0% found this document useful (0 votes)
210 views5 pages

Compound Angle

The document is a collection of additional exercises on compound angles for JEE Mathematics, featuring various objective and subjective type questions. It includes problems related to trigonometric identities, properties of triangles, and equations involving angles. The exercises are designed to enhance problem-solving skills in preparation for competitive exams.

Uploaded by

Yashu Mishra
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
210 views5 pages

Compound Angle

The document is a collection of additional exercises on compound angles for JEE Mathematics, featuring various objective and subjective type questions. It includes problems related to trigonometric identities, properties of triangles, and equations involving angles. The exercises are designed to enhance problem-solving skills in preparation for competitive exams.

Uploaded by

Yashu Mishra
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

ALLEN JEE-Mathematics 1

NURTURE COURSE
ADDITIONAL EXERCISE
ON
COMPOUND ANGLE
[STRAIGHT OBJECTIVE TYPE]
1. In an equilateral triangle, 3 coins of radii 1 unit each are kept so that they touch A
each other and also the sides of the triangle. Area of the triangle is -

(A) 4 + 2 3 (B) 6 + 4 3 [JEE 2005 Screening]


B C
7 3 7 3
(C) 12 + (D) 3 +
4 4
4
2. If tan q = - , then sin q is- [AIEEE-2002]
3
4 4 4 4 4 4
(A) - but not (B) – or (C) but not – (D) None of these
5 5 5 5 5 5
4xy
3. sec2 q = is true if and only if - [AIEEE-2003]
(x + y)2
(A) x + y ¹ 0 (B) x = y,x ¹ 0 (C) x = y (D) x ¹ 0, y ¹ 0
1 - tan 2 15°
4. The value of = [AIEEE-2002]
1 + tan 2 15°
3
(A) 1 (B) 3 (C) (D) 2
2
p
5. If a is a root of 25 cos2 q + 5 cos q – 12 = 0, < a < p, then sin 2a = [AIEEE-2002]
2
24 24 13 13
(A) (B) - (C) (D) -
25 25 18 18
6. Which of the following number ( s ) is / are rational ? [JEE 1998]
(A) sin15° (B) cos15° (C) sin15°cos15° (D) sin15°cos75°
7. Let a,b be such that p < a-b < 3p.
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65

21 27 a-b
If sin a + sin b = – and cos a + cos b = - , then the value of cos is- [AIEEE-2004]
65 65 2
3 3 6 -6
(A) - (B) (C) (D)
130 130 65 65
8. Let A 0 A1 A2 A 3 A 4 A 5 be a regular hexagon inscribed in a circle of unit radius Then the product of the
lengths of the line segments A 0 A1 , A 0 A 2 & A 0 A 4 is - [ JE E 19 98 ]
3 3 3
(A) (B) 3 3 (C) 3 (D)
4 2

E
2 Additional Exercise on Compound Angle ALLEN
1 1
9. If q and f are acute angles satisfying sin q = , cos f = , then q + f Î [JEE 2004 Screening]
2 3
æ p pù æ p 2p ö æ 2 p 5p ö æ 5p ö
(A) ç , ú (B) ç , ÷ (C) ç , ÷ (D) ç , p ÷
è 3 2û è2 3 ø è 3 6 ø è 6 ø
10. Let a and b be the roots of the quadratic equation x2 sin q – x (sin q cos q + 1) + cos q = 0
æ n ( -1)n ö
¥

(0 < q < 45º), and a < b. Then å çè a + b n ÷ø is equal to :- [JEE(Main)-2019]


n= 0

1 1 1 1 1 1 1 1
(1) + (2) + (3) - (4) -
1 - cos q 1 + sin q 1 + cos q 1 - sin q 1 - cos q 1 + sin q 1 + cos q 1 - sin q
11. The roots of 5x2 – 7x + k = 0 are sinA and cosA the value of k is -

12 49
(1) (2) (3) 7 (4) 1
5 10

( )
12. The roots of quadratic equation x 2 + 2 2 sin12° x + 1 - sin 24° = 0 are-

(1) both real and distinct (2) real and equal


(3) imaginary (4) one real and other imaginary
p p
13. Let - < q < - . Suppose a1 and b1 are the roots of the equation x2 – 2xsecq + 1 = 0 and a2
6 12
and b2 are the roots of the equation x2 + 2xtanq – 1 = 0. If a1 > b1 and a2 > b2, then a1 + b2
equals
[JEE(Advanced)-2016, 3(–1)]
(A) 2(secq – tanq) (B) 2secq (C) –2tanq (D) 0
n
14. Let n be an odd integer. If sin nq = å br sin r q , for every value of q , then - [JEE 1998]
r =0

