INDEFINITE & DEFINITE INTEGRATION
MULTIPLE OBJECTIVE TYPE
1
dx
47. If In ; n N, then which of the following statement hold good ?
0 1 x 2 n
1
(A) 2n ln + 1 = 2–n + (2n – 1) In (B) I2
8 4
1 5
(C) I2 (D) I3
8 4 16 48
x
48. Let f (x) et .sin x t dt andg(x) = f(x) + f ''(x). Which of the following statement are
0
correct?
(A) g(x) is positive x R (B) g(x) is a constant function
=>
(C) g(1) = e (D) g'(x) = g(x)
3
dx
n
49. Let In n 1, 2,3....... and limIn I0 (say), then which of the following statement (s)
0 1 x
x
50.
is/ are correct ? (Given : e = 2.71828)
(A) I1 > I0 (B) I2< I0
- =
(C) I0 + I1 + I2> 3 (D) I0 + I1> 2
Which of the following definite integral (s) has / have their value equal to atleast one of the
>
remaining three ?
4
x x
(A) 1 x
0
4
dx (B) cos x cos x sin x dx
0
1 5
2
x2 1 1 1
sin 1 x
(C)
1
ln 1 x dx
x x 1
4 2
x
(D) 0 x dx
x
51. Let f(x) = et [t]dt (x>0), where [x] denotes greatest integer less than or equal to x, is -
0
(A) continuous and differentiable x 0,3
(B) continuous but not differentiable 0,3
(C) f (1) = e (D) f (2) = 2(e - 1)
n
n
52. If a, b, c R+ then lim is equal to-
k 1 (k an)(k bn)
n
1 b(b 1) 1 a(b 1)
(A) ln if a b (B) ln if a b
a b a(a 1) a b b(a 1)
1
(C) non existent if a = b (D) if a b
a(1 a)
H.O. 92, Rajeev Gandhi Nagar, Kota (Raj.) Mob. 97831-97831, 70732-22177, Ph. 0744-2423333 100
www.nucleuseducation.in
INDEFINITE & DEFINITE INTEGRATION
53. A function ƒ is defined by ƒ(x) cos t cos(x t)dt, 0 x 2then which of the following
0
hold(s) good?
(A) ƒ(x) is continuous but not differentiable in (0, 2)
(B) Maximum value of ƒ is
(C) There exists atleast one c (0, 2) s.t. ƒ '(c) = 0.
(D) Minimum value of ƒ is – .
2
54. Consider a real valued continuous function ƒ(x) defined on the interval [a, b]. Which of the
following statements does not hold(s) good?
>
b b
(A) If ƒ(x) 0 on [a, b] then ƒ(x)dx ƒ 2 (x)dx
a a
(B) If ƒ(x) is increasing on [a, b], then ƒ2(x) is increasing on [a,b].
(C) If ƒ(x) is increasing on [a, b], then ƒ(x) 0 on (a, b)
-
(D) If ƒ(x) attains a minimum at x = c where a < c < b, then ƒ '(c) = 0.
=>>>
MATCH THE COLUMN
55.
·
(A)
Column-I
Suppose , f(n) = log2(3).log3(4).log4(5) ..........logn–1(n)
100
Column-II
(P) 5010
then the sum f (2
K2
K
) equals
(B) Let f(x) = 1 x 1 (x 1) 1 (x 2)(x 4) (Q) 5050
100
then f (x)dx is
0
(C) In an A.P. the series containing 99 terms, the sum of all
the odd numbered terms is2550. The sum of all the 99 terms (R) 5100
of the A. P. is
100
(1 rx) 1
r 1
(D) lim equals (S) 5049
x 0 x
H.O. 92, Rajeev Gandhi Nagar, Kota (Raj.) Mob. 97831-97831, 70732-22177, Ph. 0744-2423333 101
www.nucleuseducation.in
INDEFINITE & DEFINITE INTEGRATION
56. Column-I Column-II
g(x) cos x
dt
(A) If f (x) =
1 t
0
3
where g(x) =
0
(1 sin t 2 )dt (P) 3
then the value of f '( / 2)
(B) If f(x) is a differentiable function (not identically zero) (Q) 2
x
such that f (t)dt = (f(x))2 for all x, then f (2) equals
0
b
(C) If (2 x x 2 )dx (where b > a) is maximum then (a + b) (R) 1
a
is equal to
(D)
sin 2x b
If lim 3 a 2 0 then (3a + b) has the value (S) –1
x 0
x x
=
equal to
f (x)f ''(x) (f '(x))2
57. Let f(x) = (x – 1)(x – 2)(x –3)......(x – n), n N and dx = g(x) + c, where
f 2 (x)
-
C is arbitary constant.
