𝐿(𝒑, 𝒎)

34
____________________________________________________________________

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
1
𝐽(𝑝, 𝑚) = ∑ 𝜔𝑖 (𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (𝑝) − 𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )2
2
𝑖=1

𝐽(𝑝, 𝑚)

𝜔𝑖

𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 (𝑝)

𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

35
____________________________________________________________________

min 𝐽(𝑝, 𝑚) => ∇𝐽(𝑝, 𝑚) = 0


𝑚

36
____________________________________________________________________

37
____________________________________________________________________

38
____________________________________________________________________

39
____________________________________________________________________

40
____________________________________________________________________

𝑑𝐽(𝑚) 𝐽(𝑚 + ∆𝑚) − 𝐽(𝑚 − ∆𝑚)


=
𝑑𝑚 2∆𝑚

𝑑𝐽 𝜕𝐽 𝑑𝑝 𝜕𝐽
= ⋅ +
𝑑𝑚 𝜕𝑝 𝑑𝑚 𝜕𝑚

𝑑𝐽 𝜕𝐽 𝑑𝑝 𝜕𝐽
= ⋅ + =0
𝑑𝑚 𝜕𝑝 𝑑𝑚 𝜕𝑚

𝑑𝑝
𝑑𝑚

41
____________________________________________________________________

𝜕𝐿 𝜕𝐿 𝑑𝑝
+ ⋅ =0
𝜕𝑚 𝜕𝑝 𝑑𝑚

𝜕𝐿 𝑑𝑝 𝜕𝐿
⋅ =−
𝜕𝑝 𝑑𝑚 𝜕𝑚

𝑑𝑝
𝑢=
𝑑𝑚

𝜕𝐿
𝐴=
𝜕𝑝

𝜕𝐿
𝑓=−
𝜕𝑚

42
____________________________________________________________________

𝜕𝐽
𝑔𝑇 =
𝜕𝑝

𝐴⋅𝑢 =𝑓
𝑇
𝑔 ∙𝑢

𝐴⋅𝑢 =𝑓

43
____________________________________________________________________

𝑔𝑇 ∙ 𝑢

𝐴𝑇 ⋅ 𝜆 = 𝑔
𝜆𝑇 ⋅ 𝑓 𝑔𝑇 ⋅ 𝑢 =
(𝐴𝑇 ⋅ 𝜆)𝑇 ⋅ 𝑢 = 𝜆𝑇 ⋅ (𝐴 ⋅ 𝑢) = 𝜆𝑇 ⋅ 𝑓

𝐴𝑇 ⋅ 𝜆 = 𝑔

𝜆𝑇 ⋅ 𝑓

𝑔𝑇 ⋅ 𝑢 = (𝐴𝑇 ⋅ 𝜆)𝑇 ⋅ 𝑢 = 𝜆𝑇 ⋅ (𝐴 ⋅ 𝑢) = 𝜆𝑇 ⋅ 𝑓

𝜕𝐽 𝑑𝑝
𝑔𝑇 ∙ 𝑢 = ⋅
𝜕𝑝 𝑑𝑚
𝜕𝐿
𝜆𝑇 ⋅ 𝑓 = 𝜆𝑇 ⋅ (− )
𝜕𝑚

44
____________________________________________________________________

𝜕𝐿 𝑇 𝜕𝐽 𝑇
( ) ⋅λ=( )
𝜕𝑝 𝜕𝑝

∇𝐽(𝒑, 𝒎)

∇𝐽(𝒑, 𝒎)
𝒙 = (𝒑, 𝒎)

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘 ⋅ ∇J(𝒙𝑘 )

𝛼𝑘

45
____________________________________________________________________

𝛼𝑘

𝛼𝑘 = arg min 𝐽(𝒙𝑘 − 𝛼 ⋅ ∇𝐽(𝒙𝑘 ))


𝛼≥0

∇𝒗 𝐽(𝑥) 𝒗
‖𝒗‖ = 1

𝐽(𝒙 + 𝜀 ⋅ 𝒗) = 𝐽(𝒙) + ∇𝐽𝑇 (𝒙) ⋅ (𝒙 + 𝜀 ⋅ 𝒗 − 𝒙) + 𝑜(𝜀)


