Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
UNIT-10
Distance Formula
Let P(x1, y1) and Q (x2, y2) be two points. If “d” denotes the distance between them,
then = d = |PQ| = (x1 + x2)2 + (y1 y2)2
= (x2 x1)2 + (y2 y2)2
i.e. square root of the sum of square the difference of x-coordinates and square the
difference of y-coordinates.
Example:
Find the distance between the following points:
i. A (3, 8) , B(5, 6)
ii. P(cos x, cos y), Q(sin x, sin y)
Solution:
i. Distance = |AB| = (3 5)2 + (8 6)2 = 4 + 4 = 8 = 2 2
= (5 3)2 + (6 8)2 = 4 + 4 = 8 = 2 2
ii. Distance = (cos x sin x)2 + (cos y sin y)2
= cos2 x + sin2 x 2cos x sin x + cos2 y + cos2 y + sin2 y 2cos y sin y
= 2 2cos x sin x 2cos y sin y
= 2 (cos x sin x + cos y sin y)
The Fundamental Law of Trigonometry
Forany two angles and (real numbers)
cos( ) cos cos sin sin is called fundamental law of trigonometry.
Addition Formulas:
sin( ) sin cos cos sin sin( ) sin cos cos sin
cos( ) cos cos sin sin cos( ) cos cos sin sin
tan tan cot cot 1
tan( ) cot( )
1 tan tan cot cot
tan tan cot cot 1
tan( ) cot( )
1 tan tan cot cot
Double Angle Formulas
sin 2 2sin cos
cos 2 cos2 sin 2 1 2sin 2 2cos 2 1
2 tan
tan 2
1 tan 2
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
Half Angle Formulas
1 cos 2 1 cos 2 1 cos 2
sin tan cos
2 2 2 1 cos 2 2 2
Multiple Angle Formulas
sin 3 3sin 4sin 3 cos3 4cos3 3cos
sin 4 4sin cos 8sin 3 cos cos 4 8cos 4 8cos 2 1
3 tan tan 3 4 tan 4 tan 3
tan 3 tan 4
1 3 tan 2 1 6 tan 2 tan 4
Powers of Trigonometric Functions
1 cos 2 1 cos 2
sin 2 cos 2
2 2
3 1 3 1
sin 3 sin sin 3 cos3 cos cos 3
4 4 4 4
3 1 1 3 1 1
sin 4 cos 2 cos 4 cos 4 cos 2 cos 4
8 2 8 8 2 8
(i).
Sum/Differences to Products Formulas
sin sin 2sin cos sin sin 2 cos sin
2 2 2 2
cos cos 2 cos cos cos cos 2sin sin
2 2 2 2
Products to Sum/Differences Formulas
1
sin sin cos( ) cos( )
2
1
cos cos cos( ) cos( )
2
1
sin cos sin( ) sin( )
2
cos A sin B = (1/2) [ sin (A + B) - sin (A - B) ]
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
Trigonometric Ratios of Allied Angles
The angles associated with basic angles of measure to a right angle or its multiple are
called allied angles. So, the angles of measure 90o , 180o , 270o , 360o , are known as
allied angles.
Sine Cosine Tangent
sin cos cos sin tan cot
2 2 2
sin cos cos sin tan cot
2 2 2
sin sin cos cos tan tan
sin sin cos cos tan tan
3 3 3
sin cos cos sin tan cot
2 2 2
3 3 3
sin cos cos sin tan cot
2 2 2
sin 2 sin cos 2 cos tan 2 tan
sin 2 sin cos 2 cos tan 2 tan
Note:
The above results also apply to the reciprocals of sine, cosine and tangent. These result are
to be applied frequently in the study of trigonometry, and they can be remembered by using
the following device.
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
1. If added to or subtracted from odd multiple of right angle, the trigonometric ratios
change into co-ratios and vice versa.
i. e., sin
cos tan
, sec
cosec
3
e. g. sin 2 = cos and cos 2 = sin
2. If is added to or subtracted from an even multiple of 2 , the trigonometric ratios shall
remain the same.