Column-I Column-II
(A) If f '(n) = 5040, then n is divisible by (P) 4
>
-
(B) If g(x) is discontinuous at 9 point, x R then n is (Q) 6
greater than
(C) If g(x) = 5 has 8 solutions, then n may be equal to (R) 8
(D) If the number of roots of equation f '(x) = 0, be (n – 5)2(n –1),
(n >1) then possible values of n is / are (S) 9
58. Column-I Column-II
x sin (sin x) cos (cos x) dx 2
2 2
(A) (P)
0
x dx 2
(B) 0 1 sin 2 x (Q)
2
2 /4
2
(C) 0
2sin x xcox x dx (R)
4
2
(S)
2 2
H.O. 92, Rajeev Gandhi Nagar, Kota (Raj.) Mob. 97831-97831, 70732-22177, Ph. 0744-2423333 102
www.nucleuseducation.in
INDEFINITE & DEFINITE INTEGRATION
59. Column-I Column-II
/2
(A)
n
0
lim n 1 n sin x dx equals (P)
ln 2
2
0
ze z
(B) The value of definite integral
1 e
2z
is equal to (Q)
2
ln 2
x sin x
(C) The value of the definite integral is equal to (R) ln 2
0 1 cos x
(S) ln2
60. Column-I Column-II
n
3 3i 1
(A) lim sin 2 is equal to (P)
n
i 1 n n e
2
[x]e
>
x
(B) dx equals (where [ ]denotes the greatest integer (Q)
0 e
1
function) (R)
-
n
ln 2i ln n 2
(C) If lim = ln k, then 'k' equals (S)
n
i 1 n
n
i i
2
1
(D) Lim 2 sin 2 is equal to (T)
n
i 1 n n e 1
INTEGER TYPE / SUBJECTIVE TYPE
-1 1
61. Let f : R R, be a continuous function with f (x)f '(x)dx 0 and f 2 (x)f '(x)dx 18 . If the
-
> 1
p
0 0
value of f (x)f '(x)dx Where p and q are relatively prime positive integers, find (p + q)
4
0 q
1
62. Find the value of k satisfying the equation 3 (x k)(x 3)(x 1)dx 64 .
3
1/n
3n C a
63. Given lim 2n n where a and b are relatively prime, find the value of (a + b).
n
Cn b
64. Let f(x) = x3+ 3x2– 6x +11 and g (x) = ln |x|.
2
1
dt
dt 1
If A = f(g'(–1)); B = g(f '(–1)); C = f '(x).g '(f (x))dx ; D = g(x)dx evaluated at t = 3 and
2
A(B + C) –D = lnK, find the value of K.
H.O. 92, Rajeev Gandhi Nagar, Kota (Raj.) Mob. 97831-97831, 70732-22177, Ph. 0744-2423333 103
www.nucleuseducation.in
INDEFINITE & DEFINITE INTEGRATION
Evaluate e cos x 2sin cos x 3cos cos x sin x dx
1 1
65. [JEE 2005, (Mains),2]
0
2 2
66. Let , be the distinct positive roots of the equation tanx = 2x then evaluate
1
(sin x.sin x)dx , independent of and.
0
5 2/3
e dx 3 e9(x 2/3) dx is zero.
(x 5)2 2
67. Show that the sum of the two integrals
4 1/3
If the value of the definite integral cot
1 1
1
x 2 a b
. cot dx
1
68.
1 x c
2
1 1 (x 2 ) x
69.
where a, b, c, N in their lowest form, then find the value of (a + b + c).
1 1
-
(a) A function f is defined in [–1 , 1] as f '(x) = 2 x sin – cos ; x 0; f(0) =0; f(1/) = 0.
x x
·
Discuss the continuity and derivability of f at x = 0.
(b) Check the continuity and derivability of the function f(x) =
t sin tdt
for 0 < x < .
1 tan2 x sin 2 t 2
-ess
0
1
x
d2y 2
70.
If y =
a0
f (t).sin a(x t)dt, then prove that 2 a y f (x).
dx
>
-
ln t ln 2
71. If
0
x dt
t => 4
2 2
(x 0) then show that there can be two integral values of 'x' satisfying
this equation.
sin
4
xdx 1/x
1
72. Evaluate : (a) Lim 0 (b) Lim (by a(1 y)) x dy (where b a)
a a x 0
0
73. Let a, b are real number such that a + b = 1 then find the minimum value of the integral
(a sin x bsin 2x) dx.
