Combinepdf 2
Combinepdf 2
* 1 0 4 3 5 8 9 5 5 9 *
MATHEMATICS 0580/31
Paper 3 (Core) October/November 2023
2 hours
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For r, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 104.
● The number of marks for each question or part question is shown in brackets [ ].
DC (CJ/CB) 318217/2
© UCLES 2023 [Turn over
2
................................................. [1]
................................................. [1]
(i) a factor of 18
................................................. [1]
(ii) a multiple of 12
................................................. [1]
................................................. [1]
................................................. [1]
................................................. [1]
(i) 24 - 4 # 3 + 2 = 62 [1]
(ii) 24 - 4 # 3 + 2 = 4 [1]
3
(e) Write as a decimal.
4
................................................. [1]
3
(f) Work out of 126.
7
................................................. [1]
................................................. [1]
2 1
(h) Without using a calculator, work out 5 - 2 .
3 5
You must show all your working and give your answer as a mixed number in its simplest form.
................................................. [3]
NOT TO
SCALE
.......................................... mm [1]
(b) The scale drawing shows the position of ship A and the position of ship B.
The scale is 1 cm represents 6 km.
North
North
Scale : 1 cm to 6 km
........................................... km [2]
(c) (i) Show that the interior angle of a regular octagon is 135°.
[1]
(ii)
NOT TO
SCALE
Show that two regular octagons and a square meet at a point without any gaps.
[1]
(d)
E
F NOT TO
49°
SCALE
3 (a) The bar chart shows the country in which each of 80 students live.
24
20
16
Frequency 12
0
Australia Brazil China India USA
Country
................................................. [1]
................................................. [1]
(iii) How many more of these students live in China than live in Australia?
................................................. [1]
(iv) Find the percentage of these students who live in the USA.
.............................................. % [2]
(b) In Hobart, the temperature at 8 am was -3 °C and the temperature at 3 pm was 7 °C.
............................................ °C [1]
............................................ °C [1]
(c) The table shows the favourite language that each of 80 students studies.
Language Frequency
French 12
Spanish 26
English 42
Total 80
[4]
NOT TO
2 cm
SCALE
3 cm
5 cm
[3]
......................................... cm 2 [2]
(b) The diagram shows two solids: a cube and a right-angled triangular prism.
NOT TO
SCALE
4 cm
6 cm 9 cm
x cm
x = ................................................ [4]
25
Cove B
Distance from 20
Town (km)
15
Port
10
5
A
Town 0
14 00 14 10 14 20 14 30 14 40 14 50
Time
................................................. [1]
(c) How many more minutes does train A take to complete the whole journey than train B?
(d) Write down the time that the two trains pass each other.
................................................. [1]
(e) Work out the average speed of train A between Town and Cove in kilometres per hour.
6
y
10
9
8
7
6
5
4
A
3
2
1
B
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 x
-1
C
-2
-3
-4
-5
-6
(a) Describe fully the single transformation that maps triangle A onto triangle B.
.....................................................................................................................................................
..................................................................................................................................................... [2]
(b) Describe fully the single transformation that maps triangle A onto triangle C.
.....................................................................................................................................................
..................................................................................................................................................... [3]
(c) On the grid, draw the image of triangle A after a reflection in the line y = 6 . [2]
7 (a) Simplify.
5a + 3b + 2a - 4b
................................................. [2]
(b) P = 8x + 3y
x = ................................................ [2]
v = ................................................ [2]
................................................. [2]
x = .................................................. [5]
8
y
L
6
5
4
3
2
1
-3 -2 -1 0 1 2 3 4 5 6 x
-1
-2
-3
-4
-5
-6
-7
-8
-9
- 10
y = ................................................ [2]
(ii) Write down the coordinates of the point where the line y = x intersects line L.
8
(c) (i) Complete the table of values for y = .
x
x −5 −4 −3 −2 −1 1 2 3 4 5
y −1.6 −2.7 2.7 1.6
[3]
8
(ii) On the grid, draw the graph of y = for - 5 G x G - 1 and 1 G x G 5.
x
y
8
0 x
-5 -4 -3 -2 -1 1 2 3 4 5
-1
-2
-3
-4
-5
-6
-7
-8
[4]
Is the price of the bracelet more or less than the cost of the pure gold in it?