= 𝐽(𝒙) + 𝜀 ⋅ ∇𝐽𝑇 (𝒙) ⋅ 𝒗 + 𝑜(𝜀)

𝒗
∇𝐽(𝒙) 𝒗

𝐽(𝒙 + 𝜀 ⋅ 𝒗) − 𝐽(𝒙)
∇𝒗 𝐽(𝑥) = lim = ∇𝐽𝑇 (𝒙) ⋅ 𝒗
𝜀→0 𝜀

46
____________________________________________________________________

max ∇𝒗 𝐽(𝑥) = max ∇𝐽𝑇 (𝒙) ⋅ 𝒗 = ‖∇J(𝒙)‖ ⋅ ‖𝒗‖ ⋅ max cos(∇J(𝒙), 𝒗)


𝒗 𝒗 𝒗
= ‖∇J(𝒙)‖

max cos(∇𝐽(𝒙), 𝒗) = 1
𝒗
𝒗 𝒗 ∥ ∇𝐽(𝒙)

47
____________________________________________________________________

48
____________________________________________________________________

49
____________________________________________________________________

50
____________________________________________________________________

51
____________________________________________________________________

Sensitivity Explorer (SenEx)


Workflow

Input (BASE CASE)

Simulation

Mismatch (OF) estimation

Acceptable Final Model


match? YES

NO

Sensitivity coefficients calculation

Model parameters modification

Export of the next case

52
____________________________________________________________________

𝑂𝐹 = 𝐽 (𝑝, 𝑚) = ∑ 𝜔𝑖 ⋅ 𝑀𝑖
𝑖

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 2 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 2
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝛼𝑜 (𝑂𝑖,𝑡 − 𝑂𝑖,𝑡 ) 𝛼𝑤 (𝑊𝑖,𝑡 − 𝑊𝑖,𝑡 )
𝑀𝑖 = ∑ [ +
𝛽𝐿,𝑖 𝛽𝐿,𝑖
𝑡
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 2
𝛼𝑔 (𝐺𝑖,𝑡 − 𝐺𝑖,𝑡 )
+
𝛽𝑔,𝑖
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 2
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝛼𝑝 (𝑝𝑖,𝑡 − 𝑝𝑖,𝑡 )
+ ]
𝛽𝑝,𝑖

53
____________________________________________________________________

𝑂𝐹

𝛼𝑖 ; 𝜔𝑖

𝑀𝑖

𝛽𝑖

𝑜, 𝑤, 𝑔

𝜕𝐽 (𝑝, 𝑚)
𝜕𝑚

54
____________________________________________________________________

𝐽(𝑝, 𝑚)

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘 ⋅ ∇J(𝒙𝑘 )

𝛼𝑘

∇J(𝒙𝑘 )

55
____________________________________________________________________

𝑥 𝑘+1
𝑥0

56
____________________________________________________________________

57
____________________________________________________________________

58
____________________________________________________________________

59
____________________________________________________________________

60
____________________________________________________________________

61
____________________________________________________________________

62
____________________________________________________________________

𝝓 𝝓

63
____________________________________________________________________

64
____________________________________________________________________

65
____________________________________________________________________

66
____________________________________________________________________

67
____________________________________________________________________

68
____________________________________________________________________

69
____________________________________________________________________

70
____________________________________________________________________

71
____________________________________________________________________

72
____________________________________________________________________

73
____________________________________________________________________

74
____________________________________________________________________

𝑉𝑝 𝑉𝑏 − 𝑉𝑠
𝜙= =
𝑉𝑏 𝑉𝑏

𝑉𝑝

𝑉𝑏

𝑉𝑠

75
____________________________________________________________________

76
____________________________________________________________________

∆𝑃

𝑘 𝑘 ∆𝑝
𝑞 = −𝐴 ∇𝑝 = −𝐴
𝜇 𝜇 𝐿

77
____________________________________________________________________

𝑞 𝑘
𝑣= = − ∇𝑝
𝐴 𝜇

𝑞 𝑘
𝑣𝑟𝑒𝑎𝑙 = 𝑣/𝜙 = =− ∇𝑝
𝐴𝜙 𝜇𝜙

∇𝑝

𝑣 𝑣𝑟𝑒𝑎𝑙

78
____________________________________________________________________

𝑐𝑚3 [𝑐𝑚2 ][𝐷] [𝑎𝑡𝑚]


