0% found this document useful (0 votes)
33 views71 pages

Motion Momentum Dynmics

The document contains a series of physics questions related to motion, speed, acceleration, and forces, including calculations involving speed cameras, velocity-time graphs, and braking distances. It also includes questions about the forces acting on objects in motion, such as a thrown object and a falling object. The questions require the application of formulas linking speed, distance, time, acceleration, and force.

Uploaded by

eyebeamzye
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
33 views71 pages

Motion Momentum Dynmics

The document contains a series of physics questions related to motion, speed, acceleration, and forces, including calculations involving speed cameras, velocity-time graphs, and braking distances. It also includes questions about the forces acting on objects in motion, such as a thrown object and a falling object. The questions require the application of formulas linking speed, distance, time, acceleration, and force.

Uploaded by

eyebeamzye
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 71

page 30

Page 1
page 31
Page 2
page 32
Page 3
page 33
Page 4
page 40
Page 5
page 41
Page 6
page 59
Page 7
page 60
Page 8
page 74
Page 9
page 75
Page 10
page 76
Page 11
page 77
Page 12
Page 13

2 (a) A speed camera is positioned at the side of a road.

© Darryl Sleath/Shutterstock
The camera measures the speed of a vehicle on the road to determine whether
the vehicle is travelling too fast.
The camera takes two photographs of the vehicle 0.25 s apart.
The photographs are used to measure the distance travelled by the vehicle during
this time.
(i) State the formula linking average speed, distance moved and time taken.
(1)

(ii) In the time between the two photographs, the car travels a distance of 6.5 m.
Calculate the average speed of the car.
(2)

average speed = ................................... . . . . . . . . . . . . . . . . . . . . . . . . . m/s


(iii) The speed limit of the road is 80 kilometres per hour.
Determine whether the car is exceeding the speed limit.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4
*P68386A0432*
Page 14

(b) The velocity-time graph shows how the velocity of a lorry changes with time.

30

20
Velocity
in m/s
10

0
0 10 20 30 40 50 60
Time in s

(i) Explain how the graph shows that the lorry has a constant acceleration.
(2)

............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) State the formula linking acceleration, change in velocity and time taken.
(1)

(iii) Calculate the acceleration of the lorry.


(3)

acceleration = ..................................... . . . . . . . . . . . . . . . . . . . . . . . m/s2

(Total for Question 2 = 11 marks)

5
*P68386A0532* Turn over
Page 15

5 A driver of a car sees an obstruction in the road ahead and must stop the car.
(a) (i) State the formula linking average speed, distance travelled and time taken.
(1)

(ii) A car travels at 21 m / s.


The driver’s reaction time is 0.14 seconds.
Calculate the distance travelled by the car during the driver’s reaction time.
(2)

distance = ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
(b) The car experiences a braking force of 7600 N.
The car has a mass of 1200 kg.
(i) State the formula linking force, mass and acceleration.
(1)

(ii) Calculate the acceleration of the car.


(2)

acceleration = ........................................ . . . . . . . . . . . . . . . . . . . . . . m / s2

14
*P70705A01436* 
Page 16

(iii) Calculate the braking distance travelled as the speed of the car is reduced
from 21 m / s to 0 m / s.
(3)

distance = ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

(Total for Question 5 = 9 marks)

15
 *P70705A01536* Turn over
Page 17

6 (a) A person throws an object vertically upwards.


The speed-time graph shows how the speed of the object varies from the time it
is thrown until reaching its maximum height.

5.0

4.0

3.0
Speed
in m / s
2.0

1.0

0.0
0.0 0.1 0.2 0.3 0.4 0.5
Time in seconds

(i) Calculate the acceleration of the object.


(3)

acceleration = ........................................ . . . . . . . . . . . . . . . . . . . . . . m / s2
(ii) Calculate the distance the object travels to reach its maximum height.
(3)

distance = ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

17
 *P70705A01736* Turn over
Page 18

(b) A different object is dropped from rest and begins to fall.


The graph shows how the speed of this object varies with time.

