Solutions #07
Solutions #07
A. 3 4 3 3 4 3 4 2 1 3 2 2 3 3 4 3 3 4 3 4 3 4 2 4 2 2 3 3 4 3
Q. 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
A. 3 2 2 3 2 2 3 4 4 3 3 2 1 3 1 1 3 4 3 4 2 1 3 1 3 2 3 4 2 3
Q. 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
A. 2 4 4 2 2 2 3 3 4 4 3 1 3 4 3 3 4 1 4 2 3 1 1 1 1 2 1 1 2 2
Q. 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
A. 4 3 1 1 2 4 4 3 1 1 2 4 3 3 3 3 4 2 3 3 3 4 2 3 3 3 4 4 4 3
Q. 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
A. 2 3 1 1 2 3 3 3 1 2 4 1 4 3 2 3 2 1 4 3
HINT – SHEET
t1 = 2 = 0.4 hr λd = λ∝ given
5
Opposite to direction of stream h h
=
t2 = 2 hr = 2hr √ 2 m e × 100 √ 2 × 4m × 2e × v2
1 ∴ v2 = 25 volt
Total time = 2.4 hr
2. Ans ( 2 ) 5. Ans ( 2 )
For a damped oscillation, graph given in option
T = m(g – a) (2) is correct.
slope of v-t curve gives acceleration
First 2 sec a1 = 2m/s2, T1= m(g – a1) 6. Ans ( 2 )
= 100(10 – 2) = 800 Q = AV = A√2gh ; 70 = 1√2 × 980 × h
Two to six second a2 = 0, T2 = mg = 1000 h = 2.5 cm
Six to seven second a3 = – 4m/s2, T3 = m(g – a3) 7. Ans ( 2 )
= 100(10 + 4) 4T
= 1400 Pex =
R
0999DMD363103230021 HS-1/8
Join - @Allen_Achiever_Tests TARGET : PRE-MEDICAL 2024/17-03-2024
9. Ans ( 3 ) 15. Ans ( 1 )
λ 1 ΔV 0.12
r= ⇒r= = γΔT ⇒ = (3α) × 20
√ μ2 − 1 4
2 V 100
√
−1 0.12
= 2 × 10−5 ∘ C −1
( )
3 ⇒α =
3 3 6 100 × 60
r= ⇒r= ⇒ d=2×r= m
√ 16 − 9 √ 7 √ 7
16. Ans ( 4 )
10. Ans ( 2 ) Given ; Δ T = 5°C = 5K and ΔP × 100 = 0.5
P
1 1 Also closed container ⇒ V = constant
P =( + ) × 100 D if f & f are in cm
1 2
f1 f2 ΔP
1 3 1 1
∴ = ΔT
= ( − 1) (0 − ) =
P T
100
f1 2 −10 20 ⇒ T = P × ΔT = × 5 = 1000 K
1 1 1 ΔP 0.5
= (2 − 1) (− − 0) = −
f2 10 10 17. Ans ( 1 )
1 1 Isothermal process : PV = constant
D=( − ) × 100 = −5D
20 10 P → 2P,
11. Ans ( 3 ) V → V1 ⇒ V1 = V (T = constant)
2
W = ΔK Adiabatic process : PV γ = constant
1 K2 2P → P2
W= MV 2 (1 + ) γ 1.4
2 R2 V V1 V /2
1 1 1 3
→ V ⇒ P2 = ( ) ⋅ P1 = ( ) ⋅ 2P
2 V2 V
= × 100 × 1 (1 + ) = × 100 × = 75 J
2 2 2 2 ⇒ P2 = 2 × 2 – 1.4P = 2 × 0.38 P
12. Ans ( 1 ) ⇒ P2 = 0.76 P
τm1 g = τm2 g Therefore, P2 = 0.76P = 0.76
P0 P 1
6 × 16 g = 8 × mg ; m = 6 × 2 m = 12 kg
18. Ans ( 1 )
13. Ans ( 3 ) 10λD λD
( ) = [(2 × 6 − 1) ]
Cut in voltage of diode VC = 0.4 V d medium 2d air
V − VC 10λair 11
I= = λair
R μ 2
(Forward resistance is very small in comparison to R) 20
μ= = 1.8
10 − 0.4 11
I=
12000 19. Ans ( 1 )
I = 0.8 mA π
As the current i leads the voltage by it is an RC
4
14. Ans ( 2 ) XC π 1
circuit, hence tan ϕ = ⇒ tan =
R 4 ωCR
⇒ ω CR=1 as ω = 100 rad/sec
1
⇒ CR = sec – 1.