[ ]=
𝑠 [𝑐𝑝] [𝑐𝑚]

𝑚3 [𝑚2 ][𝑚2 ] [𝑃𝑎]


[ ]=
𝑠 [𝑃𝑎. 𝑠] [𝑚]

79
____________________________________________________________________

80
____________________________________________________________________

81
____________________________________________________________________

𝑘 ⋅ 𝑘𝑟𝛼 ∆𝑝𝛼
𝑞𝛼 = ⋅𝐴⋅
𝜇𝛼 ∆𝐿

82
____________________________________________________________________

𝑞𝛼

𝑘𝛼 

𝜇𝛼 

∆𝑝𝛼 

∆𝐿

83
____________________________________________________________________

𝑘𝛼 (𝑆𝛼 )
𝑘𝑟𝛼 =
𝑘

84
____________________________________________________________________

𝑘𝑟𝛼 

𝑘𝛼 (𝑆𝛼 ) 

85
____________________________________________________________________

86
____________________________________________________________________

87
____________________________________________________________________

𝑃𝑐 = 𝑝𝑛𝑤 − 𝑝𝑤

88
____________________________________________________________________

𝑃𝑐

𝑝𝑛𝑤

𝑝𝑤

4𝜎12 cos 𝜃 2𝜎12 cos 𝜃


𝑃𝑐 = =
𝑑 𝑟

𝑃𝑐

𝜎12

89
____________________________________________________________________

90
____________________________________________________________________

91
____________________________________________________________________

92
____________________________________________________________________

93
____________________________________________________________________

𝑛𝑤
𝑛𝑤 𝑆𝑤 − 𝑆𝑤𝑐
𝑘𝑟𝑤 (𝑆𝑤 ) = 𝑘𝑟𝑤𝑛 ∙ (𝑆𝑤𝑒𝑓𝑓 ) = 𝑘𝑟𝑤𝑛 ∙ ( )
1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑐

94
____________________________________________________________________

1 − 𝑆𝑤 − 𝑆𝑜𝑟 𝑛
𝑘𝑟𝑜 (𝑆𝑤 ) = 𝑘𝑟𝑜𝑛 ∙ (1 − 𝑆𝑤𝑒𝑓𝑓 )𝑛𝑛𝑤 = 𝑘𝑟𝑜𝑛 ∙ ( ) 𝑛𝑤
1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑐

𝑆𝑤

𝑆𝑤𝑒𝑓𝑓

𝑘𝑟𝑤 (𝑆𝑤 )

𝑘𝑟𝑜 (𝑆𝑤 )

𝑘𝑟𝑤𝑛

𝑘𝑟𝑜𝑛

𝑆𝑤𝑐

𝑆𝑜𝑟

𝑛𝑤

𝑛𝑜

95
____________________________________________________________________

96
____________________________________________________________________

97
____________________________________________________________________

𝑃𝑐 𝑘
𝐽(𝑆𝑤 ) = √
𝜎12 cos 𝛩 𝜙

𝐽(𝑆𝑤 )