(A) b0 = 1, b1 = 3 (B) b0 = 0, b1 = n
(C) b0 = -1, b1 = n (D) b0 = 0, b1 = n2 - 3n + 3
15. Let f(q) = sin q(sin q + sin3q). Then f(q) - [JEE 2000 Screening, 1M out of 35]
(A) ³ 0 only when q ³ 0 (B) £ 0 for all real q
(C) ³ 0 for all real q (D) £ 0 only when q £ 0
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65

p
16. If a + b = and b + g = a then tan a equals - [JEE 2001 Screening, 1M out of 35M]
2
(A) 2(tan b + tan g) (B) tan b + tan g (C) tan b + 2tan g (D) 2 tan b + tan g

1
17. If sin (a + b) = 1, sin (a-b) = , then tan (a+ 2b)tan (2a + b) = [AIEEE-2002]
2
(A) 1 (B) –1 (C) zero (D) None of these
18. If y = sec2 q + cos2 q, q ¹ 0, then- [AIEEE-2002]
(A) y = 0 (B) y < 2 (C) y > –2 (D) y > 2

E
ALLEN JEE-Mathematics 3

19. If u = a 2 cos2 q + b 2 sin 2 q + a 2 sin 2 q + b 2 cos 2 q where a, b Î ¡+ then the difference between the
maximum and minimum values of u2 is given by- [AIEEE-2004]

(A) 2(a2 + b2) (B) 2 a 2 + b 2 (C) (a + b)2 (D) (a – b)2


[MORE THAN ONE CORRECT T YPE]
20. Which of the following option(s) is/are correct
(A) 16(cos266º – sin26º) (cos248º – sin212º) = 1
(B) tan9º + tan36º + tan36º tan9º = 1
(C) tan8º tan35º + tan8º tan47º + tan35ºtan47º = 1
cos 25° cos 70° cos85°
(D) + + =1
sin 70°.sin 85° sin 25°.sin 85° sin 25°.sin 70°
21. If the perpendicular sides of a right angled triangle are {cos2a + cos2b + 2cos(a + b)} and
{sin2a + sin2b + 2sin(a + b)}, then the length of the hypotenuse is :
a -b a+b
(A) 2[1 + cos(a – b)] (B) 2[1 – cos(a + b)] (C) 4 cos2 (D) 4 sin 2
2 2

22. If A,B,C are the angles of a triangle such that cos2 A + cos2 B + sin 2 C - 2 cos A - 2 sin C + 1 = 0 ,
then
(A) sin2A + sin2B + cos2C = 1 (B) sin2A+ sin2B + cos2C = 2
(C) DABC is a right angled D (D) D ABC is an issosceles triangle.
23. Two parallel chords are drawn on the same side of the centre of a circle of radius R . It is found that
they subtend an angle of q and 2 q at the centre of the circle . The perpendicular distance between the
chords is
3q q æ qö æ qö
(A) 2 R sin sin (B) ç1 - cos ÷ ç1 + 2 cos ÷ R
2 2 è 2ø è 2ø

æ qö æ qö 3q q
(C) ç1 + cos ÷ ç1 - 2 cos ÷ R (D) 2 R sin sin
è 2ø è 2ø 4 4

24. For a positive integer n, let fn (q) = çæ tan q ÷ö (1 + sec q)(1 + sec 2q)(1 + sec 4q)....(1 + sec2n q) . Then [JEE 99, 3M]
è 2ø

p æ ö p æ ö p æ p ö
(A) f2 æç ö÷ = 1 (B) f3 ç ÷ = 1 (C) f4 ç ÷ = 1 (D) f5 çè =1
è 16 ø è 32 ø è 64 ø 128 ÷ø
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65

[SUBJECTIVE TYPE]

25. In any traingle ABC , prove that : cot A + cot B + cot C = cot A cot B cot C .
2 2 2 2 2 2
[JEE 2000 Mains, 3M out of 100]
26. Let a, b, g be distinct real numbers such that
aa2 + ba + c = (sinq)a2 + (cosq)a
ab2 + bb + c = (sinq)b2 + (cosq)b
ag2 + bg + c = (sinq)g2 + (cosq)g
(where a, b, c Î R)

