0% found this document useful (0 votes)
15 views5 pages

Matlab Report

The document presents a design assignment for CE 7323 Computer Analysis of Structures, detailing nodal coordinates, connectivity, degrees of freedom, loads, modulus of elasticity, and area for a structural analysis using MATLAB. It includes functions for data definition and computation of reactions and deformations at various nodal points. The results show the reactions at the base level and deformations at the top level for specified nodal points.

Uploaded by

JMB
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
15 views5 pages

Matlab Report

The document presents a design assignment for CE 7323 Computer Analysis of Structures, detailing nodal coordinates, connectivity, degrees of freedom, loads, modulus of elasticity, and area for a structural analysis using MATLAB. It includes functions for data definition and computation of reactions and deformations at various nodal points. The results show the reactions at the base level and deformations at the top level for specified nodal points.

Uploaded by

JMB
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

CE 7323 COMPUTER ANALYSIS OF

STRUCTURES
DESIGN ASSIGNMENT - MATLAB

NAME : BANDAR K.A.J.M.

REG No : RU/E/2008/014

DATE : 25/04/2012
01.

R = 8.014
15
16
14
13

11

12

10
06

08
09 05

04

07

03

02

01

x- y- z- x- y- z-
NODS coordinates coordinates coordinates NODS coordinates coordinates coordinates

01 -4.007 4.007 0 09 -2.672 2.672 8.000

02 -3.339 3.339 4.000 10 -2.672 -2.672 8.000

03 -4.007 -4.007 0 11 2.672 -2.672 8.000

04 -3.339 -3.339 4.000 12 2.672 2.672 8.000

05 4.007 -4.007 0 13 -2.004 2.004 12.000

06 3.339 -3.339 4.000 14 -2.004 2.004 12.000

07 4.007 4.007 0 15 2.004 -2.004 12.000

08 3.339 3.339 8.000 16 2.004 2.004 12.000


function D=Data
% Definition of Data
% 1. Nodal Coordinates
Coord=[-4.007 4.007 0;-3.339 3.339 4.000;
-4.007 -4.007 0;-3.339 -3.339 4.000;
4.007 -4.007 0;3.339 -3.339 4.000;
4.007 4.007 0;3.339 3.339 4.000;
-2.672 2.672 4.000; -2.672 -2.672 8.000;
2.672 -2.672 8.000;2.672 2.672 8.000;
-2.004 2.004 12.000;-2.004 -2.004 12.000;
2.004 -2.004 12.000;2.004 2.004 12.000];
% 2. Connectivity
Con=[1 2;1 4;1 8;3 2;3 4;3 6;
5 4;5 6;5 8;7 6;7 8;7 2;
2 4;2 8;2 12;2 9;2 10;
4 9;4 10;4 6;4 11;6 10;
6 8;6 12;6 11;8 11;8 12;
8 9;9 13;9 10;9 14;10 13;
10 14;10 11;10 15;11 14;
11 15;11 12;11 16;12 15;
12 16;12 9;12 13;9 16;
13 14;14 15;15 16;16 13];
% 3. Definition of Degree of freedom (free=0 & fixed=1); for 2-D trusses the
last
column is equal to 1
Re=[1 1 1; 0 0 0; 1 1 1;0 0 0;1 1 1;0 0 0;1 1 1;0 0 0;
0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0];
% 4. Definition of Nodal loads
Load=[0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;0 0 0;
0 0 0;0 0 0;0 0 0;0 0 0;8014 8014 -8014;0 0 0;0 0 0;0 0 0];

% 5. Definition of Modulus of Elasticity


E=[210000000000 210000000000 210000000000 210000000000 210000000000 210000000000
210000000000 210000000000 210000000000 210000000000 210000000000 210000000000
210000000000 210000000000 210000000000 210000000000 210000000000 210000000000
210000000000 210000000000 210000000000 210000000000 210000000000 210000000000
210000000000 210000000000 210000000000 210000000000 210000000000 210000000000
210000000000 210000000000 210000000000 210000000000 210000000000 210000000000
210000000000 210000000000 210000000000 210000000000 210000000000 210000000000
210000000000 210000000000 210000000000 210000000000 210000000000 210000000000];
% 6. Definition of Area
A=[0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01];
% Convert to structure array

D=struct('Coord',Coord','Con',Con','Re',Re','Load',Load','E',E','A',A');
function [F,U,R]=ST(D)
% w:matrix size, S:force vector size,
w=size(D.Re);S=zeros(3*w(2));U=1-D.Re;f=find(U);
for i=1:size(D.Con,2)
H=D.Con(:,i);
C=D.Coord(:,H(2))-D.Coord(:,H(1));
Le=norm(C);
T=C/Le;% calculation the cos value
s=T*T';% lamda gobal stiffness matrix
G=D.E(i)*D.A(i)/Le;
Tj(:,i)=G*T;
e=[3*H(1)-2:3*H(1),3*H(2)-2:3*H(2)];%check the corresponding degree of
freed
S(e,e)=S(e,e)+G*[s -s;-s s];% global matrix
end
U(f)=S(f,f)\D.Load(f);%normal equation f=ku calculate
F=sum(Tj.*(U(:,D.Con(2,:))-U(:,D.Con(1,:))))*0.001;% reation and
displaced calculaed
R=reshape(S*U(:),w);
R(f)=0;

02.

Reaction at Base level

Nods point X- Direction(kN) Y- Direction(kN) Z- Direction(kN)


01 -0.141 -2.338 5.085
03 -2.524 -4.066 -11.074
05 0.128 1.002 1.077
07 -5.477 -2.612 12.926
03.

Deformation at Top level

Nods point X- Direction(mm) Y- Direction(mm) Z-


Direction(mm)
13 -0.0038 0.1854 -0.0801
14 0.0475 0.1814 -0.0033
15 0.0473 0.0471 -0.0018
16 -0.0067 0.0473 -0.0403

You might also like