𝑃𝑐

𝜎12

98
____________________________________________________________________

𝑘
𝜙

99
____________________________________________________________________

𝜙𝑒𝑓𝑓
𝜙𝑛 = ( )
1 − 𝜙𝑒𝑓𝑓

𝑅𝑄𝐼
𝐹𝑍𝐼 =
𝜙𝑛

𝑆𝑤 − 𝑆𝑤𝑐 𝑐𝑤
𝐴𝑤 ∙ (1 − ) + 𝑆𝑤𝑑 ∙ 𝑟𝑖 + 𝑏𝑖
𝑆𝑤𝑑 − 𝑆𝑤𝑐
𝑃𝑐 = 𝑆𝑤 ∙ 𝑟𝑖 + 𝑏𝑖

1 − 𝑆𝑤 − 𝑆𝑜𝑟 𝑐𝑜
𝐴𝑜 ∙ (1 − ) + 𝑆𝑜𝑑 ∙ 𝑟𝑖 + 𝑏𝑖
{ 1 − 𝑆𝑜𝑑 − 𝑆𝑜𝑟

100
____________________________________________________________________

𝑆𝑤𝑐 ≤ 𝑆𝑤 < 𝑆𝑤𝑑

𝑆𝑤𝑑 ≤ 𝑆𝑤 ≤ 𝑆𝑜𝑑

𝑆𝑜𝑑 < 𝑆𝑤 ≤ 1 − 𝑆𝑜𝑟

𝐴𝑤 𝐴𝑜

𝑟𝑖

𝑆𝑤 : 𝑆𝑤𝑐 < 𝑆𝑤𝑑 < 𝑆𝑜𝑑 < 1 − 𝑆𝑜𝑟

101
____________________________________________________________________

102
____________________________________________________________________

103
____________________________________________________________________

104
____________________________________________________________________

105
____________________________________________________________________

106
____________________________________________________________________

107
____________________________________________________________________

108
____________________________________________________________________

109
____________________________________________________________________

110
____________________________________________________________________

111
____________________________________________________________________

112
____________________________________________________________________

ϕ
ϕ

113
____________________________________________________________________

Rock Type Adjusting History


Matching Workflow

Input
(BASE CASE)

Simulation

Mismatch (OF) estimation

Correction

Acceptable Final Model


match? YES

Validation

Adjustment of
Rock Type NO

Sensitivity coefficients calculation

Model parameters modification

Export of the next case

114
____________________________________________________________________

ϕ
ϕ

ϕ
ϕ

115
____________________________________________________________________

116
____________________________________________________________________

117
____________________________________________________________________

118
____________________________________________________________________

119
____________________________________________________________________

120
____________________________________________________________________

Rock Type Adjusting History


Matching Workflow

Input
(BASE CASE) Identification of
New SATNUM array
Rock Type regions

Simulation

Mismatch (OF) estimation

Correction

Acceptable Final Model


match? YES

Validation

Adjustment of
Rock Type NO

Sensitivity coefficients calculation

Model parameters modification

Export of the next case

121
____________________________________________________________________

𝑋 2 + 𝑌 2 = 𝑅2

𝑋 2 𝑌2
+ =1
𝑅2 𝑅2

(0,0)

𝑅 = √𝑋 2 + 𝑌 2

122
____________________________________________________________________

𝑙
𝑙 =𝑑⋅𝑅 (0,0) 𝑑=
𝑅

𝑋 2 + 𝑌2 = 𝑙2

𝑋 2 + 𝑌 2 = (𝑑 ⋅ 𝑅)2

𝑋 2 𝑌2
+ = 𝑑2
𝑅2 𝑅2

𝑙
𝑑= 𝑙=𝑑⋅
𝑅
𝑅 (0,0) 𝑑
𝑑 = 1,
𝑅 𝑑<1 𝑑>1
𝑝
𝑅𝑝 (0,0)
𝑅𝑝
𝑑𝑝 =
𝑅

(0,0)

123
____________________________________________________________________

𝑋 2 𝑌2
+ =1
𝑎2 𝑏 2

𝑎 𝑏 𝑎≥
𝑏

𝑙 =𝑑⋅𝑎 𝑚 =𝑑⋅𝑏

𝑋 2 𝑌2
+ =1
𝑙 2 𝑚2

𝑋2 𝑌2
+ =1
(𝑑 ⋅ 𝑎)2 (𝑑 ⋅ 𝑏)2

𝑋 2 𝑌2
+ = 𝑑2
𝑎2 𝑏 2

𝑙 𝑚
𝑑= =
𝑎 𝑏
𝑑
𝑑 = 1,

124
____________________________________________________________________

𝑑<1
𝑑>1
𝑝 𝑎𝑝
𝑏𝑝 (0,0)
𝑎𝑝 𝑏𝑝
𝑑𝑝 = =
𝑎 𝑏

(𝑥𝐶 , 𝑦𝐶 )
𝜃 𝑥
𝑎

2
((𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃)
𝑎2
(−(𝑥 − 𝑥𝐶 ) ⋅ sin 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ cos 𝜃)2
+ =1
𝑏2