2
1
74. A differentiable function f satisfying a relation f (x + y) = f (x) + f (y) + 2xy (x + y) – x,
3
3f (h) 1 2 3
y R and Lim . Find the value of definite integral f (x)dx .
h0 6h 3 3
H.O. 92, Rajeev Gandhi Nagar, Kota (Raj.) Mob. 97831-97831, 70732-22177, Ph. 0744-2423333 104
www.nucleuseducation.in
INDEFINITE & DEFINITE INTEGRATION
2
lnt
75. Let I = 1 t
1/2
n
dt , find the sign of the integral for different value of n N {0}.
n
n 1 m
m 1
76. Prove that
k 0
(1)k
k k m 1
= (1)
k 0
k
k
k n 1
sin 2 kx
77. Prove that sinx + sin 3x + sin5x + ....... + sin (2k – 1)x = , k N and hence prove that,
sin x
/2
sin 2 kx 1 1 1 1
0 sin x
dx 1 .......
3 5 7 2k 1
.
78. Suppose f : R R+ be a differentiable function and satisfies 3f (x + y) = f(x). f(y) for all x,
1 3
y R with f(1) = 6. If U = Lim n f 1 f (1) and V = f (x)dx then find
-
n n 0
(a) the range of f(x); (b) the value of U; (c) the value of the product UV
10
-
79. If |g(x) – g(y)| |x –y| x, y [2, 10], then find the maximum value of g(x)dx 8g() for
2
[2, 10].
1
Let , be real numbers with 0 and ƒ(x) = x2 – ( + )x + such that ƒ(x)dx 1.
=
80
>
1
Find the maximum value ƒ(x)dx.
0
/2
81. Find the positive value of k for the value of the definite integral | cos x kx | dx is minimised.
0
82. Let ƒ(x) = e(p + 1)x – ex for real number p > 0.
(a) Find the value of x = sp for which ƒ(x) is minimum.
t 1
ƒ(x)e
t x
(b) Let g(t) dx . Find the value if t = tp, for which g(t) minimum.
t
p ep 1 p
(c) Use the fact that 1 1 p2 (0 p 1) find the value of Lim(s p t p ).
2 p 2 p0
H.O. 92, Rajeev Gandhi Nagar, Kota (Raj.) Mob. 97831-97831, 70732-22177, Ph. 0744-2423333 105
www.nucleuseducation.in
INDEFINITE & DEFINITE INTEGRATION
ADDITIONAL EXERICSE (DEFINITE INTEGRATION)
1. (C) 2. (A) 3. (B) 4. (A) 5. (B)
6. (A) 7. (D) 8. (B) 9. (D) 10. (D)
11. (D) 12. (B) 13. (C) 14. (A) 15. (B)
16. (C) 17. (A) 18. (A) 19. (C) 20. (A)
21. (A) 22. (A) 23. (A) 24. (D) 25. (A)
26. (A) 27. (A) 28. (B) 29. (C) 30. (C)
31. (C) 32. (B) 33. (A) 34. (D) 35. (A)
36. (C) 37. (D) 38. (C) 39. (D) 40. (B)
41. (C) 42. (B) 43. (D) 44. (A) 45. (D)
·
46. (D) 47. (AB) 48. (ACD) 49. (ACD) 50. (BC)
51. (BD) 52. (BD) 53. (CD) 54. (ABCD)
55. (A) S; (B) R; (C) S; (D) Q 56. (A) S; (B) R; (C) R; (D) Q
=>
57. (A) S ; (B) R; (C) R; (D) Q 58. (A) Q ; (B) S; (C) Q
-
>
-
59. (A) Q ; (B) P; (C) S 60. (A) S; (B) T; (C) Q; (D) R
61. 491 62. 1 63. 43 64. 2187
24 1 e 1
65. ecos sin 1 66. 0 68. 7
5 2 2 2
69. (a) cont. & der. at x = 0, (b) f is continuous and differentiable
71.
=>
x = 2 or 4 72.
3
(a) ; (b) e1. a
1
b b ba
8 a
73. / 4 74. 2 75. For n =1, I> 0,n =2, I = 0,n 3, I< 0
78. (a) (0,) ; (b) 6ln2; (c) 126
6 2 2
79. 32 80. 81. k cos
108 2 2
ln(p 1) 1 (p 1)(ep 1) 1
82. (a) ; (b) ln ; (c)
p p p 2
H.O. 92, Rajeev Gandhi Nagar, Kota (Raj.) Mob. 97831-97831, 70732-22177, Ph. 0744-2423333 107
www.nucleuseducation.in