Trigonometry
Radian
c °
π =180
°
c 180
1=
π
c
° π
1=
180
Arc Length and Area of Sector
The length of the arc AB ,l=rθ
1 2
The area of the sector AOB, A= r θ
2
Example 1
2π
An arc PQ subtends an angle of 5 radians at the centre O of a circle with
radius 10 cm. Find
a) The length of the arc PQ
b) The area of the sector POQ
Leave your answers in terms of π
a)
The length of the arc PQ ,l=rθ
¿ 10 ( 25π ) cm
¿ 4 πcm
b)
1 2
The area of the sector POQ , A= r θ
2
1
¿ ( 10 )2
2 ( )
2π
5
c m2
2
¿ 20 π c m
Pythagorean Relationships
Consider the right-angled triangle
opp a
sin θ= =
hyp c
adj b
cos θ= =
hyp c
opp a
tanθ= =
adj b
Now:
a
sin θ c a
tanθ= = = ∎
cos θ b b
c
2
a 2 a
If sin θ= ⇒ sin θ= 2
c c
2
b 2 b
If cos θ= ⇒ cos θ= 2
c c
2 2
∴ sin θ+cos θ
2 2 2
a b c
¿ 2
+ 2 = 2 =1
c c c
2 2
∴ sin θ+cos θ=1
Proving Identities
i) Always hold one side constant
ii) Using trigonometric identities, simplify or factorize to show the
left-hand side is equal to the right-hand side
iii) Reference all identities used
Example 2
Prove cos 4 A−sin4 A +1 ≡2 cos 2 A
cos 4 A−sin4 A +1 ≡ ( cos 2 A +sin2 A ) ( cos 2 A−sin2 A ) +1
2 2
¿ cos A−sin A +1
2
¿ cos A+ cos A
2
[From 1−sin2 A=cos 2 A ]
2
¿ 2 cos A ∎
Solving Trigonometric Equations
i) sin θ=k sin θ=−k
° ° ° °
θ=α , ( 180−α ) θ=( 180+α ) , ( 360−α )
c c c c
¿ α , ( π−α ) ¿ ( x +α ) , ( 2 π −α )
ii) cos θ=k cos θ=−k
° ° ° °
θ=α , ( 360−α ) θ=( 180−α ) , ( 180+α )
¿ α c , ( 2 π−α c )
c c
¿ ( π−α ) , ( π + α )
iii) tanθ=k tanθ=−k
° ° ° °
θ=α , ( 180+ α ) θ=( 180−α ) , ( 360−α )
c c c c
¿ α , ( π +α ) ¿ ( π−α ) , ( 2 π−α )
Note:
i) αis always the acute angle and is always positive
ii) When working, we don’t enter the negative k value, in calculator
Example 4
Solve for 0° ≤ x ≤ 360° , 0° ≤ y ≤ 360°
a) cos 2 y −cos y=2
b) sin y=4 tan y
c) sin 2 x=0.866
d) tan (2 x−50 )=−0.7
a) 2
cos y −cos y−2=0
( cos y−2 ) ( cos y +1 )=0
cos y=2 cos y=−1
Inadmissible −1
α =cos (1)=0
° °
x=( 180−0 ) , ( 180+0 )
°
x=180
b) sin y=4 ( cos y)
sin y
sin y cos y−4 sin y=0
sin y ( cos y−4 )=0
sin y=0 cos y=4
°
y=0 ,180 ,360
° °
Inadmissible
c) −1
α =sin ( 0.866 )=60
°
0 ≤ x ≤ 360 0 ≤ 2 x ≤720
° ° ° °
2 x=60 , ( 180−60 ) , ( 360+ 60 ) , (540−60 )
° ° ° °
2 x=60 , 120 , 420 , 480
° ° ° °
x=30 , 60 , 210 , 240
d) −1
α =tan ( 0.7 )=35
°
0 ≤ x ≤ 360 0 ≤ 2 x ≤720 −50 ≤ 2 x−50 ≤ 670
2 x−50=−35
2 x=15
°
x=7.5
2 x−50=145 2 x−50=325 2 x−50=505
° ° °
x=97.5 x=187.5 x=277.5
° ° ° °
x=7.5 , 97.5 , 187.5 , 277.5
Trigonometry 2
Addition Identities
sin ( A+ B )=sin A cos B+ cos A sin B
sin ( A−B )=sin A cos B−cos A sin B