2.5

2.0

C
B
1.5
Speed
in m / s
1.0

0.5

A
0.0
0.0 0.1 0.2 0.3 0.4 0.5
Time in seconds

(i) Give the name of the two forces acting on the object as it falls.
(2)

1.............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(ii) Draw arrows on the diagram to show the forces acting on the object at B.
(3)

object

18
*P70705A01836* 
Page 19

(iii) Explain the shape of the graph from A to C.


You should use ideas about forces to help your answer.
(4)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 6 = 15 marks)

19
 *P70705A01936* Turn over
Page 20

8 Funcube-1 is a satellite that was launched into orbit around the Earth.

(Source: © Shutterstock)

(a) The rocket carrying Funcube-1 burns fuel to accelerate upwards.


As the rocket burns fuel, the energy in its chemical store reduces and the energy
in its kinetic store and gravitational store changes.
(i) State how the kinetic store of the rocket changes as the rocket burns fuel.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) State how the gravitational store of the rocket changes as the rocket
burns fuel.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The rocket engine stops burning fuel.


The rocket continues to go further away from the surface of the Earth.
The table gives some statements about the rocket’s energy stores.
Add ticks () to the table to show which two statements are correct.
(2)

Statement Correct ()

gravitational store increases

gravitational store stays the same

gravitational store decreases

kinetic store increases

kinetic store stays the same

kinetic store decreases

23
 *P70705A02336* Turn over
Page 21

(c) Funcube-1 goes into a circular orbit above the surface of the Earth.
(i) State the name of the force responsible for keeping Funcube-1 in orbit.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Funcube-1 has an orbital radius of 7100 km and an orbital period of 5800 s.
Calculate the orbital speed, in km / s, of Funcube-1.
(2)

orbital speed = .......................................... . . . . . . . . . . . . . . . . . . . . km / s

24
*P70705A02436* 
Page 22

(d) Funcube-1 spins and is heated by the Sun.


The diagram shows two coloured metal bars attached to a face of Funcube-1.
The surface of one metal bar is dull and black.
The surface of the other metal bar is shiny and white.

direction
not to scale
of spin

Funcube-1
Sun

Temperature probes measure the temperature of each metal bar.


Use ideas about thermal energy transfer to explain how the temperature of each
metal bar changes as Funcube-1 spins.
(4)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 8 = 11 marks)

25
 *P70705A02536* Turn over
Page 23

4 The diagram shows a velocity-time graph for a car from the time the driver sees an
obstacle in the road until the car comes to rest.

30
Velocity
20
in m/s
10

0
0 2.0 4.0 6.0 8.0

Time in seconds

(a) (i) Calculate the acceleration of the car between 1.8 and 8.0 seconds.
(3)

acceleration = ....................................... . . . . . . . . . . . . . . . . . . . . . . . m/s2


(ii) Calculate the braking distance of the car.
(3)

braking distance = ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

10
*P67159A01028*
Page 24

(iii) Explain the effect, if any, of increased driver tiredness on the thinking distance
and on the braking distance of the car.
(4)

thinking distance.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

braking distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Which of these represents the distance-time graph for the car?
(1)

Distance Distance

A B

Time Time

Distance Distance

C D

Time Time

(Total for Question 4 = 11 marks)

11
*P67159A01128* Turn over
Page 25

9 The photograph shows a whale jumping out of the surface of the sea.

(Source: © Alexander Baumann/Shutterstock)

(a) At the top of the jump, the whale’s velocity is 0 m/s.


The whale falls 2.2 m from the top of the jump to the surface of the sea.
Calculate the velocity of the whale when it hits the surface of the sea.
(4)

velocity = ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . m/s

22
*P67159A02228*
Page 26

(b) A resultant force causes the whale to slow down when it hits the surface of the sea.
(i) Draw an arrow to show this resultant force.
(1)

(Source: © Eugenia Petrovskaya/Shutterstock)

(ii) The resultant force acting on the whale is 18 000 N.


The mass of the whale is 4100 kg.
Calculate the acceleration of the whale.
(3)

acceleration = ....................................... . . . . . . . . . . . . . . . . . . . . . . . m/s2

(Total for Question 9 = 8 marks)

23
*P67159A02328* Turn over
Page 27

2 This question is about the movement of a train.


The diagram shows the train on a track.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


The train starts braking at point P and stops moving at point Q.