(𝑥, 𝑦) (𝑥𝐶 , 𝑦𝐶 ) 𝜃

𝑥 𝑥𝐶 cos 𝜃 −sin 𝜃 𝑋
(𝑦) = (𝑦 ) + ( )⋅( )
𝐶 sin 𝜃 cos 𝜃 𝑌

𝑥 = 𝑥𝐶 + 𝑋 ⋅ cos 𝜃 − 𝑌 ⋅ sin 𝜃

𝑦 = 𝑦𝐶 + 𝑋 ⋅ sin 𝜃 + 𝑌 ⋅ cos 𝜃

125
____________________________________________________________________

𝑋 = (𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃

𝑌 = −(𝑦 − 𝑥𝐶 ) ⋅ sin 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ cos 𝜃

2
((𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃)
𝑎2
(−(𝑥 − 𝑥𝐶 ) ⋅ sin 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ cos 𝜃)2
+ = 𝑑2
𝑏2

(𝑥𝐶 , 𝑦𝐶 ) 𝑎
𝑏 𝑎≥𝑏 𝜃
𝑥
𝑑
𝑝 𝑎𝑝
𝑏𝑝 (𝑥𝐶 , 𝑦𝐶 )
𝜃
𝑎𝑝 𝑏𝑝
𝑑𝑝 = =
𝑎 𝑏

126
____________________________________________________________________

𝑥
𝒙𝑇 ⋅ 𝒙 = ( 𝑥 𝑦) ⋅ ( ) = 𝑥 2 + 𝑦 2 = 𝑅 2
𝑦

𝑥 2 𝑦2
+ = 𝑑2
𝑅2 𝑅2

2 𝑥
𝒙𝑇 ⋅ 𝐴 ⋅ 𝒙 = ( 𝑥 𝑦 ) ⋅ ( 1⁄𝑅 0
) ⋅ (𝑦 ) = 𝑑 2
0 1⁄𝑅 2

𝑥 2 𝑦2
+ = 𝑑2
𝑎2 𝑏 2

2 𝑥
𝒙𝑇 ⋅ 𝐴 ⋅ 𝒙 = ( 𝑥 𝑦) ⋅ (1⁄𝑎 0
2 ) ⋅ (𝑦 ) = 𝑑 2
0 1⁄ 𝑏

127
____________________________________________________________________

(𝑥𝐶 , 𝑦𝐶 ) 𝜃

2
((𝑥 − 𝑥𝐶 ) ⋅ cos 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ sin 𝜃)
𝑎2
(−(𝑥 − 𝑥𝐶 ) ⋅ sin 𝜃 + (𝑦 − 𝑦𝐶 ) ⋅ cos 𝜃)2
+ = 𝑑2
𝑏2

𝒙𝑇 ⋅ 𝐴 ⋅ 𝒙 = (𝑥 − 𝑥𝐶 𝑦 − 𝑦𝐶 )
cos 2 𝜃 sin2 𝜃 1 1
+ ( 2 − 2 ) ⋅ cos 𝜃 ⋅ sin 𝜃
⋅ 𝑎2 𝑏2 𝑎 𝑏
1 1 sin2 𝜃 cos 2 𝜃
( − ) ⋅ cos 𝜃 ⋅ sin 𝜃 +
( 𝑎2 𝑏 2 𝑎2 𝑏2 )
𝑥 − 𝑥𝐶
⋅ (𝑦 − 𝑦 ) = 𝑑 2
𝐶

𝒙 𝑇 ⋅ 𝐴 ⋅ 𝒙 = 𝒙𝑇 ⋅ 𝑅 ⋅ 𝐷 ⋅ 𝑅 𝑇 ⋅ 𝒙
2
= (𝑥 − 𝑥𝐶 𝑦 − 𝑦𝐶 ) ⋅ (cos 𝜃 − sin 𝜃) ⋅ (1⁄𝑎 0
)
sin 𝜃 cos 𝜃 0 1⁄𝑏 2
cos 𝜃 sin 𝜃 𝑥 − 𝑥𝐶 2
⋅( ) ⋅ (𝑦 − 𝑦 ) = 𝑑
−sin 𝜃 cos 𝜃 𝐶