cos ( A+ B )=cos A cos B−sin A sin B
cos ( A−B )=cos A cos B+sin A sin B
tan A+ tan B
tan ( A+ B )=
1−tan A tan B
tan A−tan B
tan ( A−B )=
1+tan A tan B
Factor Formulae
If sin ( A+ B )=sin A cos B+ cos A sin B
If A=B
sin ( A+ A )=sin A cos A+ cos A sin A
sin 2 A=2 sin A cos A
If cos ( A+ B )=cos A cos B−sin A sin B
If B= A
cos ( A+ A )=cos A cos A−sin A sin A
2 2 2
cos 2 A=cos A−sin A cos 2 A=2 cos A−1
2
cos 2 A=1−2 sin A
tan A+ tan B
If tan ( A+ B )= 1−tan A tan B
If B= A
tan A + tan A
tan (2 A )=
1−tan A tan A
2 tan A
tan (2 A )= 2
1−tan A
Example 5
Express sin 3 x in terms of sin x
sin 3 x=sin ( 2 x+ x )=sin 2 x cos x +cos 2 x sin x
¿ 2 sin x cos 2 x + ( 1−2sin 2 x ) ( sin x )
¿ 2 sin x ( 1−2sin 2 x ) +sin x−2 sin3 x
3 3
¿ 2 sin x−2 sin x +sin x−2 sin x
3
¿ 3 sin x−4 sin x
Example 6
Express cos 3 x in terms of cos x
cos 3 x=cos ( 2 x + x )=cos 2 x cos x−sin 2 x sin x
¿ ( 2 cos 2 x−1 ) cos x−2sin 2 x cos x
¿ 2 cos3 x−cos x −2 ( 1−cos 2 x ) cos x
3 3
¿ 2 cos x−cos x −2cos x+2 cos x
3
¿ 4 cos x−3 cos x
Example 7
Express tan3 x in terms of tan x
tan2 x +tan x
tan3 x=tan ( 2 x + x )=
1−tan 2 x tan x
¿
[ 2 tan x
1−tan x
2 ]
+ tan x
1−
[ 2 tan x
1−tan x
2 ]
tan x
3
2 tan x + tan x−tan x
2
1−tan x
¿ 2 2
1−tan x−2 tan x
2
1−tan x
3
3 tan x−tan x
¿ 2
1−3 tan x
Example 8
Expand sin ( A+ B+C )
sin ( [ A+ B ] +C )=sin ( A+ B ) cos C+ cos ( A+ B ) sin C
¿ ( sin A cos B+cos A sin B ) cos C + ( cos A cos B−sin A sin B ) sin C
¿ sin A cos B cos C+ sin B cos A cos C+cos A cos B sinC−sin A sin B sin C
Example 9
3 5
If sin x= 5 , cos y = 13 where x and y are acute. Find without the use of a
calculator
i) sin ( x + y )
ii) cos ( x− y )
iii) tan ( x + y )
3 12
sin x= sin x=
5 13
4 5
cos x= cos x=
5 13
3 12
tan x= tan x=
4 5
sin ( x + y )=sin x cos y +cos x sin y
¿ ( ) ( )
3 5
+
4 12
5 13 5 13
63
¿
65
cos ( x− y )=cos x cos y +sin x sin y
¿ ( ) ( )
4 5
+
3 12
5 13 5 13
56
¿
65
tan x+ tan y
tan ( x + y ) =
1−tan x tan y
3 12
+
4 5
¿
1−
3 12
4 5 ( )
63
¿−
16
Example 10
° 1
Given that tan30 = √3 , without the use of a calculator find tan15
°
° °
tan15 =tan ( 45−30 )
° °
tan 45 −tan30
¿ ° °
1−tan 45 tan 30
1
1−
¿ √3 =2−√ 3
1+ 1
1
√3 ( )
°
2 tan15
tan2 ( 15 ) = 2 °
1−tan 15
°
2 tan 15
° 1
tan30 = =
1−tan 15 √ 3
2 °
2 √ 3 tan 15 =1−tan 15
° 2 °
tan 15 + 2 √ 3 tan 15 −1=0
2 ° °
tan15 =2− √3
°
Example 11
sin 3 θ+sin θ
Prove cos 3 θ+cos θ
≡ tan 2θ
2 sin2 θ cos θ
2cos 2θ cos θ
sin 2θ
¿ =tan 2 θ ∎
cos 2 θ
Example 12
Solve for 0 ≤ θ ≤180, cos 5 θ−cos θ=sin 3 θ
−2 sin 3 θ sin2 θ=sin 3 θ
sin 3 θ+2 sin 3 θ sin 2θ=0