 P Q

The graph shows how the train’s velocity changes with time as the train travels from P to Q.
50

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
40

30
Velocity
in m/s

20

10

0
0 10 20 30 40 50 60 70
DO NOT WRITE IN THIS AREA

Time in s DO NOT WRITE IN THIS AREA

6
*P65064A0632*
Page 28

(a) Calculate the acceleration of the train.


(3)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

acceleration = ………………………………………… m/s2


(b) Calculate the distance travelled by the train from P to Q.
(3)
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

distance = ………………………………………… m

(c) Draw a line on the graph to show how the train’s velocity will change if its initial velocity
is the same but the braking force is lower.

(2)

(Total for Question 2 = 8 marks)


DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7
*P65064A0732* Turn over
Page 29

4 (a) (i) State Hooke’s Law.


(2)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The graph shows how the extension of a rubber band varies with the force applied.

Extension
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

Force

Explain how the graph shows that the rubber band does not obey Hooke’s Law.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9
*P65064A0932* Turn over
Page 30

(b) Diagram 1 shows a model aeroplane powered by a rubber band.

propeller

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


rubber band

Diagram 1
A person rotates the propeller of the model aeroplane, which twists the rubber band.
He then releases the propeller and it spins.
Energy transfer occurs during this process.
The box lists words associated with energy.

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
kinetic gravitational electrostatic
mechanical elastic magnetic
heating chemical radiation

Use words from the box to complete the passage.


(3)

The person does . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................... work to twist the rubber band.

As the person twists the rubber band it extends, increasing the ................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

energy store of the rubber band. When the rubber band is released it does mechanical work,
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


increasing the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................................... energy store of the propeller.

10
*P65064A01032*
Page 31

(c) Diagram 2 shows the aeroplane flying horizontally to the right.

lift
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

thrust

Diagram 2
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

The aeroplane flies at a constant speed.

Diagram 2 shows two forces acting on the aeroplane.


Draw labelled arrows on diagram 2 to show two more forces acting on the aeroplane.
(4)

(Total for Question 4 = 11 marks)


DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

11
*P65064A01132* Turn over
Page 32

3 The diagram shows some of the forces acting on a large rubbish bin on wheels.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


not to scale

weight

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
98 cm

37 cm

(a) The weight of the bin acts through point G.


Give the name of point G.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The mass of the bin is 23 kg.


(i) What is the weight of the bin?
(1)
DO NOT WRITE IN THIS AREA

A 23 kg DO NOT WRITE IN THIS AREA


B 230 kg

C 230 N

D 23 000 N

10
*P65066A01024*
Page 33

(ii) State the principle of moments.


(1)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) A person applies force F to the bin to keep it stationary.


Calculate the magnitude of force F.
(4)
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

magnitude of force F = ......................................................... N

(iv) State the magnitude and direction of the force applied to the person by the bin.
(2)

magnitude = ......................................................... N

direction = ...................................................... . . .
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 3 = 9 marks)

11
*P65066A01124* Turn over
Page 34

2 The diagram shows a metal block on top of a wooden block.


The metal block is held stationary by force F.

G metal
block

P
4.3 cm

wooden 11 cm
block
force F

(a) (i) The weight of the metal block acts through point G.
Give the name of point G.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Name a piece of apparatus that could be used to measure the weight of the
metal block.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6
*P68389A0620*
Page 35

(b) (i) State the formula linking moment, force and perpendicular distance from the pivot.
(1)

(ii) The weight of the metal block is 0.68 N.


Show that the moment of the weight of the metal block about point P is
approximately 2.9 N cm.
(1)

(iii) Force F is applied to the metal block to stop it from moving.


Calculate the magnitude of force F.
(3)

force F = ............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

(Total for Question 2 = 7 marks)

7
*P68389A0720* Turn over
Page 36

3 The diagram shows an air track that can be used to investigate motion without friction.
Air comes out through a series of small holes in the air track, which lifts the gliders
slightly above the track.
There are two gliders on the track.
Each glider has a magnet.

0.045 kg m/s magnet magnet


A B

glider B
glider A
(at rest)
air in
air track

The poles of the magnets nearest each other are alike.