3. So far as the sign of the result is concerned, it is determined by the quadrant in which the
terminal arm of the angle lies.
e. g. sin ( ) = sin , tan ( + ) = tan cos (2 ) = cos
Note:
sin( n ) (1) n sin cos(n ) (1) n cos
n 1
n 1
n (1) 2 cos , n is odd n (1) 2 sin , n is odd
sin( ) n cos( ) n
2 (1) 2 sin , n is even 2 (1) 2 cos , n is even
Note:
If , and are the angle of triangle ABC then
sin( ) sin cos( ) cos
tan tan tan tan tan tan
cos( ) sin
2 2
tan( ) tan 0 1
cos 36 cos 72
2
1
tan tan tan tan tan tan 1 cos 36 . cos 72
2 2 2 2 2 2 4
tan . tan( 60 ). tan( 60 ) tan 3
cot cot cot cot cot cot
2 2 2 2 2 2
cot cot cot cot cot cot 1 1
cos . cos(60 ). cos(60 ) cos3
4
1 1
sin . sin( 60 ). sin( 60 ) sin 3 sin .sin 2 .sin 4 sin 3
4 4
1 3
1 sin 20.sin 40.sin 80 sin 60
cos .cos 2 .cos 4 cos 3 4 8
4 Example
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
sin 20.sin 40.sin 60.sin 80
sin 60(sin 20.sin 40.sin 80)
3 1 3 1 3 3
. sin 60 . .
2 4 2 4 2 16
Greatest and least value of a sin b cos or a cos b sin is a 2 b 2
1 cos 12 = . Solution :
(a) 3 cos3 4 4 cos 4 (b) 4 cos3 4 3 cos 4 Cos12 Cos 4 3
(c) 3 sin 4 4 sin 4
3
(d) 4 sin 4 3 sin 43
Use cos3 4cos3 3cos
2 cos 12 + sin 12 Solution:
= .
cos 12 sin 12
1 cot 45cot12
(a) tan 33 (b) tan 33 Cot 45 12
cot 45 cot12
(c) cot 33 (d) cot 33 cos12
cot 33= 1
1 cot12 sin12
1 cot 45 1 cos12
sin12
Solution:
3 1 + sin
= .
1 – sin 1 + sin
L.H.S. =
1 – sin
tan 2 + cos 2 sin 2 cos 2
(a) (b)
sin2 = 2sin cos
tan 2 cos 2 sin 2 + cos 2
sin = 2sin /2 cos /2
sin 2 + cos 2 tan 2 cos 2 =
(c) (d)
sin 2 cos 2 tan 2 + cos 2 sin2 2 + cos2 2 + 2 sin 2 cos 2
sin2 2 + cos2 2 – 2 sin 2 cos 2
2
sin + cos
2 2
= 2
sin – cos
2 2
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
sin 2 + cos 2
=
sin 2 – cos 2
Use allied angle
4 3
cos 2 + . cos 2 cosec2 = .
1 cos 2 + =- sin
(a) 1 (b)
(c) 0 (d) 2
3
cos 2 = - sin
1
cosec2
sin 2
5 sin ( + ) sin ( ) = . Use
(a) cos2 cos2 (b) cos2 + cos2 sin( ) sin cos cos sin
(c) cos cos
2 2
(d) sin sin
2 2
sin( ) sin cos cos sin
6 4 5
If cos ( + ) = 5 , sin ( ) = 13 , 0 < , < 4
then tan 2 =
33 33
(a) 56 (b) 48
56
(c) 33 (d) None of these
7 If cos 34 = x then sin 17 = . Hint : cos 34 = x then sin 17
x
(a) 2x 1 x2 (b) 1 cos 2
1 x2 sin
2 2
1x 1x
(c) (d)
2 2
8 cos 15 sin 15 = . Hint : cos 15 sin 15 =cos(90-75) – sin15=
1 1
(a) (b) Sin75-sin15=
2 2
(c) 2 (d) 2
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
USE
sin sin 2 cos sin
2 2
9 If is an acute angle then 90 ; 180 , 270 and Definition
360 are called:
(a) Quadrantal angles (b) Half angles
(c) Allied angles (d) Double angles
10 If lies in quad II then terminal arm of angles 2 lies Suppose angle is 170
in So 360-170 =190 lies in III
(a) Quad III (b) Quad IV
(c) Quad I (d) Quad II
Formula
11 tan 3 = .
3 tan + tan3 3 tan 3 tan2
(a) (b)
1 3 tan2 1 + 3 tan2
3 tan tan3 tan + 3 tan2
(c) (d)
1 3 tan2 1 + 3 tan2
12 Hint :
cot 54 tan 20
The value of + = .
tan 36 cot 70 If 1 2 90 then
(a) 0 (b) 2
tan1 tan 2 1
(c) 3 (d) 1
cot 1 cot 2 1
13 If cot ( + ) = 0 then sin ( + 2) = .
(a) sin (b) cos
(c) sin (d) cos 2
14 1 cos 2A 1 cos 2A 2sin 2 A
1 + cos 2A = . 1 + cos 2A = = tan A
2 cos 2 A
(a) cos A (b) tan A
(c) sin A (d) cot A
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
15 If , , are angles of a ABC then sin ( + ) = For a triangle ABC we know that
(a) sin (b) sin + + = 180o
(c) cos (d) cos + = 180o –
sin ( + ) = sin (180o – )
= sin ( sin ( – ) = sin )
Hint : ALLIED ANGLE
16 3
cot 2 = .