cos 𝜃 − sin 𝜃
𝑅=( ) 𝐷=
sin 𝜃 cos 𝜃
2
1⁄𝑎 0
( )
0 1⁄ 𝑏 2

𝐴 𝑅−1 𝑅−𝑇

128
____________________________________________________________________

𝑅 −1 = 𝑅𝑇 , 𝑅−𝑇 = (𝑅𝑇 )−1 =


(𝑅𝑇 )𝑇 = 𝑅

𝐴 = 𝑅 ⋅ 𝐷 ⋅ 𝑅𝑇 ⟹ 𝑅 −1 ⋅ 𝐴 ⋅ 𝑅−𝑇 = (𝑅 −1 ⋅ 𝑅) ⋅ 𝐷 ⋅ (𝑅𝑇 ⋅ 𝑅 −𝑇 ) = 𝐷

𝐷 = 𝑅𝑇 ⋅ 𝐴 ⋅ 𝑅

ϕ
𝝁𝑅𝑇 ϕ

−1 (𝒙
𝑑𝑀,𝑅𝑇 (𝒙, 𝝁𝑅𝑇 ) = √(𝒙 − 𝝁𝑅𝑇 )𝑇 𝚺RT − 𝝁𝑅𝑇 )

−𝟏
𝚺𝑹𝑻 ϕ

129
____________________________________________________________________

(𝑥 ′ , 𝑦 ′ )

(𝜎𝑥2′ , 𝜎𝑦2′ )

1/𝜎𝑥2′ 0
̃𝑹𝑻
𝚺 −𝟏
=( 2)
0 1/𝜎𝑦′

2 2
1/𝜎𝑥2′ 0 𝑥′ 𝑥′ 𝑦′
(𝑥 ′ 𝑦′) ⋅ ( ) ⋅ ( ) = ( ) + ( 2
) = 𝑑𝑀,𝑅𝑇
0 1/𝜎𝑦2′ 𝑦′ 𝜎𝑥 ′ 𝜎𝑦 ′