(a) Explain the direction of the force acting on magnet A from magnet B.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The gliders collide and the magnets cause them to rebound.
Before the collision, the momentum of glider A is 0.045 kg m/s to the right and
glider B is at rest.
(i) State the total momentum of glider A and glider B after the collision.
(1)

total momentum = ............................................ . . . . . . . . . . . . . . . . . . kg m/s

8
*P68389A0820*
Page 37

(ii) After the collision, the momentum of glider A is 0.021 kg m/s to the left.
Calculate the momentum of glider B after the collision.
(2)

momentum of glider B = ............................................ . . . . . . . . . . . . . . . . . . kg m/s

(iii) The time taken for glider B to change its momentum is 0.19 seconds.
Calculate the average force on glider B that causes this change in momentum.
(2)

average force = ............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

(iv) Give the direction of the force on glider B from glider A.


(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 3 = 8 marks)

9
*P68389A0920* Turn over
Page 38

3 A builder needs to lift a large stone block.


(a) Diagram 1 shows the stone block.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA
weight

Diagram 1
(i) Draw an X on diagram 1 at the centre of gravity of the stone block.
(1)
(ii) State the formula linking weight, mass and gravitational field strength.
(1)

(iii) The mass of the stone block is 130 kg.


Calculate the weight of the stone block.
(2)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

weight = ......................................................... N

8
*P65067A0820*
Page 39

(b) The builder uses a wooden plank to lift the large stone block.
The plank is uniform and pivoted at its centre.
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The builder pushes down on one end of the plank to lift the stone block.
Diagram 2 shows the plank when it is horizontal and stationary.

0.30 m distance X

weight 520 N

Diagram 2
(i) State the principle of moments.
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The builder is pushing down with a force of 520 N to keep the plank horizontal.
Calculate distance X.
(3)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

distance X = .......................................................... m
(iii) Calculate the length of the plank.
(1)

length of plank = .......................................................... m

(Total for Question 3 = 10 marks)

9
*P65067A0920* Turn over
Page 40

6 The diagram shows a child on a zip-line ride.


During the ride the child slides along a metal wire with the velocity in the direction
shown in the diagram.

tension

velocity

The diagram also shows the tension force acting on the safety harness the child
is wearing.
(a) Force and velocity are examples of vector quantities.
State what is meant by the term vector quantity.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Draw labelled arrows on the diagram to show two other forces that act on
the child.
(4)

(Total for Question 6 = 5 marks)

15
 *P70951A01532* Turn over
Page 41

8 The photograph shows a toy car. When the toy car is pulled backwards, energy is
stored in the elastic store as the rubber band is twisted.

metal can

rubber band

(Source: Mama Belle and the kids/Shutterstock)

When the car is released, some of the energy from the elastic store is transferred to
the kinetic store of the car.
The remaining energy is transferred into the thermal store of the surroundings.
(a) State what is meant by the principle of conservation of energy.
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The car is pulled backwards so that there is 165 J of energy in its elastic store.
When the car is released, this energy is transferred to the car’s kinetic energy store
with an efficiency of 15 %.
(i) State the formula linking efficiency, useful energy output and
total energy output.
(1)

18
*P70951A01832* 
Page 42

(ii) Calculate the energy transferred into the thermal store of the surroundings.
(4)

energy transferred to thermal store = ............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J


(iii) Draw a labelled Sankey diagram for this energy transfer.
(3)

19
 *P70951A01932* Turn over
Page 43

(c) The car is pulled backwards again.


When released, 45 J of energy transfers into the car’s kinetic store.
The car travels a distance of 7.5 m during this energy transfer.
(i) State the useful work done on the car.
(1)

work done = ............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J


(ii) Calculate the mean accelerating force acting on the car.
(3)

accelerating force = ............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

(Total for Question 8 = 13 marks)

20
*P70951A02032* 
Page 44

7 Diagram 1 shows a gate fitted with a spring mechanism.


The spring mechanism shuts the gate automatically.

gate

spring
mechanism

Diagram 1

(a) The graph shows some data from an investigation into how the extension of the
spring changes with an increasing force.

50

40

30
Extension
in cm
20

10

0
0 100 200 300 400 500

Force in N

Describe the relationship shown by the graph.


(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20
*P70954A02024* 
Page 45

(b) Diagram 2 shows the gate viewed from above.