You must show your working.
[4]
.............................................. g [2]
G S
................................................. [1]
Write down the probability that this person owns gold jewellery but not silver jewellery.
................................................. [1]
(d)
E F
................................................. [1]
10 (a)
P
21.4 cm
14.4 cm
9.6 cm NOT TO
SCALE
Q 12.8 cm R V W
Calculate VW.
VW = ........................................... cm [2]
A
NOT TO
9.1 cm SCALE
3.5 cm
B C
Calculate BC.
BC = ........................................... cm [3]
D
8.4 cm NOT TO
SCALE
35°
E F
Calculate EF.
EF = ............................................cm [2]
J 10 cm
L
NOT TO
8 cm SCALE
BLANK PAGE
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.
Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
MATHEMATICS 0580/32
Paper 3 (Core) October/November 2023
2 hours
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For r, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 104.
● The number of marks for each question or part question is shown in brackets [ ].
DC (CE/SG) 318305/2
© UCLES 2023 [Turn over
2
1 (a) The bar chart shows the number of goals scored by a team in each of 5 months.
22
20
18
16
14
12
Frequency
10
8
6
4
2
0
Sept Oct Nov Dec Jan Feb
Month
(ii) How many more goals were scored in January than in October?
................................................. [1]
................................................. [1]
(c) (i) The team shop is open from 09 00 to 17 15 on Monday to Friday only.
(ii) Brunobuysashirtfor$36andascarffor$12.25.
He pays with a $50 note.
$ ................................................ [2]
(d)
Ticket prices
Adult $35
Child $20
Senior $25
(i) Calculatethecostof150adulttickets,70childticketsand30seniortickets.
$ ................................................ [3]
(ii) Calculate the percentage of these tickets that are senior tickets.
............................................. % [2]
................................................. [2]
2 (a) (i)
................................................. [1]
(ii)
................................................. [1]
(iii)
(a) Write down the mathematical name for this type of angle.
................................................. [1]
................................................. [1]
(b)
(c) Acuboidmeasures6cmby3cmby2cm.
......................................... cm 3 [1]
[3]
................................................. [1]
................................................. [1]
............................................. % [1]
(i) 75
................................................. [1]
(ii) 80 .
................................................. [1]
5
(e) Ranjit buys some plants and sells of them.
11
He sells 190 plants.
................................................. [2]
................................................. [2]
n = ................................................ [2]
(h) 7 15 ' 7 x = 7 9
x = ................................................ [1]
x -2 -1 0 1 2 3 4 5
y 3 -2 -5 -5 -2 3
[2]
y
10
-2 -1 0 1 2 3 4 5 x
-1
-2
-3
-4
-5
-6
[4]
Grey
Red
Other
................................................. [1]
(b) 35carsaregrey.
[1]
(c) 175 cars are white and 150 cars are black.
[2]
(d) Find the probability that a car chosen at random is not grey.
................................................. [2]
(e) Another320carscrossthebridge.
Howmanyofthese320carsareexpectedtobewhite?
................................................. [2]
(f) Heidi also records the number of people in each car crossing the bridge for one hour.
................................................. [3]
6 (a) Simplify.
a + 4a - 3a
................................................. [1]
(b) Simplify.
8b - 4 # 7b
................................................. [1]
(c)
4x + 3 x+7
3x - 9 NOT TO
SCALE
9x + 8
7x + 3
Findanexpressionforthelengthofonesideofthesquare.
Give your answer in its simplest form.
................................................. [4]
(d) Victoriabuys5cupsofteaand4cakesfor$15.69.
Isabellabuys3cupsofteaand7cakesfor$17.97.
Write down a pair of simultaneous equations and solve them to find the cost of one cup of tea and
the cost of one cake.
You must show all your working.
Tea $ ................................................
Elize $ ................................................
Lily $ ................................................
On the probability scale, draw an arrow ( ) to show the probability that this roll is
(a) yellow
0 0.5 1
[1]
0 0.5 1
[1]
(c) green.