sin 3 θ ( 1+2 sin2 θ ) =0
sin 3 θ=0 1+2 sin 2θ=0
−1
α =0 sin 2 θ=
2
°
α =30
0 ≤ θ ≤180
0 ≤ 2θ ≤ 360
° ° ° °
3 θ=0 ,180 ,360 ,540
° ° ° °
θ=0 , 60 , 120 ,180
° °
2 θ=210 ,330
° °
θ=105 ,165
° ° ° ° ° °
θ=0 , 60 , 105 ,120 ,165 , 180
Past Paper Questions
2012
1)
a) The diagram shows a sector of a circle center O with an adjoining
square. The radius of the circle is 4m
π
If the sector AOC subtends an angle 3 at O, calculate giving your answer
in terms of π
e) The area of the shape OACMN
ii) The perimeter of the shape OACMN
b) Given that sin 3 = √2 and sin 4 =cos 4 = √2 , evaluate without
π 3 π 1 π π 2
, cos =
3 2
7π
using calculators, the exact value of cos 12
c) Prove the identity
1 1−sin θ
≡
sec θ+ tan θ cos θ
2013
2)
a)
The diagram shows a sector cut from a circle of center O. The angle at O
π 5
is 6 . If the perimeter of the sector is 6
( 12+ π ) cm, what is its area?
b) Solve the equation 2 cos2 θ+3 sin θ=0 for 0 ≤ θ ≤360°
1
c) Given that tan (θ−α )= 2 and that tanθ=3, use the appropriate
compound angle formula to find the value of the acute angle α
2014
3)
a) The figure below shows the sector OAB of a circle with center O,
radius 9 cm and angle 0.7 radians
i) Find the area of the sector OAB
ii) Hence, find the area of the shaded region, H
b) Given that sin 6 = 2 and cos 6 = √2 , show that
π 1 π 3
( π6 )= 12 ( √ 3 cos x−sin x ), where x is acute
cos x +
c) Prove the identity [ 1−cos θ ]
tan θ sinθ
≡ 1+
1
cos θ
2015
4)
a) The following diagram shows a circle of radius r =¿ 4 cm, with
π
center O and sector AOB which subtends an angle, θ= 6 radians at
the center
1 2
If the area of the triangle AOB= r sin θ ,
2 then calculate the area of the
shaded region
b) Solve the following equation, giving your answer correct to one
decimal place
8 sin θ=5−10 cos θ , where 0° ≤ θ ≤360 °
2
c) Prove the identity
sinθ +sin 2θ
≡ tanθ
1+ cos θ+cos 2θ
2016
5)
a) The diagram below shows two sectors AOB and DOC . OB and OC are
x cm and ( x +2 ) cm respectively and angle AOB=θ
2π
If θ= 9 radians, calculate the area of the shaded region in terms of x
b) Given that cos 30 °= √2 and sin 45 °= √2 , without the use of a calculator,
3 2
evaluate cos 105 °, in surd form, giving your answer in the simplest
terms
sin ( θ+α )
c) Prove that the identity cos θ cos α
≡ tan θ+ tan α
2017
6)
a) The figure below shows a plot of land ABCD. Section ABC is used
for building and the remainder for farming. The radius BC is 10m
and angle BCD is a right angle
50 π 2
i) If the building space is 3
m, calculate the angle ACB in radians