F
320 cm
pivot 84 cm

spring gate
mechanism
480 N

Diagram 2

The force the spring exerts on the gate is 480 N.


Show that the moment of the force the spring exerts on the gate is about 400 Nm.
(2)

(c) The force, F, is the minimum force needed to start opening the gate.
Calculate the magnitude of force F.
(4)

force F = ............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
(d) The spring is removed for testing.
Explain what will happen to the spring if the force applied to extend the spring is
too large.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 7 = 10 marks)

TOTAL FOR PAPER = 70 MARKS

21
 *P70954A02124*
Page 46

5 (a) A metal spring obeys Hooke’s law.


Sketch a graph to show that the spring obeys Hooke’s law as it is stretched.
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

You should label both axes with appropriate physical quantities.


(3)

0
0
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

11
 *P75826A01132* Turn over
Page 47

(b) Diagram 1 shows an object suspended from a support using a metal spring.
The object is initially at rest.

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
support

spring

object

Diagram 1

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


(i) The object is pulled down and then released.
Diagram 2 shows the forces acting on the object at the instant it is released.

3.2 N

object

2.0 N

Diagram 2

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

Determine the magnitude and direction of the resultant force acting on


the object.
(2)

magnitude of resultant force = .............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

direction of resultant force = ......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12
*P75826A01232* 
Page 48

(ii) The object has a mass of 0.20 kg.


Calculate the acceleration of the object at the instant it is released.
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

(3)

acceleration = ...................................... . . . . . . . . . . . . . . . . . . . . . . . . m/s2


(iii) Explain how the magnitude of the acceleration of the object changes, from
the instant the object is released until the first time the object returns to its
initial resting position.
You should refer to the forces acting on the object in your answer.
(3)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 5 = 11 marks)


DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

13
 *P75826A01332* Turn over
Page 49

10 Diagram 1 shows the apparatus a student uses to investigate the bending of a


wooden strip.

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
Part of the wooden strip is clamped to a table.
A load is fixed to the free end of the wooden strip, causing it to bend.

length, L

wooden strip
load
clamp table clamp height, h

Diagram 1

The free end of the wooden strip is positioned a length, L, beyond the edge of the
table, as shown in diagram 1.
The weight of the load causes the end of the wooden strip to move down through a
height, h.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


A student investigates how the length, L, affects the height, h.
(a) The load has a mass of 250 g.
Calculate the weight of the load.
Use the formula
weight = mass × gravitational field strength, g
(2)

weight = .............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

22
*P75826A02232* 
Page 50

(b) This is the student’s method for the investigation.


• clamp the wooden strip so that L = 20 cm
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

• fix the load to the end of the wooden strip, as shown in diagram 1
• measure the height, h
The student repeats this method for different values of L.
(i) Give the independent and dependent variables in the investigation.
(2)
independent variable

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dependent variable

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Give two control variables in the investigation.


(2)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

1 ........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 ........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(iii) Suggest how the student could accurately measure the height, h.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23
 *P75826A02332* Turn over
Page 51

(c) The table shows the results of the investigation.

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
Length (L) in cm Height (h) in cm

20 2

40 8

60 18

80

100 53

120 71

(i) Diagram 2 shows the wooden strip when L = 80 cm.

wooden strip starting height

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


table clamp

load

Diagram 2

Using diagram 2, determine the height, h, in the laboratory.


[1 cm on the diagram = 10 cm in the laboratory]
(2)

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

height, h = .................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . cm

24
*P75826A02432* 
Page 52

(ii) Plot a graph of the student’s results.


(2)
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

(iii) Draw the curve of best fit.


(1)

Height (h)
in cm
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Length (L) in cm

(iv) The student concludes that h is directly proportional to L.


Evaluate the student’s conclusion.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 10 = 15 marks)

25
 *P75826A02532* Turn over
Page 53

12 A car accelerates with a constant driving force along a horizontal road and reaches its
maximum speed.

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
This is the velocity-time graph for the car’s journey.