0 0.5 1
[1]
(ii) The length, l m, of a roll of ribbon is 120 m, correct to the nearest metre.
........................................euros [3]
(i)
18 cm
NOT TO
18 cm SCALE
......................................... cm 2 [3]
............................................. % [2]
R S
[2]
.......................................... mm [1]
........................................... km [2]
(c)
E
x° NOT TO
SCALE
118°
A B C D
x = ................................................ [2]
(d)
A
NOT TO
8.9 cm SCALE
4.8 cm
C B
[3]
y
6
5
C
4
B
3
2
1
A
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2
-3
-4
-5
-6
-7
(a) Describe fully the single transformation that maps triangle A onto triangle B.
.......................................................................................................................................................
....................................................................................................................................................... [3]
(b) Describe fully the single transformation that maps triangle A onto triangle C.
.......................................................................................................................................................
....................................................................................................................................................... [3]
6
(c) On the grid, translate triangle A by the vector e o. [2]
-4
(d) On the grid, reflect triangle A in the line y =- 2 . [2]
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.
Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
MATHEMATICS 0580/32
Paper 3 (Core) February/March 2024
2 hours
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For r, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 104.
● The number of marks for each question or part question is shown in brackets [ ].
DC (CJ/CB) 327789/2
© UCLES 2024 [Turn over
2
1 (a)
l
(b) Write down the mathematical names for two different quadrilaterals with
(d)
H
G
x°
F 143°
103°
NOT TO
SCALE
82°
E
y°
D
................................................. [1]
............................................................................................................................................. [2]
............................................................................................................................................. [2]
2 (a)
Fuel Fuel
Garage A Garage B
$1.41 per litre $1.50 per litre
$ ................................................. [2]
(ii) Work out how much cheaper it is to buy 20 litres of fuel from garage A than from garage B.
$ ................................................. [2]
(iii) These are the amounts that 6 people spend on fuel at garage A.
.............................................. % [2]
2
(b) The fuel tank of a car is full.
5
It takes 39 more litres of fuel to fill the tank.
(c) (i) Use 1 litre = 0.22 gallons to complete this conversion graph.
30
25
20
Gallons 15
10
0
0 10 20 30 40 50 60 70 80 90 100
Litres
[2]
(d) A cylindrical tank for storing fuel has radius 1.5 metres and height 8 metres.
E F
[2]
(b)
A B
C
T
F G
E
(i) Write down the letter of the triangle that is congruent to triangle T.
................................................. [1]
(ii) Write down the letter of the triangle that is similar but not congruent to triangle T.
................................................. [1]
(c)
NOT TO
SCALE
h
62° 62°
7 cm
(i) Show that the perpendicular height, h, is 6.58 cm, correct to 3 significant figures.
[3]
(iii) Kalpit tries to arrange some of these triangles to make a regular polygon with centre O.
NOT TO
SCALE
7 cm 7 cm
62° 62°
7 cm
[3]
16
14
12
10
Number of
8
televisions
6
4
2
0
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
(i) Write down the number of televisions that the shop sells on Monday.
................................................. [1]
(ii) Find the fraction of the televisions that the shop sells on Sunday.
................................................. [1]
(iii) The number of televisions that the shop sells on the other two days is in the ratio
Wednesday : Friday = 2 : 3.
[4]
(iv) Write down the mode.
................................................. [1]
$ ................................................. [2]
(c) The scatter diagram shows the prices of different sized televisions.
Price
Television size
................................................. [1]
faulty
0.02
not faulty
..............
faulty
..............
..............
not faulty
not faulty
..............
(ii) Find the probability that Hemang buys two faulty televisions.
................................................. [2]
................................................. [1]
x -1 0 1 2 3 4 5 6
y 11 11 1
[3]
14
13
12
11
10
–1 0 1 2 3 4 5 6 x
[4]
(iii) (a) Write down the equation of the line of symmetry of the graph.