ii) Working in radians, calculate the area used for farming
b) Given that sin 3 = √2 and sin 4 =cos 4 = √2 , show without using
π 3 π 1 π π 2
, cos =
3 2
a calculator that
cos
[
π π
−
4 3
≡
]
√ 2+ √ 6
2π 2 √3
sin
3
c) Prove the identity
2
cos θ
1− ≡ sin θ
1+sin θ
2018
7)
a) A wire in the form of a circle with radius 4cm is reshaped in the
form of a sector of a circle with radius 10cm. Determine, in
radians, the angle of the sector, giving your answer in terms of π
b) Solve the equation sin2 θ+3 cos 2 θ=2 for 0 ≤ θ ≤ π . Give your answer(s) to
1 decimal place
c) Prove the identity
1 1 2 tan x
− ≡
1−sin x 1+sin x cos x
2019
8)
a) A compass is used to draw a sector of radius 6cm and area 11.32 c m2
i) Determine the angle of the sector in radians
ii) Calculate the perimeter of the sector
b) A right-angled triangle XYZ has an angle θ where sin θ= √5 . Without
5
evaluating θ, calculate the exact value (in surd form if applicable)
of
i) cos θ
ii) sin 2 θ
2 1
c) Show that tan θ+1 ≡ 2
cos θ
2021
24
9) Given that cos M = 25 and that angle M is acute, determine the value
for tan2 M
2022
10)
a) The diagram below, shows a chord AB which subtends an angle of
0.5 at the center O of a circle of radius 10cm. Given that the area of
c
1 2
triangle AOB= r sin θ ,
2 calculate the area of the shaded region
b)
i) Show that cos 2 θ ≡2 cos 2 θ−1
ii) Hence, solve the equation cos 2 θ+cos θ+1=0 for 0<θ <2 π
Past Paper Solutions
2012
1)
a)
i)
1
Area of the sector, OAC= 2 ( 4 )
2
( π3 )= 83π m 2
Area of the square, ONMC=4 ( 4 ) =16 m2
Hence, the area of the shape, OACMN = 16 + ( 8π 2
3
m)
ii) Perimeter¿ OA + AC +CM + MN + NO
¿4+ 4
( ( ))π
3
+ 4+ 4+ 4
(
¿ 16+
4π
3)m
( 712π )=cos ( π3 + π4 )
b) cos
¿ cos ( )cos ( )−sin ( )sin ( )
π π π π
3 4 3 4
¿
2 2 ( ) ( )
1 √ 2 √ 3 √2
−
2 2
¿
√2−√ 6
4
c)
1 sin θ
Recall: sec θ= cos θ and tanθ= cos θ
1
sec θ+ tan θ
=
1
1
+
( )
cos θ
sin θ cos θ
cos θ cos θ
¿ (
cos θ 1−sin θ
1+ sinθ 1−sin θ )
cos θ ( 1−sinθ )
¿
( 1+ sin θ ) (1−sin θ )
cos θ ( 1−sin θ )
¿ 2
1−sin θ
Recall: 1−sin2 θ=cos 2 θ
cos θ ( 1−sin θ )
¿ 2
cos θ
1−sin θ
¿ ∎
cos θ
2013
2)
a) We name the sector AOB and let the radius be r cm
Perimeter of the sector ¿ Length of radius OA +¿ Length of arc AB+ ¿
Length of radius BO
¿r+ r
( 6)
( π
) πr
+ r=2 r + cm
6
Hence,
πr 5
2r+ = (12+ π )
6 6
r 2+( π6 )= 56 ( 12+ π )
5
(12+ π )
6
r=
2+( )
π
6
60+5 π
¿
12+ π
5 ( 12+ π )
¿ =5 cm
12+ π
Area of the sector ¿ 2 r
1 2
( π6 )
1
¿ ( 5 )2
2
π
6 ()
=
25 π
12
c m2
b) Recall: cos 2 θ=1−sin 2 θ
Therefore, 2 ( 1−sin 2 θ ) + 3sin θ=0