80

60

Velocity
in m/s 40

20

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


0
0 20 40 60 80 100

Time in s

(a) By drawing a tangent to the curve, determine the acceleration of the car at a time
of 20 s.
(4)

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

acceleration = ...................................... . . . . . . . . . . . . . . . . . . . . . . . . m/s2

30
*P75826A03032* 
Page 54

(b) Determine the distance travelled by the car during the first 80 s of its journey.
(5)
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

distance = ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
(c) Explain the motion of the car after 80 s.
(3)
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 12 = 12 marks)


DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

TOTAL FOR PAPER = 110 MARKS

31
 *P75826A03132*
Page 55

5 Diagram 1 shows a wooden plank balanced horizontally on two supports, A and B.


A block is suspended from the plank between the supports by a cable of
negligible weight.

force F
25 cm 55 cm

plank
A B
cable

block

Diagram 1

(a) The weight of the block is 260 N.


(i) State the formula linking moment, force and perpendicular distance from
the pivot.
(1)

(ii) By taking moments about support A, calculate force F.


Assume the weight of the plank is negligible.
(3)

force F = .............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

10
*P71898A01020* 
Page 56

(iii) Explain what will happen to the magnitude of force F if the block is moved
towards support B.
(3)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11
 *P71898A01120* Turn over
Page 57

(b) Diagram 2 shows the block and the cable connecting the block to the plank.

cable

block

Diagram 2

(i) The centre of gravity of the block is located at point X.


Draw an arrow on diagram 2 to show the weight of the block.
(2)

12
*P71898A01220* 
Page 58

(ii) The block also experiences a force due to the tension in the cable.
Explain why the block remains stationary when it is supported by this
tension force.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Explain why the forces acting on the block are not an example of Newton’s
third law of motion.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 5 = 13 marks)

13
 *P71898A01320* Turn over
Page 59

2 This question is about moments.


Diagram 1 shows the raised lower leg of a person.

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
F

0.25 m
0.28 m

weight of
pivot lower leg

0.55 m

Diagram 1

6
*P73429A0628* 
Page 60

(a) (i) The moment of the weight of the lower leg about the pivot is 19 N m.
A vertical force, F, is applied to the person’s foot to keep the lower leg raised.
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA

The lower leg does not move.


Calculate the magnitude of force F, using the formula

moment = force × perpendicular distance from pivot


(2)

force F = ............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

(ii) Which distance is used to calculate the moment of the weight of the lower leg
about the pivot?
(1)
A 0.25 m

B 0.28 m
C 0.30 m

D 0.55 m

7
 *P73429A0728* Turn over
Page 61

(b) Diagram 2 shows the person resting their lower leg on two supports.

force X force Y

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
support A support B

weight of
lower leg

Diagram 2

8
*P73429A0828* 
Page 62

(i) The centre of gravity of the lower leg is 0.25 m away from support A and
0.35 m away from support B.
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA

Explain whether force X or force Y is larger.


Ignore the weight of the upper leg.
(3)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) A bag of ice is placed on the lower leg, vertically above the centre of gravity.
This causes force X and force Y to increase.
The bag is then moved towards the person’s foot.
Describe how force X and force Y change as the bag is moved towards the
person’s foot.
(3)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 2 = 9 marks)

9
 *P73429A0928* Turn over
Page 63

6 This question is about momentum and forces.


(a) State the principle of conservation of momentum.

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
(1)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The diagram shows an air track that can be used to investigate motion
without friction.
Air comes out through a series of small holes in the air track. The air lifts the glider
slightly above the track.
A small spacecraft engine floats at rest on a cushion of air.

spacecraft engine

glider
air in
air holes

(i) State the momentum of the spacecraft engine when it is at rest.


(1)

momentum = .............................................. . . . . . . . . . . . . . . . . kg m / s

(ii) The spacecraft engine ejects large numbers of xenon ions to the left.
A mass of 2.6 × 10−8 kg of xenon ions leaves the engine with a mean speed
of 26 km / s.
Calculate the momentum of all the ejected xenon ions.
(3)

momentum = .............................................. . . . . . . . . . . . . . . . . kg m / s

18
*P73429A01828* 
Page 64

(iii) State the magnitude and direction of the spacecraft engine’s momentum after
these xenon ions leave the engine.
(2)
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA

magnitude of momentum = .............................................. . . . . . . . . . . . . . . . . kg m / s

direction of momentum = ........................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) The ions exert a force of 2.6 mN on the spacecraft engine.