¯¯¯¯¯¯¯¯¯¯ ¯¯¯ ¯¯¯ 100
¯¯¯ ¯¯¯
A. B = A + B = (A + B) (A + B) From all the given options only option (1) is correct.
¯ + AB
= AA ¯ + BA
¯ + BB
¯ = AB
¯ + BA
¯ = EX – OR
20. Ans ( 2 )
OR
¯¯¯¯¯¯¯¯¯¯¯¯¯¯
A B → G1 → A + B
¯¯¯¯¯¯¯¯¯¯
A B → G2 → A. B
¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯
G1 G2 → G3 A + B + A. B 2Q
¯¯¯ ¯¯¯ ¯¯¯¯¯¯¯¯¯¯ ¯¯¯ ¯¯¯ V =
A. B + A. B ; AB + A B C
HS-2/8 0999DMD363103230021
Join - @Allen_Achiever_Tests MAJOR LEADER & ACHIEVER TEST SERIES / JOINT PACKAGE COURSE / 17-03-2024
21. Ans ( 1 ) 25. Ans ( 3 )
ω 1 = α t α = 2 θ = 100 rad t'→(t + 5) 2Kλ E(r)
ω 1 = 2t ω 2 = 2t' = 2(t+5) E = ⇒ λ =
r 2k
ω1 + ω2 ′ 18 × 105 × 4 × 10−2
θ= . (t − t) = c/m
2 2 × 9 × 10 9
2t + 2(t + 5)
100 = ×5 = 4 × 10 – 6 c/m
2
t = 7.5 sec = 4 μ c/m
22. Ans ( 3 ) 26. Ans ( 1 )
Electric field from the distance R from the centre
kQ kQ
is = = 20V/m,
r2 4R2
V2 kQ
Here R = ⇒ = 80
P R2
Total power supplied Electric field from the distance R/2 from the
V2 2 V2 kQ
= =( )( )
centre is = x
3
( )R
3 R R3
2
kQ R kQ 80
2
= × 60 = 40W
= × = = = 40V/m
R3 2 2R2 2
3
23. Ans ( 1 ) 27. Ans ( 2 )
d g
ϕ −ϕ g (1 − ) = , d = R/2
e = −( f i ) R h
2
t ( 1+ R
)
e = − ( 4A0 B0 − A0 B0 )
1+
h √
= 2 , h = R ( √2 − 1 )
t R
e = − 3A0 B0 h ≅R(1.4 – 1) = 0.4R
t
|e| = 3A0 B0 28. Ans ( 3 )
t W = Uf – Vi
24. Ans ( 3 ) GMm GMm
=− − (− )
Re + 3Re Re
3 GMm 3
= = (gR) m
4 Re 4
29. Ans ( 2 )
R 80
=
Required is 55 20
Fq0 = 0 R = 220 Ω
F1 = F2 30. Ans ( 1 )
K(1 × 10 ) (q0 )−9 −9
K(9 × 10 ) (q0 ) 1 1
= Shift = t ( 1− ) ⇒ =3 ( 1− )
μ 1.5
r21 r22
= 1 cm upwards
r21 1
=
2
r2 9 31. Ans ( 4 )
r1 1 V12 V22
= × t1 = Heat = × t2
r3 3 R R
r → r1 : r3 → 1 : 3 V12 t
2
V12 t1 = V22 t2 ; = 2 ; [ 220 ] = t2
r1 = 1 r r2 = 3 r V22 t1 110 5
4 4 t2
r1 = 0.25 r r2 = 0.75 r 4= ; t2 = 20 minutes
5
0999DMD363103230021 HS-3/8
Join - @Allen_Achiever_Tests TARGET : PRE-MEDICAL 2024/17-03-2024
32. Ans ( 2 ) 37. Ans ( 3 )
e = NB 2 π r dr
dt
N = 1 B = 0.025 r = 2 cm = 2 × 10 – 2 m
dr dr
= 1mm/s ⇒ = 10−3 m/ sec
dt dt –2 –3
e = (1) (0.025) (2 π ) (2×10 ) (10 )
e = 4 π × 25 × 10 – 3 – 2 – 3 B.2πr = μ0 (
I
πr2 ⇒ B =
μ0 Ir
= 100 π × 10 – 8 = π × 10 – 6 volts = e = π μ v
)
πR2 2πR2
2R μ I
34. Ans ( 2 ) (∵ r = ); B= 0
3 3πR
38. Ans ( 1 )