................................................. [1]
(b) The points (-8, -97) and (t, -97) also lie on the graph of y =- x 2 + 5x + 7 .
t = ................................................. [1]
© UCLES 2024 0580/32/F/M/24
11
................................................. [1]
y = ................................................. [1]
(d)
y
7
6
L
5
–4 –3 –2 –1 0 1 2 3 4 x
–1
–2
–3
y = ................................................. [2]
x = ................................................. [2]
North
Scale: 1 cm to 8 km
[2]
................................................. [3]
Work out the scale Jai uses, giving your answer in the form 1 : n.
1 : ................................................. [2]
North NOT TO
9.7 km SCALE
X
6 km
[2]
Calculate XZ.
XZ = ............................................ km [2]
7 (a) P = 3a + 5
P = ................................................. [1]
(i) 7x =-42
x = ................................................. [1]
(ii) 9 (8x - 7) = 72
x = ................................................. [3]
(c) 5 8 # 5 k = 5 -24
k = ................................................. [1]
x = .................................................
y = ................................................. [2]
................................................. [2]
Write down an expression, in terms of x and t, for the total distance, in metres, the boy travels.
.............................................. m [2]
(g)
NOT TO
x–2 SCALE
x+5
................................................. [3]
Part-time 11
Full-time
Total 120
................................................. [4]
F V
........
................................................. [1]
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.
Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
MATHEMATICS 0580/31
Paper 3 (Core) May/June 2024
2 hours
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For r, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 104.
● The number of marks for each question or part question is shown in brackets [ ].
DC (PQ/JG) 329290/1
© UCLES 2024 [Turn over
2
$ ................................................ [1]
$ ................................................ [2]
................................................. [1]
................................................. [2]
Work out the cost of a bag of popcorn and the cost of a bottle of water.
(ii) Another film starts at 14 45 and lasts for 2 hours and 20 minutes.
................................................. [1]
(e) The table shows the hours that Trevor works in the cinema each week.
Monday No hours
Tuesday No hours
Wednesday 18 00 to 22 00
Thursday 18 00 to 22 00
Friday 12 00 to 17 30
Saturday 12 00 to 17 30
Sunday 13 00 to 18 00
Trevor is paid $11.50 per hour for the time he works before 18 00.
He is paid 30% more for the time he works after 18 00.
$ ................................................ [4]
2 (a) Chen asks some people if they prefer a beach, cruise, lake or mountain holiday.
The pie chart shows the results.
Mountain Beach
120° 135°
75°
30°
Lake
Cruise
................................................. [2]
.............................................. % [1]
(iii) Find the ratio of people who prefer each type of holiday in the form
Find the probability that this person prefers a cruise or a lake holiday.
................................................. [2]
[1]
© UCLES 2024 0580/31/M/J/24
5
(b) Complete the bar chart, including the scale on the frequency axis.
Frequency
0
Beach Cruise Lake Mountain
[3]
Work out how much more, in euros, Mr Shah pays for the holiday than Mr Gibb.
3 (a) Here is part of the timetable for trains from Hinton to Jarmouth.
All trains take the same time to travel from Hinton to Jarmouth.
Hinton 10 47 ................
Jarmouth 11 15 12 35
(ii) Marge arrives at Hinton station exactly 20 minutes before the 10 47 train leaves.
12
11 1
10 2
9 3
8 4
7 5
6
Complete the clock diagram to show the time she arrives at Hinton station. [1]
(b) Each day, a bus leaves Texford to travel to Cranbrook every 45 minutes.
The first bus leaves Texford at 07 10.
The last bus leaves Texford at 22 10.
Work out the number of buses that travel from Texford to Cranbrook each day.
................................................. [3]
$ ................................................. [3]
(d) The Venn diagram shows information about the number of workers in a hotel who travel to work
by bus (B) and train (T).
B T
31 9 85
107
................................................. [1]
................................................. [1]
(iii) Explain in words what the number 85 in the Venn diagram represents.
............................................................................................................................................. [1]
Find the probability that this worker travels to work by bus and train.
................................................. [1]
(e) The hotel has single and double bedrooms in the ratio single | double = 3 | 8 .
There are 75 more double rooms than single rooms.