(a) tan (b) cot
(c) tan (d) cot
Hint:
17 cos ( + ) cos ( ) = .
(a) 2 cos cos (b) 2 sin sin cos( ) cos cos sin sin
(c) 2 sin sin (d) 2 sin cos cos( ) cos cos sin sin
Hint :
18 sin 5 cos 2 = .
sin 7 + sin 3 2 sin cos = sin ( + ) + sin ( – )
(a) sin 7 + sin 3 (b)
2
1
2 (cos sin )
(c) (d) None of these
Hint :
19 cos (2x + 30) cos (2x 30) = .
(a)
1
(cos 4x + cos 60) (b)
1 2 cos cos = cos ( + ) + cos ( – )
2 2 (sin 4x + sin
60)
(c) cos 4x + sin 60 (d) sin 4x + sin 60
20 12 5 12
If sin = 13 and cos = 13 then lies in: Hint : sin = 13 +ve in I and II and
(a) I quadrant (b) III quadrant 5
(c) II quadrant (d) IV quadrant cos = 13 -ve in II and III
21 Hint: Value of
The coordinates of a point whose terminal ray makes
2 1 2 3 3
an angle of 60 and 4 units from origin is: cos 60 and sin60=
4 2 4 2
(a) ( 3 3) (b) (1, 1)
4
(c) (0, 0) (d) (2 2 3)
2 3
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
2
Formula
22 1 cos
is equal to:
2
(a) cos 2 (b) sin 2
(c) tan 2 (d) sin
Hint: Multiple of 360 is odd so convert it into cot
23 If n is an odd integer, then cot (n . 360 + ) =
(a) tan (b) tan And lies in First Quadrant.
(c) cot (d) cot
24 sin 2 = . 2 tan
Solution : =
1 + tan2
2 tan 1 tan2
(a)
1 + tan2
(b)
1 + tan2 2sin
cos 2sin cos
1 + tan2
(c) (d) None of these sin 2
2 tan 1
cos 2
sin 2
25 sec (300) = . Solution : sec (300)= sec (300) and
(a) 1 (b) 1 sec (360- 60)=sec60=2
(c) 2 (d) 2
26 sin 20 sin 40 sin 80 = .
3 1 1
(a) (b) Hint : sin .sin 2 .sin 4 sin 3
8 8 4
1 3
(c) (d)
16 16
27 Solution :
Which of the following is rational?
(a) sin 15 (b) cos 15
(c) sin 15 cos 15 (d) sin 15 cos 75
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
28 cos 20 + cos 100 + cos 140 = .
(a) 0 (b) 1
(c) 1 (d) None of these
Hint :
29
cos 12 = .
15 and
31 3+1 12
(a) (b)
2 2 2 2 cos(60 45) cos 60cos 45 sin 60sin 45
1 3 31
(c) (d)
2 2 2 2
30 sin P Cos Q = 0 if: Solution: sin P Cos Q=0
(a) P + Q = 90 (b) P + Q = 180 =SinP=CosQ
(c) P + Q = 45 (d) P + Q = 270
=SinP=Sin(90-Q)
Implies that P=90-Q
31 Definition
Co-ratio of cosec is:
(a) sin (b) sec
(c) cos (d) cosec
32 The sign of tan 2140 is: Tan 2140 =Tan (6.360 - 20)
(a) +ve (b) ve Fourth Quadrant
(c) may be any (d) None of these
33 19 19
cot( )? cot( )?
3 3
1 19 19 18
A) B) 3 tan tan tan 3
3 3 3 3 3
3
C) 3 D)
2
34 cot 59 If 1 2 90 then
tan 31 tan1 tan 2 1
A)0 B)1 cot 1 cot 2 1
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com
1
C) D) 2
2
35 sin 19 cos11 sin 71 sin 11 Hint:
sin( ) sin cos cos sin
3 3
A) B)
2 2
sin 71 sin 90 11 cos11
1 1
C) D) 1
2 3 sin(30)
2
Entry Test Series Mathematics (Book-I)
Muhammad Asim Ali -Lecturer Punjab Group of Colleges- Lahore, masimali99@gmail.com