Ee 426
Ee 426
DC Machine Modelling
dia Tm = Kψf ia
va = Eb + ia R a + La
dt ψf = Lf if
dif dω
vf = if R f + Lf Tm − Tl = J + Bω
dt dt
Eb = Kψf ω
Field Model
Armature Model
La
Electrical Time Constant (τa ) =
Ra
J
Mechanical Time Constant (τm ) =
B
• For any large positive speed error, the current limiter saturates and
the current reference Ia∗ is limited to a value Iam
∗
, and the drive
current is not allowed to exceed the maximum permissible value.
• The speed error is corrected at the maximum permissible armature
current until the speed error becomes small and the current limiter
comes out of saturation.
• Now the speed error is corrected with Ia less than the permissible
value.
• A negative speed error will set the current reference Ia∗ at a negative
value.
• Since the motor current cannot reverse, a negative Ia∗ is of no use.
• It will however “charge” the PI controller.
• When the speed error becomes positive, the “charged” PI controller
will take a longer time to respond, causing unnecessary delay in the
control action.
• The current limiter is therefore arranged to set a zero – current
reference for negative speed errors.
Ki K p K p (1 + sτi ) Kp
TF of PI Controller = K p + = Kp + = , τi =
s sτi sτi Ki
Ia (s) 1 1
= =
Ia∗ (s) 1 + s τi R a 1 + sτcurrent
Kp
La Kp
⇒ Kp = , Ki =
τcurrent τa
Ki K p K p (1 + sτi ) Kp
TF of PI Controller = K p + = K p + = , τi =
s sτi sτi Ki
• Therefore, the only option available for the reversal of the flow of
power is to reverse both the rectifier output voltage Va and the
motor back emf E with respect to the rectifier terminals and make
|E| > |Va |.
• The reversal of the motor emf with respect to the rectifier terminals
can be done by any of the following changes:
o An active load coupled to the motor shaft may drive it in the
reverse direction. This gives reverse regeneration.
o The field current may be reversed, with the motor running in
the forward direction. This gives forward regeneration.
o The motor armature connections may be reversed with repsect
to the rectifier output terminals, with the motor still running in
the forward direction. This gives forward regeneration.
CCM:
1 π+α
Va = ∫ Vm sin(ωt) d(ωt)
π α
2Vm
= cos(α)
π
DCM:
β
1
Va = (∫ Vm sin(ωt) d(ωt)
π α
π+α
+∫ E d(ωt))
β
Vm (cos(α) − cos(β)) + E(π + α − β)
=
π
Powering Interval (α to β)
dia
va = vs = Vm sin(ωt) = E + ia R a + La
dt
Vm E t La
−τ
⇒ ia = sin(ωt − θ) − + Ae a , θ = tan−1 (ωτa ) , τa =
Z Ra Ra
Vm E E Vm
⇒ ia = sin(ωt − θ) − +( − sin(α − θ)) e−(ωt−α)cot (θ)
Z Ra Ra Z
Vm π
, 0≤α≤
⇒ ωm0 ={ K 2
Vm sin(α) π
, ≤α≤π
K 2
DCM:
π
1
Va = (∫ Vm sin(ωt) d(ωt)
π α
π+α
+∫ E d(ωt))
β
Vm (1 + cos(α)) + E(π + α − β)
=
π
Powering Interval (α to π)
dia
va = vs = Vm sin(ωt) = E + ia R a + La
dt
Vm E E Vm
⇒ ia = sin(ωt − θ) − +( − sin(α − θ)) e−(ωt−α)cot (θ)
Z Ra Ra Z
⇒ ia (ωt = π) = iaπ
Freewheeling Interval (π to β)
dia
va = 0 = E + ia R a + La
dt
E
⇒ ia = − + Ae−ωtcot(θ)
Ra
E E
⇒ ia = − + (iaπ + ) e−(ωt−π) cot(θ)
Ra Ra
1 α+2π/3 3Vm
Va = π ∫ Vm sin(ωt) d(ωt) = cos (α)
π
3 α+π/3
Multiquadrant Operation of Separately Excited DC Motor
1) Mechanical Switches
• One setting of switch RS gives operation in the 1st and 4th quadrants.
• The reversal of the armature connection then provides operation in
the 2nd and 3rd quadrants.
Speed Reversal
• The armature current ia is forced to zero quickly by setting the firing
angle at the highest permissible value.
• When the current value is zero, firing pulses are stopped.
2) Dual Conveter
Non – Circulating Current Type
• Only one rectifier operates at any given time and the other is
blocked.
Speed Reversal
• The armature current ia is forced to zero by setting the firing angle of
rectifier 1 at the highest value.