da 3 3
= − tan 37∘ = − ⇒ a=− x
dx 4 4
3 2π √3 4π
2
so, ω = ⇒ = ⇒T= s
4 T 2 √3
39. Ans ( 3 )
Block will rest against vertical wall d(y1 ) π
V1 = = (0.1 × 100 π ) cos ( 100πt + )
Mg ≤ F ℓ dt 3
Mg ≤ μ N {F ℓ = μ sN} d(y2 )
V2 = = (0.1 × 100 π ) [ – sin (100 π t)]
Mg ≤ μ F dt
π
F ≥ mg ; Fmin = mg = 1 × 9.8 = 49N OR V2 = (0.1 × 100 π ) [ cos(100πt +
2
)]
μ μ 0.2
35. Ans ( 4 ) Phase difference of V1 with respect to V2
For hydrogen-like atom, the radius of nth orbit is π π π
n2 is Δ ϕ = − =−
rn = r0 3 2 6
Z
Where r0 = 0.51 × 10 – 10 metre 40. Ans ( 1 )
0.51 × 10−10
Here, rn = metre Work = Energy stored
4
In the ground state, n = 1 1
0.51 × 10−10 12 = × (Force) × ( Δ l)
∴ = × 0.51 × 10−10 2
4 Z
∴ Z=4 F L1 F L2
So, the atom is triply ionised beryllium. Δl1 = = 0.8mm & Δl2 = = 0.2mm
Ycu A Ysteel A
45. Ans ( 2 )
u = √μS rg ⇒ v = √75 × 60 × 9.8 = 21 m/s
46. Ans ( 2 ) R1 = 2R0, R2 = R0
m (8gR) R2 2i
TL = + mg = 9 mg i1 = × i = i , i2 = i – i1 =
R R1 + R2 3 3
TH 1
TH = TL – 6 mg = 3 mg ;
TL
=
3
B 1 = μ0 i1 =μ0 i
,⊗
4R 12R
47. Ans ( 2 ) μ0 i2 μ0 i
B2 = = ,⊙
4R 6R
Let mass of neutron = m, then mass of deutron = 2m μ i
B0 = B2 – B1 = 0 , ⊙
12R
SUBJECT : CHEMISTRY
By momentum conservation
SECTION-A
mu = mv1 + 2mV2 ⇒ u = v1 + 2v2 ..... (1)
52. Ans ( 1 )
v2 − v1 NCERT-XI, Pg # 112, Part-I
e= =1 (Elastic collision) u = v2 – v1 ..... (2)
u
u 63. Ans ( 3 )
by equation (1) & (2) v1 = −
3 NCERT-XI, Pg # 50,51, Part-I
KEi − KEf
Fractional loss of KE of neutron = 64. Ans ( 3 )
KEi
1 2 1 u
2 NCERT-XI, Pg # 48,57,52,44, Part-1
mu − m( )
2 2 3 1 8 65. Ans ( 4 )
= =1− =
1 2 9 9 NCERT-XI, Pg # 204, Part-1
mu
2
0999DMD363103230021 HS-5/8
Join - @Allen_Achiever_Tests TARGET : PRE-MEDICAL 2024/17-03-2024
68. Ans ( 2 ) 82. Ans ( 4 )
H2 → 2H+ + 2e – NCERT 12th Page No. # 355, 335
2
[H + ]
83. Ans ( 2 )
Ecell = 0 − 0.0591 log NCERT 12th Page No. # 356
2 PH 2
0.0591 0.0591 84. Ans ( 4 )
=0− log 10−8 = 8 × = 0.236V
2 2 NCERT 12th Page No. # 374, 375
69. Ans ( 1 )
85. Ans ( 2 )
1 [R]1
K= ln NCERT 11th Page No. # 393, 394, 394, (13.17)
t2 − t1 [R]2
1 0.06
K= ln = 1.83 × 10−3 sec−1 SECTION-B
(20 − 10) × 60 0.02
70. Ans ( 3 ) 86. Ans ( 2 )
NCERT-XI, Pg # 105, Part-I
HS-8/8 0999DMD363103230021