Compound Angle
Compound Angle
NURTURE COURSE
ADDITIONAL EXERCISE
ON
COMPOUND ANGLE
[STRAIGHT OBJECTIVE TYPE]
1. In an equilateral triangle, 3 coins of radii 1 unit each are kept so that they touch A
each other and also the sides of the triangle. Area of the triangle is -
21 27 a-b
If sin a + sin b = – and cos a + cos b = - , then the value of cos is- [AIEEE-2004]
65 65 2
3 3 6 -6
(A) - (B) (C) (D)
130 130 65 65
8. Let A 0 A1 A2 A 3 A 4 A 5 be a regular hexagon inscribed in a circle of unit radius Then the product of the
lengths of the line segments A 0 A1 , A 0 A 2 & A 0 A 4 is - [ JE E 19 98 ]
3 3 3
(A) (B) 3 3 (C) 3 (D)
4 2
E
2 Additional Exercise on Compound Angle ALLEN
1 1
9. If q and f are acute angles satisfying sin q = , cos f = , then q + f Î [JEE 2004 Screening]
2 3
æ p pù æ p 2p ö æ 2 p 5p ö æ 5p ö
(A) ç , ú (B) ç , ÷ (C) ç , ÷ (D) ç , p ÷
è 3 2û è2 3 ø è 3 6 ø è 6 ø
10. Let a and b be the roots of the quadratic equation x2 sin q – x (sin q cos q + 1) + cos q = 0
æ n ( -1)n ö
¥
1 1 1 1 1 1 1 1
(1) + (2) + (3) - (4) -
1 - cos q 1 + sin q 1 + cos q 1 - sin q 1 - cos q 1 + sin q 1 + cos q 1 - sin q
11. The roots of 5x2 – 7x + k = 0 are sinA and cosA the value of k is -
12 49
(1) (2) (3) 7 (4) 1
5 10
( )
12. The roots of quadratic equation x 2 + 2 2 sin12° x + 1 - sin 24° = 0 are-
(A) b0 = 1, b1 = 3 (B) b0 = 0, b1 = n
(C) b0 = -1, b1 = n (D) b0 = 0, b1 = n2 - 3n + 3
15. Let f(q) = sin q(sin q + sin3q). Then f(q) - [JEE 2000 Screening, 1M out of 35]
(A) ³ 0 only when q ³ 0 (B) £ 0 for all real q
(C) ³ 0 for all real q (D) £ 0 only when q £ 0
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65
p
16. If a + b = and b + g = a then tan a equals - [JEE 2001 Screening, 1M out of 35M]
2
(A) 2(tan b + tan g) (B) tan b + tan g (C) tan b + 2tan g (D) 2 tan b + tan g
1
17. If sin (a + b) = 1, sin (a-b) = , then tan (a+ 2b)tan (2a + b) = [AIEEE-2002]
2
(A) 1 (B) –1 (C) zero (D) None of these
18. If y = sec2 q + cos2 q, q ¹ 0, then- [AIEEE-2002]
(A) y = 0 (B) y < 2 (C) y > –2 (D) y > 2
E
ALLEN JEE-Mathematics 3
19. If u = a 2 cos2 q + b 2 sin 2 q + a 2 sin 2 q + b 2 cos 2 q where a, b Î ¡+ then the difference between the
maximum and minimum values of u2 is given by- [AIEEE-2004]
22. If A,B,C are the angles of a triangle such that cos2 A + cos2 B + sin 2 C - 2 cos A - 2 sin C + 1 = 0 ,
then
(A) sin2A + sin2B + cos2C = 1 (B) sin2A+ sin2B + cos2C = 2
(C) DABC is a right angled D (D) D ABC is an issosceles triangle.
23. Two parallel chords are drawn on the same side of the centre of a circle of radius R . It is found that
they subtend an angle of q and 2 q at the centre of the circle . The perpendicular distance between the
chords is
3q q æ qö æ qö
(A) 2 R sin sin (B) ç1 - cos ÷ ç1 + 2 cos ÷ R
2 2 è 2ø è 2ø
æ qö æ qö 3q q
(C) ç1 + cos ÷ ç1 - 2 cos ÷ R (D) 2 R sin sin
è 2ø è 2ø 4 4
24. For a positive integer n, let fn (q) = çæ tan q ÷ö (1 + sec q)(1 + sec 2q)(1 + sec 4q)....(1 + sec2n q) . Then [JEE 99, 3M]
è 2ø
p æ ö p æ ö p æ p ö
(A) f2 æç ö÷ = 1 (B) f3 ç ÷ = 1 (C) f4 ç ÷ = 1 (D) f5 çè =1
è 16 ø è 32 ø è 64 ø 128 ÷ø
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65
[SUBJECTIVE TYPE]