• After zero current is sensed, a dead time of 2 to 10 ms is provided to
ensure the turn – off of all the thyristors of rectifier 1.
• Now the firing pulses are withdrawn from rectifier 1 and released to
rectifier 2.
• α2 is set to make the armature terminal voltage under continuous
conduction equal to the back emf.
• It is then reduced to make the maximum allowable current to flow.
• The motor torque builds up fast and the speed reversal is achieved at
the maximum torque under the influence of current control.
⇒ Va1 + Va2 = 0
⇒ Vm cos(α1 ) + Vm cos(α2 ) = 0
⇒ cos(α1 ) = − cos(α2 )
⇒ α1 + α2 = 180°
Speed Reversal
• When operating in 1st quadrant, rectifier 1 will be rectifying
(0° < α1 < 90°) and rectifier 2 will be inverting (90° < α2 < 180°).
• α1 is increased and α2 is decreased.
• The motor back emf exceeds |Va1 | and |Va2 |.
• The armature current shifts to rectifier 2 and the motor operates in
the 2nd quadrant.
• As α2 is decreased gradually, the motor decelerates under
regenerative braking.
Ton
Va = δV, δ=
T
Duty Interval (0 ≤ t ≤ δT)
• Out of the total energy supplied, a part is absorbed by the armature
and converted into mechanical energy, a part is converted into heat
in resistance R a and the switch, and the remaining energy is stored in
the inductance La .
dia
V = E + ia R a + La
dt
dia
0 = E + ia R a + La
dt
Regenerative Braking
Toff
Va = δV, δ=
T
Energy Storage Interval (0 ≤ t ≤ (1 − δ)T)
• The motor terminal voltage remains zero and due to the back emf E
the armature current increases from ia1 to ia2 .
• The mechanical energy supplied by the load and the inertia of the
motor load system (only if the speed is changing) is converted by the
machine into the electrical energy.
• This energy is partly used in increasing the stored magnetic energy in
La , and the remainder is dissipated in R a and the switch.
dia
0 = E − ia R a − La
dt
dia
V = E − ia R a − La
dt
1 δT
⇒ Regenerated Power (Prg ) = ∫ Via dt
T 0
Motoring and Regenerative Braking (2 Quadrant Chopper)
Ton
Va = δV, δ=
T
Motoring and Reverse Regenerative Braking (2 Quadrant Chopper)
Ton
Va = 2V(δ − 0.5), δ =
2T
4 Quadrant Chopper
• If S2 is kept closed continuously and S1 and S4 are controlled, a 2
quadrant chopper is obtained, which can supply a variable positive
terminal voltage and the armature current in either direction.
Notations
rs = Stator per phase resistance
Ls = Stator per phase self inductance
Lls = Stator per phase leakage inductance
Lms = Stator per phase magnetizing indutance
Ms = Mutual inductance b/w stator windings
Msr = Magnitude of mutual inductance b/w stator & rotor windings
Stator Flux Equations
2π
ψas = Ls ias + Ms ibs + Ms ics + Msr cos(θr ) iar + Msr cos (θr + )i