2
2 sin θ−3 sin θ−2=0
( 2 sin θ+1 ) ( sin θ−2 ) =0
−1
sin θ=2∨
2
Maximum value of sin θ=1∴ sin θ=2 has no real solutions
−1
When sin θ= 2
° ° ° ° ° °
θ=180 +30 =210 θ=360 −30 =330
c)
tan θ−tan α
tan (θ−α )=
1+tan θ tan α
Hence,
3−tan α 1
=
1+ 3 tan α 2
6−2 tan α =1+3 tan α
tan α =1
c
−1 ° π
α =tan ( 1 )=45 ∨
4
2014
3)
a)
1 2
i) Area of sector OAB= 2 ( 9 ) ( 0.7 )=28.35 c m2
ii) Angle AOC=90
°
AC
=tan ( 0.7 )
c
9
AC=7.580 cm
1 2
Area of the triangle OAB= 2 ( 9 ×7.580 ) =34.11c m
∴ Area of the shaded region, H=¿ Area of triangle OAC−¿ Area of sector
OAB
2
¿ ( 34.11−28.35 )=5.76 c m
b) By the compound angle formulae
( π6 )=cos x cos( π6 )−sin x sin ( π6 )
cos x +
¿ cos x ( √ )−sin x ( )
3 1
2 2
1
¿ ( √ 3 cos x−sin x ) ∎
2
c)
sinθ
( sin θ )
tan θ sin θ cos θ
=
1−cos θ 1−cos θ
2
sin θ
¿
cos θ ( 1−cos θ )
Recall: sin2 θ=1−cos 2 θ ⇒ ( 1−cos θ ) ( 1+cos θ )
Hence,
tan θ sin θ ( 1+ cos θ ) ( 1−cos θ )
=
1−cos θ cos θ (1−cos θ )
1+ cos θ 1 cos θ
¿ = +
cos θ cos θ cos θ
1
¿ +1∎
cos θ
2015
4)
a) Area of the shaded segment ¿ Area of sector AOB−¿ Area of triangle
AOB
( )
π
6
¿ ( π r 2) − 1 r 2 sinθ
2π 2
¿( 121 π ( 4 ) )− 12 ( 4 ) sin ( π6 )
2 2
¿( −4 ) c m
4π 2
3
b) 8 sin2 θ=5−10 cos θ 2 2
∴ sin θ=1−cos θ
8 ( 1−cos2 θ )=5−10 cos θ
2
−8 cos θ+10 cos θ+3=0
2
8 cos θ−10 cos θ−3=0
( 4 cos θ+1 ) ( 2 cos θ−3 )=0
−1 3
cos θ= ∨
4 2
3
−1 ≤cos θ ≤1 ∀ θ, hence cos θ= 2 has no real solutions
°
A=75.52
θ=180−75.52 , 180+75.52
° ° ° °
θ=104.48 , 255.52 ≈ 104.5 , 255.5
c) Recall: sin 2 θ=2 sin θ cos θ
2 2 2 2
cos 2 θ=cos θ−sin θ ,2 cos θ−1 ,1−2sin θ
sin θ+2 sin θ cos θ sinθ ( 1+2 cos θ )
=
1+ cos θ+2 cos θ−1 cos θ ( 1+ 2cos θ )
2
sin θ
¿ =tan θ∎
cos θ
2016
5)
a)
( )
2
1 2 2π πx 2
The area of the sector AOB= ( x )
2 9
=
9
cm
( )
2
1 2π π ( x+ 2 )
The area of the sector DOC= ( x +2 )2
2 9
=
9
c m2
Hence, the area of the shaded region
[( ) ]
2
π ( x +2 ) πx
2
π 2
¿ − = (4 x + 4) c m
9 9 9
b) cos 60 °=cos [ 2 ( 30° ) ]
2 °
¿ 2 cos 30 −1
[( ) ]
2
¿ 2
√ 3 −1 = 1
2 2
cos 105 °=cos ( 60° + 45° )
° ° ° °
¿ cos 60 cos 45 −sin 60 sin 45
¿
1 √2
2 2 ( ) ( )( √22 )
−
√3
2
¿√
2−√ 3 √ 2
4
¿ [ √ 2 ( 1−√3 ) = √ 2 ( 1−√3 )
4 2 √2 √ 2 ][ ]
1−√ 3
¿
2√ 2
We rationalize the surd to obtain
[ 1−√ 3 √ 2 √ 2− √ 6
×
2 √ 2 √2
=
4 ]
c)
sin ( θ+α ) sin θ cos α + cos θ sin α
=
cos θ cos α cos θ cos α
sin θ cos α cos θ sin α
¿ +
cos θ cos α cos θ cos α
sin θ sin α
¿ +
cos θ cos α
¿ tanθ tan α ∎
2017
6)
a)
50 π
i) Area of ACB=
3
1 2
Area of a sector ¿ 2 r θ
1 50 π
Hence, ( 10 )2 θ=
2 3
50 π
50 θ=
3
c
π
θ=
3
ii) Region ACD is used for farming
ACD=