................................................. [2]
4 The stem-and-leaf diagram shows the ages of the 16 workers in a shop on 1st January 2022.
2 3 5 7
3 4 6 6 6 9
4 1 1 7
5 0 7 7 8
6 1
Key: 2 5 represents 25
................................................. [1]
................................................. [1]
................................................. [1]
(iv) Work out the percentage of workers that are older than 40 but younger than 60.
.............................................. % [2]
(b) On 1st January 2023 the shop has the same 16 workers.
Write down the range, the mode and the median on 1st January 2023.
Range ................................................
Mode ................................................
2 5 7 9
3 6 8 8 8
4
5
6
Key: 2 5 represents 25
[2]
x is a prime number.
x + 2 is a square number.
x - 2 is a multiple of 9.
x = ................................................ [2]
5 (a)
H F I
NOT TO
f°
105° SCALE
e° 52°
E G
................................................. [1]
............................................................................................................................................. [2]
............................................................................................................................................. [2]
................................................. [3]
(2w) cm 5(x + 7) cm
NOT TO
SCALE
15 cm (w + x + y) cm
15 cm
w = ................................................
x = ................................................
y = ................................................ [5]
6 The diagram shows a point, P, three triangles, A, B and C, and part of triangle D on a 1 cm 2 grid.
y
10
9
D
8
3
A
2
a
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x
–1
B
–2
–3
C
– 43
P
–5
–6
(a) On the grid, mark the image of point P after a reflection in the line y = 0 . [1]
.............................................................................................................................................
............................................................................................................................................. [3]
.............................................................................................................................................
............................................................................................................................................. [2]
(d) Triangle A has been enlarged with centre (1, 0) to give triangle D.
The grid is only large enough to show one vertex and part of two of the sides of triangle D.
................................................. [1]
North
Scale: 1 cm to 2 km
Micah walks at 4.8 km/h for 3 hours on a bearing of 236° from C, to his house, H.
[3]
................................................. [2]
(ii) The distance, d km, from R to C is 5 km, correct to the nearest kilometre.
1 | ................................................ [2]
F G
B C
NOT TO
5.6 m 9.2 m SCALE
A 8.4 m D
E xm H
x = ................................................ [2]
x -3 -2 -1 0 1 2 3 4
y -1 -1 9
–3 –2 –1 0 1 2 3 4 x
–1
–2
–3
–4 [4]
(c) Write down the coordinates of the lowest point on the graph.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.
Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
MATHEMATICS 0580/32
Paper 3 (Core) May/June 2024
2 hours
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For r, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 104.
● The number of marks for each question or part question is shown in brackets [ ].
DC (CJ/SG) 329291/2
© UCLES 2024 [Turn over
2
1 (a) 6 7 10 12 18 32 49 63
(i) a factor of 21
������������������������������������������������� [1]
������������������������������������������������� [1]
(iii) a prime number�
������������������������������������������������� [1]
������������������������������������������������� [1]
(ii) 25
������������������������������������������������� [1]
(iii) 50
������������������������������������������������� [1]
1
(iv) 36 2 �
������������������������������������������������� [1]
(c) Put one pair of brackets into this calculation to make it correct�
3#2-6-2'2= 4
[1]
������������������������������������������������� [2]
© UCLES 2024 0580/32/M/J/24
3
2 (a) Simplify�
(i) 5a - 6a + 3a
������������������������������������������������� [1]
(ii) 6x 2 - 6x - 4x 2 - x
������������������������������������������������� [2]
������������������������������������������������� [2]
m = ������������������������������������������������ [2]
�������������������������������������������� kg [2]
x = ������������������������������������������������
y = ������������������������������������������������ [3]
12
11
10
4
D
3
A
2
–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 x
–1
–2
–3
–4
B
–5
–6
–7
–8
C
–9
– 10
– 11
������������������������������������������������� [1]
����������������������������������������� cm 2 [1]
�������������������������������������������� cm [1]
���������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������� [2]
���������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������� [2]
���������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������� [3]
Number of pets 0 1 2 3 4 5
Number of families 5 12 15 9
There are twice as many families with 4 pets than with 5 pets�
[3]
16
14
12
10
Number of
families 8
0
0 1 2 3 4 5
Number of pets
[2]
������������������������������������������������� [3]
(b) 80 of the pets owned by the families are cats, rabbits or hamsters�
The table shows the number of each pet�
[2]
[2]
������������������������������������������������� [1]
© UCLES 2024 0580/32/M/J/24 [Turn over
8
5 (a)
NOT TO
SCALE
x°
125°
(i) Write down the mathematical name for the type of angle marked 125°�
������������������������������������������������� [1]
��������������������������������������������������������������������������������������������������������������������������������������������� [1]
(b)
y°
NOT TO
SCALE
70°
58°
............................................................................................................................................