130
____________________________________________________________________

131
____________________________________________________________________

𝜎
𝑥̅ ~𝑁 (𝜇, )
√𝑛

𝑛
2
1
𝑠 = ⋅ ∑(𝑥𝑖 − 𝑥̅ )2
𝑛−1
𝑖=1

𝜎 𝑠
𝜇 = 𝑥̅ ± 𝑧𝛼/2 ≈ 𝑥̅ ± 𝑡𝛼/2
√𝑛 √𝑛

𝑧𝛼/2 𝑡𝛼/2

𝑧𝛼/2 ≈ 1.96

𝑛 ≥ 30

132
____________________________________________________________________

𝜒𝑘2

2
𝑛 ≥ 30 𝑇𝑘,𝑛−1

𝑛 < 30

133
____________________________________________________________________

𝑃 ((𝒙 − 𝝁𝑅𝑇 )𝑇 ⋅ 𝚺RT ⋅ − 𝝁𝑅𝑇 ) ≤ 𝐶𝐷𝐹χ−1


−1 (𝒙
2 (1 − 𝛼 )) = 1 − 𝛼 = 0.95
2

−1
𝑃 ((𝒙 − 𝝁𝑅𝑇 )𝑇 ⋅ 𝚺RT ⋅ (𝒙 − 𝝁𝑅𝑇 ) ≤ 𝐶𝐷𝐹𝑇−1
2 (1 − 𝛼 )) = 1 − 𝛼 = 0.95
2,n−1

ϕ 𝑛>
30 𝒩(0,1)
𝑛 ≤ 30
𝑡𝑛−1

𝛼
𝑃 (𝜇𝑅𝑇 − 𝑡𝑛−1,𝛼 ⋅ 𝜎𝑅𝑇 ≤ 𝑥 ≤ 𝜇𝑅𝑇 + 𝑡𝑛−1,𝛼 ⋅ 𝜎𝑅𝑇 ) = 1 − 2 ⋅ = 0.95
2 2 2

𝛼
𝑃 (𝜇𝑅𝑇 − 𝑧𝛼 ⋅ 𝜎𝑅𝑇 ≤ 𝑥 ≤ 𝜇𝑅𝑇 + 𝑧𝛼 ⋅ 𝜎𝑅𝑇 ) = 1 − 2 ⋅ = 0.95
2 2 2

134
____________________________________________________________________

135
____________________________________________________________________

136
____________________________________________________________________

137
____________________________________________________________________

2
((𝑥 − 𝑥𝑖 ) ⋅ cos 𝜃𝑖 + (𝑦 − 𝑦𝑖 ) ⋅ sin 𝜃𝑖 )
𝑎𝑖2
(−(𝑥 − 𝑥𝑖 ) ⋅ sin 𝜃𝑖 + (𝑦 − 𝑦𝑖 ) ⋅ cos 𝜃𝑖 )2
+ = 𝑑𝑖2
𝑏𝑖2

(𝑥𝑖 , 𝑦𝑖 ) 𝑖 𝑎𝑖
𝑏𝑖 𝑎𝑖 ≥ 𝑏𝑖 𝜃𝑖
𝑥

𝑑12 = 𝑑22

𝐴 ⋅ 𝑥 2 + 2 ⋅ 𝐵 ⋅ 𝑥 ⋅ 𝑦 + 𝐶 ⋅ 𝑦2 + 2 ⋅ 𝐷 ⋅ 𝑥 + 2 ⋅ 𝐸 ⋅ 𝑦 + 𝐹 = 0

𝑑12 = 𝑑22

138
____________________________________________________________________

𝑑12 = 𝑑22

139
____________________________________________________________________

140
____________________________________________________________________

141
____________________________________________________________________

ф~𝒩(𝜇ф , 𝜎𝜙2 )

142
____________________________________________________________________

log 𝑘~𝒩(𝜇𝑘 , 𝜎𝑘2 )

143
____________________________________________________________________

RELATIVE PERMEABILITY
krwRT1 kroRT1
0.8
0.7
0.6
kr [fraction]

0.5
0.4
0.3
0.2
0.1
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sw [fraction]

144
____________________________________________________________________

CAPILLARY PRESSURE
PcowRT1 PcowRT2
0.4

0.3

0.3
Pcow [bar]

0.2

0.2

0.1

0.1

0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sw [fraction]

145
____________________________________________________________________

146
____________________________________________________________________

147
____________________________________________________________________

148
____________________________________________________________________

149
____________________________________________________________________

150
____________________________________________________________________

151
____________________________________________________________________

kr Pc

ϕ k kr

Pc

kr
ϕ Pc
k Pc
k kr

kr Pc

kr

ϕ Pc

kr Pc

152
____________________________________________________________________

153
____________________________________________________________________

154
____________________________________________________________________

(22=|{k,𝜙}| − 1) × (22=|{𝑘𝑟 ,𝑝𝑐 }| − 1) = 9

k, 𝜙

𝑘𝑟 , 𝑝𝑐

155
____________________________________________________________________

156
____________________________________________________________________

157
____________________________________________________________________

158
____________________________________________________________________

159
____________________________________________________________________

160
____________________________________________________________________

161
____________________________________________________________________

162
____________________________________________________________________

163
____________________________________________________________________

164
____________________________________________________________________

165
____________________________________________________________________

166
____________________________________________________________________

167
____________________________________________________________________

168
____________________________________________________________________

169
____________________________________________________________________

170
____________________________________________________________________

171
____________________________________________________________________

172
____________________________________________________________________

173
____________________________________________________________________

174
____________________________________________________________________

175
____________________________________________________________________

176
____________________________________________________________________

177
____________________________________________________________________

178
____________________________________________________________________

179
____________________________________________________________________

𝑅2
𝑓 𝑦

𝑆𝑆𝑟𝑒𝑠
𝑅2 = 1 −
𝑆𝑆𝑡𝑜𝑡

𝑆𝑆𝑟𝑒𝑠
𝐹𝑉𝑈 = 1 − 𝑅2 =
𝑆𝑆𝑡𝑜𝑡

𝐹𝑉𝑈[%] = 100 ⋅ 𝐹𝑉𝑈

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − 𝑓𝑖 )2
𝑖

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − 𝑦̅)2


𝑖

𝑆𝑆𝑟𝑒𝑠 𝑆𝑆𝑡𝑜𝑡

180
____________________________________________________________________

∑𝑖 (𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙𝑖 )2
𝐹𝑉𝑈𝜙 [%] = 100 ⋅
∑𝑖(𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙̅𝑡𝑟𝑢𝑒 )2