3 br
2π
+ Msr cos (θr − )i
3 cr
2π
ψbs = Ls ibs + Ms ics + Ms ias + Msr cos(θr ) ibr + Msr cos (θr + )i
3 cr
2π
+ Msr cos (θr − )i
3 ar
2π
ψcs = Ls ics + Ms ias + Ms ibs + Msr cos(θr ) icr + Msr cos (θr + )i
3 ar
2π
+ Msr cos (θr − )i
3 br
abc
Vabc = [vas vbs vcs var vbr vcr ]T
abc ibs ics iar ibr icr ]T
Iabc = [ias
rs 0 0 0 0 0
0 rs 0 0 0 0
0 0 rs 0 0 0 L11 M12
R= Labc
abc = [ T ]
0 0 0 rr 0 0 M12 L22
0 0 0 0 rr 0
[0 0 0 0 0 rr ]
Ls Ms Ms Lr Mr Mr
L11 = [Ms Ls Ms ] L22 = [Mr Lr Mr ]
Ms Ms Ls Mr Mr Lr
2π 2π
cos(θr ) cos (θr + ) cos (θr − )
3 3
2π 2π
M12 = Msr cos (θr − ) cos(θr ) cos (θr + )
3 3
2π 2π
[ cos (θ r + ) cos (θr − ) cos(θr ) ]
3 3
Torque Equation
dωm
Tm − Tl = J
dt
1 abc T dL abc
Tm = Iabc I
2 dθr abc
2θe
θr =
P
3 – Phase to 2 – Phase Conversion
2π 2π
MMFabc = Ns (ia cos(ϕ) + ib cos ( − ϕ) + ic cos ( + ϕ))
3 3
ib ic √3
⇒ MMFabc = Ns ((ia − − ) cos(ϕ) + (i − ic ) sin(ϕ))
2 2 2 b
π
MMFαβ = Nαβ (iα cos(ϕ) + iβ cos ( − ϕ))
2
⇒ MMFαβ = Nαβ (iα cos(ϕ) + iβ sin(ϕ))
1 1
iα 1 − −
Ns 2 2 ia Ns
⇒ [iβ ] = √3 √3 [ib ] ⇒ Iαβ0 =( ) MIabc
Nαβ 0 − Nαβ
i0 2 2 ic
[k k k ]
1
1 0
2k
2 1 √3 1
⇒ M −1 = −
3 2 2 2k
1 √3 1
[− 2 −
2 2k]
1 1
1 − −
2 2
1 √3 √3
⇒k= ⇒ M= 0 −
√2 2 2
1 1 1
[√2 √2 √2 ]
T
Pαβ0 = vα iα + vβ iβ + v0 i0 = Iαβ0 Vαβ0
Comparing Pabc with Pαβ0 , we obtain
T T T Ns T
Iabc Vabc = Iαβ0 Vαβ0 ⇒ Iabc Vabc = ( ) Iabc MT Vαβ0
Nαβ
Ns
⇒ Vabc = ( ) MT Vαβ0
Nαβ
We know that
Nαβ
Iabc = ( ) M −1 Iαβ0
Ns
Ns 2
⇒ =√
Nαβ 3
2 2
⇒ Iαβ0 = √ MIabc and Iabc = √ MT Iαβ0
3 3
vα iα + vβ iβ + v0 i0 1 T
pαβ0 = = Iαβ0 Vαβ0
2 2
Notations
• Subscript is used to represent stator variables.
• Superscript is used to represent rotor variables.
vβ = rs iβ + Pψβ
dθr β
⇒ vβ = rs iβ + L̅s Piβ + ̅̅̅̅̅
Msr cos(θr ) Piβ − ̅̅̅̅̅
Msr sin(θr ) i
dt
dθr α
+ ̅̅̅̅̅
Msr sin(θr ) Piα + ̅̅̅̅̅
Msr cos(θr ) i
dt
v0 = rs i0 + Pψ0
⇒ v0 = rs i0 + Lls Pi0
v β = rr iβ + Pψβ
dθr
⇒ v β = rr iβ + L̅r Piβ + ̅̅̅̅̅
Msr cos(θr ) Piβ − ̅̅̅̅̅
Msr sin(θr ) i
dt β
dθr
− ̅̅̅̅̅
Msr sin(θr ) Piα − ̅̅̅̅̅
Msr cos(θr ) i
dt α
v 0 = rr i0 + Pψ0
⇒ v 0 = rr i0 + Llr Pi0
αβ0 T
Vαβ0 = [vα vβ v0 vα vβ v0]
αβ0 T
Iαβ0 = [iα iβ i0 iα iβ i0 ]
rs 0 0 0 0 0
0 rs 0 0 0 0
0 0 rs 0 0 0
R=
0 0 0 rr 0 0
0 0 0 0 rr 0
[0 0 0 0 0 rr ]
L̅s 0 0 ̅̅̅̅̅
Msr cos(θr ) −M̅̅̅̅̅
sr sin(θr ) 0
0 L̅s 0 ̅̅̅̅̅
Msr sin(θr ) ̅̅̅̅̅
Msr cos(θr ) 0
αβ0 0 0 Lls 0 0 0
Lαβ0 =
̅̅̅̅̅
Msr cos(θr ) ̅̅̅̅̅
Msr sin(θr ) 0 L̅r 0 0
−M ̅̅̅̅̅ ̅̅̅̅̅
sr sin(θr ) Msr cos(θr ) 0 0 L̅r 0
[ 0 0 0 0 0 Llr ]
0 0 0 −M̅̅̅̅̅ ̅̅̅̅̅
sr sin(θr ) −Msr cos(θr ) 0
0 0 0 ̅̅̅̅̅
Msr cos(θr ) −M ̅̅̅̅̅
sr sin(θr ) 0
αβ0
Gαβ0 = 0 0 0 0 0 0
̅̅̅̅̅
−M sr sin(θr )
̅̅̅̅̅
Msr cos(θr ) 0 0 0 0
̅̅̅̅̅
−M ̅̅̅̅̅
sr cos(θr ) −Msr sin(θr ) 0 0 0 0
[ 0 0 0 0 0 0]