............................................................................................................................................
y = ������������������������������������������������ [3]
(c)
NOT TO
C SCALE
D
74°
A B
O
������������������������������������������������� [1]
��������������������������������������������������������������������������������������������������������������������������������������������� [2]
������������������������������������������������� [2]
x 0 1 2 3 4 5 6 7 8
y 13 17 13 1
[3]
y
18
16
14
12
10
0
0 2 4 6 8 x
[4]
(iii) Write down the equation of the line of symmetry of the graph�
������������������������������������������������� [1]
1
(b) A straight line has a gradient of and passes through the point (2, 7)�
2
(i) On the grid, draw this line for 0 G x G 8 �
[2]
y = ������������������������������������������������ [2]
(iii) Write down the coordinates of the points where this line intersects the graph of
y =- x 2 + 8x + 1�
(a) Work out the area of the gardens and the area of the playground�
Gardens ������������������������������������������ m 2
[1]
$ ������������������������������������������������ [4]
(c) The owners of the land buy new equipment for the playground�
They borrow $8500 for 4 years at a rate of 6�5% per year compound interest�
$ ������������������������������������������������ [3]
NOT TO
SCALE
8
B 3.6 m A
NOT TO
SCALE
4.7 m
E
F
1.7 m
C D
5.5 m
The diagram shows a plan, ABCDE, of the floor of a room in Jo’s house�
F is a point inside the room�
[1]
AF = �������������������������������������������� m [1]
������������������������������������������� m 2 [3]
$ ������������������������������������������������ [1]
������������������������������������������� m 2 [2]
9 (a) Sara rides her bicycle at a speed of 420 metres per minute�
Calculate her average speed, in km/h, for the time she is cycling�
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.
Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
, ,
Cambridge IGCSE™
¬W. 3mGm[q-=VW
¬aC@@QvzQrqBX
¥e u¥ue UUUE¥UU
* 1 1 0 2 7 0 4 7 9 8 *
MATHEMATICS 0580/33
Paper 3 (Core) May/June 2024
2 hours
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For r, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 104.
● The number of marks for each question or part question is shown in brackets [ ].
DC (LK/JG) 329292/2
© UCLES 2024 [Turn over
* 0019655331702 *
12
11
10
9
(i) Twice as many football players vote blue than vote orange.
................................................. [1]
DO NOT WRITE IN THIS MARGIN
ĬÕĊ®Ġ³íÇíÛñĊÀĎØþ×
© UCLES 2024 ĬĘĚâÂīÌêêċĀ®ÊīÁúÐĂ
ĥõĕĕµõåĕĕÅąĕÕąąÕõÕ
0580/33/M/J/24
* 0019655331703 *
DO NOT WRITE IN THIS MARGIN
3
, ,
Colour Frequency
White 21
Grey 12
Pink 7
DO NOT WRITE IN THIS MARGIN
[4]
DO NOT WRITE IN THIS MARGIN
(ii) Work out the percentage of hockey players who vote grey.
............................................. % [1]
DO NOT WRITE IN THIS MARGIN
Ĭ×Ċ®Ġ³íÇíÛñĊÀĐØþ×
© UCLES 2024 ĬĘęáÊĝÈÚÏíñûĎēĕúàĂ
ĥõĥÕõĕÅõąµÕĕÕĥĥĕĥÕ
0580/33/M/J/24 [Turn over
* 0019655331704 *
2 (a) Here is part of the timetable for buses from the station to the city centre.
All buses take the same time to travel from the station to the city centre.