25. In any traingle ABC , prove that : cot A + cot B + cot C = cot A cot B cot C .
2 2 2 2 2 2
[JEE 2000 Mains, 3M out of 100]
26. Let a, b, g be distinct real numbers such that
aa2 + ba + c = (sinq)a2 + (cosq)a
ab2 + bb + c = (sinq)b2 + (cosq)b
ag2 + bg + c = (sinq)g2 + (cosq)g
(where a, b, c Î R)
E
4 Additional Exercise on Compound Angle ALLEN
27. Given that 3 sin x + 4 cos x = 5 where x Î (0,p/2). Find the value of 2 sinx + cosx + 4 tanx.
2p p 2p
28. Prove that 4cos .cos - 1 = 2cos .
7 7 7
x 2 + y2
29. Given x, y Î R, x2 + y2 > 0. If the maximum and minimum value of the expression E =
x 2 + xy + 4 y 2
are M and m, and A denotes the average value of M and m, compute (2016)A.
5
rp 5
rp 1 æ p ö
30. Let x1 = Õ cos and 2 å cos , then show that x1 .x 2 = ç cosec - 1 ÷ , where P denotes
x =
r =1 11 r =1 11 64 è 22 ø
the continued product.
31. If 4 sin x. cos y + 2 sinx + 2 cos y + 1 = 0 where x,y Î [0,2p] find the largest possible value
of the sum (x + y).
32. If tan a = p/q where a = 6b, a being an acute angle, prove that :
1
(pcosec2b - q sec 2b) = p 2 + q 2 .
2
33. Let x > 1, y > 1 and (lnx)2 + (lny)2 = lnx2 + lny2, then find the maximum value of xln y.
34. Let A1,A2,.......,An be the vertices of an n-sided regular polygon such that ;
1 1 1
= + . Find the value of n.
A1 A 2 A1 A 3 A1 A 4
35. In a kite ABCD, AB = AD and CB = CD. If ÐA = 108° and ÐC = 36° then the ratio of the area of
a - b tan 2 36°
DABD to the area of DCBD can be written in the form where a,b and c are relatively
c
prime positive integers. Determine the ordered triplet (a,b,c). Also find the numerical value of this
ratio.
5
36. If (1 + sin t) (1 + cos t) = . Find the value (1– sin t) (1 – cost).
4
¥ ¥
37. Let qÎR and å sin ( 2 q) = a . Find the value å éëcot ( 2 q) - cot ( 2 q) ùû sin ( 2 q) in terms of 'a'.
k =2
k
k =0
3 k k 4 k
38. If A1,A2,A3......An are the vertices of a regular n sided polygon inscribed in a circle of radius R.
If (A1A2)2 + (A1A3)2+ .......+(A1An)2 = 14R2, find the number of sides in the polygon.
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65
( ) - (3 - 5 )
1/2 1/ 2
39. Prove that : 4sin 27° = 5 + 5 .
40. Determine the smallest positive value of x (in degrees) for which
tan(x + 100°) = tan(x + 50°) tanx tan(x – 50°).
1
41. If the product (sin 1°) (sin 3°) (sin 5°) (sin 7°)..........(sin 89°) = , then find the value of n.
2n
sin 4 a cos4 a 1 sin 8 a cos8 a 1
42. Prove that from the equality + = follows the relation ; + = .
a b a+b a 3
b 3
(a + b)3
E
ALLEN JEE-Mathematics 5
43. Show that elliminating x & y from the equations, sin x + sin y = a ;
8ab
cos x + cos y = b & tanx + tany = c gives =c.
( )
2
a + b2
2
- 4a 2
44. Prove that a triangle ABC is equilateral if & only if tan A + tan B + tan C = 3 3 [JEE 98, 8M]
45. Prove that the triangle ABC is equilateral iff, cot A + cotB + cot C = 3 .
46. " x Î R, find the range of the function, f(x) = cos x (sin x + sin 2 x + sin 2 a ) ; a Î [0,p]
47. Given that for a,b,c,d Î R, if a sec (200°) – c tan(200°) = d and b sec(200°) + d tan(200°) = c, then find
æ a 2 + b2 + c2 + d 2 ö
the value of ç ÷ sin 20° .
è bd - ac ø
3 + cos x
48. Show that " x Î R can not have any value between -2 2 and 2 2 . What inference can
sin x
sin x
you draw about the values of ?
3 + cos x
1 + sin A cosB 2sin A - 2sin B
49. Show that + =
cosA 1 - sin B sin(A - B) + cosA - cosB
x y x y cos a cos b sin a sin b
50. If cos a + sin a = 1 , cos b + sin b = 1 and + = 0 ; a – b ¹ 2np, n Î ¢ then
a b a b a 2
b2
prove that -
b2 (x2 - a2 )
tan a tan b = and x2 + y2 = a2 + b2
a2 (y2 - b2 )
23p
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65
13
34. n=7 35. (1,1,2) ; 5 - 2 36. - 10
4
a 89
37. 38. n=7 40. x = 30° 41.
4 2
é 1 1 ù
46. - 1 + sin 2 a £ y £ 1 + sin 2 a 47. 2 48. ê- , ú
ë 2 2 2 2û