[ π π π
− =
2 3 6]
DC
10
=cos
π
6 ()
DC= [ √]
10 3
2
=5 √ 3
Area of triangle
1
ACD= (10 ) ( 5 √ 3 ) sin
2 ()
π
6
1
()
¿ ( 10 ) ( 5 √ 3 )
2
1
2
25 √ 3 2
¿ m
2
b) Using the compound angle formulae
cos( π4 − π3 )=cos( π4 ) cos ( π3 )+ sin ( π4 ) cos( π3 )
¿ √ ( )+ √ ( √ )
2 1 2 3
2 2 2 2
¿ √ +√ √
2 2 3
4 4
sin ( 23π )=sin ( π− π3 )
¿ sin π cos ( π3 )−cos π sin ( π3 )
2 ( ( ))
¿ ( 0 ) − −1 √
1
2
3
¿
√3
2
cos ( π4 − π3 ) = ( √ 2+√4 2√ 3)
sin ( )
2π √3
3 2
¿√
2+ √ 6
4 ( √23 )
¿√
2+ √ 6
∎
2 √3
c) Recall: cos 2 θ=1−sin 2 θ
This is a difference of two squares, cos 2 θ=( 1−sin θ )( 1+sin θ )
So,
1−
cos 2 θ
1+sin θ
=1− (
( 1−sin θ ) ( 1+sin θ )
1+sin θ )
¿ 1−( 1−sin θ )
¿ sin θ ∎
2018
7)
a) Circle of radius 4 cm→ Sector of radius 10 cm
The circumference of the circle will be equal to the perimeter of the
sector
Circumference of circle ¿ 2 πr
¿ 2 π ( 4 ) =8 π cm
The perimeter of the sector r +r + rθ ¿ is in radians)
8 π=10+10+ 10θ
8 π=20+ 10θ
8 π−20
θ=
10
2 ( 4 π −10 )
θ=
10
( )
c
4 π −10
θ=
5
b) Recall: cos 2 θ=1−2 sin2 θ
sin2 θ+3 ( 1−2sin 2 θ ) =2
2
−5 sin θ=−1
2
5 sin θ=1
sin θ=±
√ 1
5
sin θ=
√ 1
5
sin θ=−
√ 1
5
θ=0.46 θ=−0.46 [No solutions for the required range]
θ=π −0.46
¿ 2.67
θ=0.46 , 2.67
θ=0.5 ,2.7
c c
for 0 ≤ θ ≤ π
c)
( 1+ sin x ) −( 1−sin x ) 2 sin x
=
(1−sin x )( 1+sin x ) (1−sin x )( 1+sin x )
2 sin x
¿ 2
1−sin x
Recall: cos 2 x=1−sin2 x , so
2sin x
¿ 2
cos x
sin x
Recall: tan x= cos x , hence
¿
2sin x 1
cos x cos x( )
2 tan x
¿ ∎
cos x
2019
8)
a)
1 2
i) A= θ r
2
1 2
11.32= θ r
2
22.64=θ ( 36 )
c
θ=0.63
ii) Perimeter of the sector ¿ r +r + rθ
Perimeter ¿ 12+6 ( 0.63 )
¿ 15.78 cm
b)
i)
2
( √ 5 ) + x 2=25
2
x + 5=25
2
x =20
x=2 √ 5
2 √5
cos θ=
5
ii) sin 2 θ=2 sin θ cos θ
¿2( √55 )( 2 √55 )
¿4( )
5
25
4
sin 2 θ=
5
c)
2
tan θ+1
2
sin θ
¿ 2
+1
cos θ
2 2
sin θ+ cos θ
¿ 2
cos θ
1
¿ 2
∎
cos θ
2021
9)
Using Pythagoras’ theorem:
opp=√ ( 25 ) −( 24 )
2 2
¿ √ 49=7
7
tan M =
24
2 tan M
tan2 M = 2
1−tan M
¿
(2
24 )
7
1−( )
2
7
24
336
¿
527
2022
10)
1 2
a) Area of sector ¿ 2 r θ
1 2
¿ ( 10 ) ( 0.5 )
2
2
¿ 25 c m
1 2
Area of triangle ¿ 2 r sinθ
1 2
¿ ( 10 ) sin ( 0.5 )
2
2
¿ 23.97 c m
∴ Area of shaded region ¿ Area of sector −¿Area of triangle
¿ 25−23.97
2
¿ 1.03 c m
b)
i) cos ( A+ A )=cos A cos A−sin A sin A
2 2
cos (2 θ ) =cos θ−sin θ
Recall: sin2 θ=1−cos 2 θ
cos 2 θ=cos2 θ−( 1−cos 2 θ )
2 2
¿ cos θ−1+cos θ
2
¿ 2 cos θ−1
ii) cos 2 θ+cos θ+1=0
2
2 cos θ−1+ cosθ+1=0
2
2 cos θ+cos θ=0
cos θ ( 2 cos θ+ 1 )=0
cos θ=0 2 cos θ+1=0
π 3π −1
θ= , cos θ=
2 2 2
π
θ=
3
θ= π −( π
3)( )
, π+
π
3
2π 4π
θ= ,
3 3