Station 09 24 11 06
(ii) Beth walks 4 km from her home to the station at a speed of 6 km/h.
She wants to travel on the 09 24 bus.
Work out the latest time she can leave her home.
................................................. [3]
................................................. [2]
(b) Beth buys 2.4 kg of onions costing $1.25 per kilogram and 4.5 kg of potatoes.
The total cost is $11.64 .
$ ................................................ [3]
DO NOT WRITE IN THIS MARGIN
ĬÕĊ®Ġ³íÇíÛñĊ¾ĎØĀ×
© UCLES 2024 ĬĘęäÊħ¶Ïìóúô°¯·ĪØĂ
ĥŵյĕÅÕĥĕåĕĕĥÅĕõÕ
0580/33/M/J/24
* 0019655331705 *
DO NOT WRITE IN THIS MARGIN
5
, ,
................................................. [2]
DO NOT WRITE IN THIS MARGIN
$ ................................................ [1]
DO NOT WRITE IN THIS MARGIN
$ ................................................ [2]
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
Ĭ×Ċ®Ġ³íÇíÛñĊ¾ĐØĀ×
© UCLES 2024 ĬĘĚãÂġºßÍąćµĬÇģĪèĂ
ĥÅÅĕõõåµõĥõĕĕąåÕĥÕ
0580/33/M/J/24 [Turn over
* 0019655331706 *
ĬÙĊ®Ġ³íÇíÛñĊ¿ĐÕþ×
© UCLES 2024 ĬĘęã½īÒåÕĂöÀȝĂÂØĂ
ĥĕĥĕõÕåĕµąÕĕÕąąĕµÕ
0580/33/M/J/24
* 0019655331707 *
DO NOT WRITE IN THIS MARGIN
7
, ,
(b) The diagram shows four triangles, A, B, C and T, and a point P on a grid.
5
4
P
3
2
A T
DO NOT WRITE IN THIS MARGIN
–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 x
–1
C
–2
–3
B
–4
–5
DO NOT WRITE IN THIS MARGIN
.....................................................................................................................................
..................................................................................................................................... [2]
DO NOT WRITE IN THIS MARGIN
.....................................................................................................................................
..................................................................................................................................... [2]
.....................................................................................................................................
..................................................................................................................................... [3]
DO NOT WRITE IN THIS MARGIN
ĬÛĊ®Ġ³íÇíÛñĊ¿ĎÕþ×
© UCLES 2024 ĬĘĚäÅĝÎÕäøċĉÐÇÖÂèĂ
ĥĕĕÕµµÅõåõąĕÕĥĥÕåÕ
0580/33/M/J/24 [Turn over
* 0019655331708 *
................................................. [1]
............................................................................... [2]
[1]
(d) x = 64
................................................. [1]
2
(f) Find the reciprocal of .
3
ĬÙĊ®Ġ³íÇíÛñĊ½ĐÕĀ×
© UCLES 2024 ĬĘĚáÅħàÔ×úĄĂîīøÒÐĂ
ĥåÅÕõµÅÕÅÕõĕĕĥÅÕµÕ
0580/33/M/J/24
* 0019655331709 *
DO NOT WRITE IN THIS MARGIN
9
, ,
1 1
(g) Find a fraction between and .
5 4
................................................. [1]
(h) Write down an irrational number with a value between 9 and 10.
DO NOT WRITE IN THIS MARGIN
................................................. [1]
................................................. [2]
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
ĬÛĊ®Ġ³íÇíÛñĊ½ĎÕĀ×
© UCLES 2024 ĬĘęâ½ġääâĀíÇêēäÒàĂ
ĥåµĕµÕåµÕååĕĕąåĕåÕ
0580/33/M/J/24 [Turn over
* 0019655331710 *
5 (a)
(ii) Write down the mathematical name for this type of angle.
................................................. [1]
(b) The diagram shows a pair of parallel lines and a straight line.