The spacecraft engine has a mass of 1.2 kg.
Calculate the acceleration of the engine.
Give your answer to 2 significant figures.
(4)

acceleration = ........................................ . . . . . . . . . . . . . . . . . . . . . . m / s2

19
 *P73429A01928* Turn over
Page 65

(c) The engine is designed to accelerate a spacecraft while the spacecraft is travelling
through space.

DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
The spacecraft carries a mass of 0.75 kg of xenon ions for the engine.
When the engine is used, 9.9 × 10−8 kg of xenon ions leave the engine
each second.
A student suggests that this small spacecraft engine would not be useful because
the acceleration it produces is very small.
Evaluate the student’s suggestion.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 6 = 13 marks)

20
*P73429A02028* 
Page 66

7 Diagram 1 shows a gate fitted with a spring mechanism.


The spring mechanism shuts the gate automatically.

gate

spring
mechanism

Diagram 1

(a) The graph shows some data from an investigation into how the extension of the
spring changes with an increasing force.

50

40

30
Extension
in cm
20

10

0
0 100 200 300 400 500

Force in N

Describe the relationship shown by the graph.


(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20
*P70954A02024* 
Page 67

(b) Diagram 2 shows the gate viewed from above.

F
320 cm
pivot 84 cm

spring gate
mechanism
480 N

Diagram 2

The force the spring exerts on the gate is 480 N.


Show that the moment of the force the spring exerts on the gate is about 400 Nm.
(2)

(c) The force, F, is the minimum force needed to start opening the gate.
Calculate the magnitude of force F.
(4)

force F = ............................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
(d) The spring is removed for testing.
Explain what will happen to the spring if the force applied to extend the spring is
too large.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 7 = 10 marks)

TOTAL FOR PAPER = 70 MARKS

21
 *P70954A02124*
Page 68

7 A crumple zone is a safety feature in a car.


It is a part of the car that is designed to collapse during a collision.
A student investigates the effectiveness of crumple zones.
The student rolls two model cars down a ramp.
Each car comes to rest when it hits a large metal block.
A data logger measures the mean force applied to the car during the collision with
the block.
The diagram shows the equipment used in the investigation.

data
logger
metal
ramp block 0.0 N

Car 1 has a paper crumple zone at the front.


Car 2 has no paper crumple zone.
The table shows the student’s results.

Mean force on car from block Velocity just before car hits block
Car
in N in m/s

1 2.5 3.0

2 4.9 3.0

(a) The mass of each car is 0.074 kg.


Calculate the time taken for the velocity of car 1 to decrease from 3.0 m/s
to 0.0 m/s.
(3)

time taken = ............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

20
*P71899A02024* 
Page 69

(b) State the magnitude and direction of the force on the metal block, when car 2
collides with the block.
(2)

magnitude = .............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

direction = ......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Explain why the mean force from the block on car 1 is smaller than the mean
force on car 2.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 7 = 7 marks)

21
 *P71899A02124* Turn over
Page 70

5 The diagram shows the collision between two balls, A and B.


The masses and velocities of both balls are shown before and after the collision.

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA
Ball B is stationary before the collision.

v
4.9 m/s 3.5 m/s

A B A B
0.018 kg 0.018 kg
0.265 kg 0.265 kg

Before collision After collision

(a) When the balls collide, ball B applies a force on ball A, which causes the velocity

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


of ball A to change.
Ball A also applies a force on ball B during the collision.
Describe how the force applied on ball A compares with the force applied on
ball B during the collision.
(2)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Calculate the momentum of ball A before the collision.


(2)

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

momentum of ball A before collision = ............................................. . . . . . . . . . . . . . . . . . kg m / s

12
*P73430A01224* 
Page 71

(c) Show that the velocity, v, of ball B after the collision is about 0.6 m / s.
(4)
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

(d) A collision is considered elastic if the total kinetic energy before the collision is
equal to the total kinetic energy after the collision.
Using data from the diagram, deduce whether this collision is elastic.
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(4)

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DO NOT WRITE IN THIS AREA
DO NOT WRITE IN THIS AREA

................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Total for Question 5 = 12 marks)

13
 *P73430A01324* Turn over

You might also like