∑𝑖(𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘𝑖 )2
𝐹𝑉𝑈𝑘 [%] = 100 ⋅ 2
∑𝑖(𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘̅ 𝑡𝑟𝑢𝑒 )

∑𝑖 (log10 𝑘 𝑡𝑟𝑢𝑒
𝑖 − log10 𝑘 𝑖 )2
𝐹𝑉𝑈log10 𝑘 [%] = 100 ⋅ 2
∑𝑖(log10 𝑘 𝑡𝑟𝑢𝑒
𝑖 − ̅̅̅̅̅̅̅̅̅
log10 𝑘 𝑡𝑟𝑢𝑒 )

𝜙 𝑖 , 𝑘𝑖
𝜙𝑖𝑡𝑟𝑢𝑒 , 𝑘𝑖𝑡𝑟𝑢𝑒

𝐹𝑉𝑈 𝜙, 𝑘

∑𝑖 (𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙𝑖 )2 + ∑𝑖 (𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘𝑖 )2
𝐹𝑉𝑈𝜙,𝑘 [%] = 100 ⋅ 2
∑𝑖(𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙̅𝑡𝑟𝑢𝑒 )2 + ∑𝑖(𝑘𝑖𝑡𝑟𝑢𝑒 − 𝑘̅ 𝑡𝑟𝑢𝑒 )

181
____________________________________________________________________

𝐹𝑉𝑈𝜙,log10 𝑘 [%] = 100


∑𝑖(𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙𝑖 )2 + ∑𝑖(log10 𝑘 𝑡𝑟𝑢𝑒
𝑖 − log10 𝑘 𝑖 )2
⋅ 2
∑𝑖 (𝜙𝑖𝑡𝑟𝑢𝑒 − 𝜙̅𝑡𝑟𝑢𝑒 )2 + ∑𝑖(log10 𝑘 𝑡𝑟𝑢𝑒
𝑖 − ̅̅̅̅̅̅̅̅̅
log10 𝑘 𝑡𝑟𝑢𝑒 )

182
____________________________________________________________________

𝑛𝐹𝐼𝑁𝐴𝐿
𝑉𝑅𝑇 [%] = ⋅ 100
𝑛𝐵𝐴𝑆𝐸

𝑛𝐹𝐼𝑁𝐴𝐿

𝑛𝐵𝐴𝑆𝐸

183
____________________________________________________________________

184
____________________________________________________________________

𝑛𝑣𝑎𝑙𝑖𝑑
𝑉𝑀𝐷 [%] = ⋅ 100
𝑛𝑡𝑜𝑡𝑎𝑙

𝑛𝑣𝑎𝑙𝑖𝑑

𝑛𝑡𝑜𝑡𝑎𝑙

185
____________________________________________________________________

186
____________________________________________________________________

187
____________________________________________________________________

188
____________________________________________________________________

189
____________________________________________________________________

190
____________________________________________________________________

191
____________________________________________________________________

192
____________________________________________________________________

193
____________________________________________________________________

194
____________________________________________________________________

195
____________________________________________________________________

196
____________________________________________________________________

197
____________________________________________________________________

𝑘𝑒𝑓𝑓 = 𝑘 ⋅ 𝑘𝑟

198
____________________________________________________________________

199
____________________________________________________________________

200
____________________________________________________________________

201
____________________________________________________________________

202
____________________________________________________________________

203
____________________________________________________________________

204
____________________________________________________________________

205
____________________________________________________________________

206
____________________________________________________________________

207
____________________________________________________________________

208
____________________________________________________________________

209
____________________________________________________________________

210
____________________________________________________________________

211
____________________________________________________________________

212
____________________________________________________________________

213
____________________________________________________________________

214
____________________________________________________________________

215

You might also like