E
4 Additional Exercise on Compound Angle ALLEN
27. Given that 3 sin x + 4 cos x = 5 where x Î (0,p/2). Find the value of 2 sinx + cosx + 4 tanx.
2p p 2p
28. Prove that 4cos .cos - 1 = 2cos .
7 7 7

x 2 + y2
29. Given x, y Î R, x2 + y2 > 0. If the maximum and minimum value of the expression E =
x 2 + xy + 4 y 2
are M and m, and A denotes the average value of M and m, compute (2016)A.
5
rp 5
rp 1 æ p ö
30. Let x1 = Õ cos and 2 å cos , then show that x1 .x 2 = ç cosec - 1 ÷ , where P denotes
x =
r =1 11 r =1 11 64 è 22 ø
the continued product.
31. If 4 sin x. cos y + 2 sinx + 2 cos y + 1 = 0 where x,y Î [0,2p] find the largest possible value
of the sum (x + y).
32. If tan a = p/q where a = 6b, a being an acute angle, prove that :
1
(pcosec2b - q sec 2b) = p 2 + q 2 .
2
33. Let x > 1, y > 1 and (lnx)2 + (lny)2 = lnx2 + lny2, then find the maximum value of xln y.
34. Let A1,A2,.......,An be the vertices of an n-sided regular polygon such that ;
1 1 1
= + . Find the value of n.
A1 A 2 A1 A 3 A1 A 4
35. In a kite ABCD, AB = AD and CB = CD. If ÐA = 108° and ÐC = 36° then the ratio of the area of
a - b tan 2 36°
DABD to the area of DCBD can be written in the form where a,b and c are relatively
c
prime positive integers. Determine the ordered triplet (a,b,c). Also find the numerical value of this
ratio.
5
36. If (1 + sin t) (1 + cos t) = . Find the value (1– sin t) (1 – cost).
4
¥ ¥
37. Let qÎR and å sin ( 2 q) = a . Find the value å éëcot ( 2 q) - cot ( 2 q) ùû sin ( 2 q) in terms of 'a'.
k =2
k

k =0
3 k k 4 k

38. If A1,A2,A3......An are the vertices of a regular n sided polygon inscribed in a circle of radius R.
If (A1A2)2 + (A1A3)2+ .......+(A1An)2 = 14R2, find the number of sides in the polygon.
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65

( ) - (3 - 5 )
1/2 1/ 2
39. Prove that : 4sin 27° = 5 + 5 .

40. Determine the smallest positive value of x (in degrees) for which
tan(x + 100°) = tan(x + 50°) tanx tan(x – 50°).
1
41. If the product (sin 1°) (sin 3°) (sin 5°) (sin 7°)..........(sin 89°) = , then find the value of n.
2n
sin 4 a cos4 a 1 sin 8 a cos8 a 1
42. Prove that from the equality + = follows the relation ; + = .
a b a+b a 3
b 3
(a + b)3

E
ALLEN JEE-Mathematics 5
43. Show that elliminating x & y from the equations, sin x + sin y = a ;
8ab
cos x + cos y = b & tanx + tany = c gives =c.
( )
2
a + b2
2
- 4a 2

44. Prove that a triangle ABC is equilateral if & only if tan A + tan B + tan C = 3 3 [JEE 98, 8M]
45. Prove that the triangle ABC is equilateral iff, cot A + cotB + cot C = 3 .
46. " x Î R, find the range of the function, f(x) = cos x (sin x + sin 2 x + sin 2 a ) ; a Î [0,p]
47. Given that for a,b,c,d Î R, if a sec (200°) – c tan(200°) = d and b sec(200°) + d tan(200°) = c, then find
æ a 2 + b2 + c2 + d 2 ö
the value of ç ÷ sin 20° .
è bd - ac ø
3 + cos x
48. Show that " x Î R can not have any value between -2 2 and 2 2 . What inference can
sin x
sin x
you draw about the values of ?
3 + cos x
1 + sin A cosB 2sin A - 2sin B
49. Show that + =
cosA 1 - sin B sin(A - B) + cosA - cosB
x y x y cos a cos b sin a sin b
50. If cos a + sin a = 1 , cos b + sin b = 1 and + = 0 ; a – b ¹ 2np, n Î ¢ then
a b a b a 2
b2
prove that -
b2 (x2 - a2 )
tan a tan b = and x2 + y2 = a2 + b2
a2 (y2 - b2 )

Additional Questions Answer key


1. B 2. B 3. B 4. C 5. B
6. C 7. A 8. C 9. B 10. 1
11. 1 12. 3 13. C 14. B 15. C
16. C 17. A 18. C 19. D 20. A.B,C

21. A,C 22. B,C,D 23. B,D 24. A,B,C,D 26. 2

23p
node06\B0B0-BA\Kota\JEE(Advanced)\Enthuse\Maths\Additional Exercise_(Star)\Eng.p65

27. 5 29. 1344 31. 33. e4


6

13
34. n=7 35. (1,1,2) ; 5 - 2 36. - 10
4
a 89
37. 38. n=7 40. x = 30° 41.
4 2

é 1 1 ù
46. - 1 + sin 2 a £ y £ 1 + sin 2 a 47. 2 48. ê- , ú
ë 2 2 2 2û

You might also like