Angles a, b, c, d and x are labelled.
a NOT TO
x SCALE
y = ................................................ [1]
ĬÙĊ®Ġ³íÇíÛñĊÀĐ×þ×
© UCLES 2024 ĬĘěáÀĥèÆÙñċìĒĩĔĪèĂ
ĥõåĕõµĥÕĥĥõÕĕÅÅÕąÕ
0580/33/M/J/24
* 0019655331811 *
DO NOT WRITE IN THIS MARGIN
11
, ,
(d)
B
C NOT TO
17° SCALE
O
A
DO NOT WRITE IN THIS MARGIN
................................................. [2]
(f)
NOT TO
18.5 cm SCALE
DO NOT WRITE IN THIS MARGIN
7.4 cm
x°
x = ................................................ [2]
ĬÛĉ¯Ġ³íÇíÛñĊ¿Đ×þ×
© UCLES 2024 ĬĘěãÃĪ×äêô÷ďééĔÚÐĂ
ĥÅąÕõĕŵąĥÕÕÕąÅĕµÕ
0580/33/M/J/24 [Turn over
* 0019655331812 *
(b) Solve.
x
= 18
2
x = ................................................ [1]
(c) Solve.
4x + 12 = 18
................................................. [2]
(e) T = 5r - 6
r = ................................................ [2]
DO NOT WRITE IN THIS MARGIN
ĬÙĉ¯Ġ³íÇíÛñĊ½Ď×Ā×
© UCLES 2024 ĬĘěâÃĤååÍîðĘċą²ÊèĂ
ĥõÕÕµĕÅĕĥÅåÕĕąĥĕåÕ
0580/33/M/J/24
* 0019655331813 *
DO NOT WRITE IN THIS MARGIN
13
, ,
Use this information to write down an equation and solve it to find the value of x.
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
x = ................................................ [5]
DO NOT WRITE IN THIS MARGIN
ĬÛĉ¯Ġ³íÇíÛñĊ½Đ×Ā×
© UCLES 2024 ĬĘĜáËĦéÕìČāÑÏíĦÊØĂ
ĥõåĕõõåõõµõÕĕĥąÕµÕ
0580/33/M/J/24 [Turn over
* 0019655331814 *
(i) On the probability scale, draw an arrow ( ↓) to show the probability that the spinner lands on
the number 2.
0 1 1 [1]
2
(ii) Find the probability that the spinner lands on a prime number.
(iii) Find the probability that the spinner lands on the number 7.
................................................. [1]
# 1 2 3 4
1 1 2 3 4
................................................. [1]
(ii) an integer
DO NOT WRITE IN THIS MARGIN
................................................. [1]
................................................. [1]
ĬÕĉ¯Ġ³íÇíÛñĊ¾ďÖĂ×
© UCLES 2024 ĬĘěãÊĬÖÝÚþĆîóèĢúÐĂ
ĥÕåÕµĕĥÕĕåõĕÕååĕĥÕ
0580/33/M/J/24
* 0019655331815 *
DO NOT WRITE IN THIS MARGIN
15
, ,
Red
1
5
............ Blue
Red
............
............ Blue
DO NOT WRITE IN THIS MARGIN
Blue
............
[2]
(ii) Work out the probability that both of the discs she picks are blue.
................................................. [2]
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
Ĭ×ĉ¯Ġ³íÇíÛñĊ¾čÖĂ×
© UCLES 2024 ĬĘĜäÂĞÚÍßüû»çжúàĂ
ĥÕÕĕõõąµąÕåĕÕÅÅÕõÕ
0580/33/M/J/24 [Turn over
* 0019655331816 *
8 (a)
8.2 cm
NOT TO
5.4 cm SCALE
12.6 cm
(b)
NOT TO
4.5 cm SCALE
b cm
b = ................................................ [2]
............................................ cm [2]
DO NOT WRITE IN THIS MARGIN
ĬÕĉ¯Ġ³íÇíÛñĊÀďÖĄ×
© UCLES 2024 ĬĘĜáÂĨìÜÜöô´ąôĘĪØĂ
ĥĥąĕµõąĕĥõÕĕĕÅĥÕĥÕ
0580/33/M/J/24
* 0019655331817 *
DO NOT WRITE IN THIS MARGIN
17
, ,
(d)
28 cm NOT TO
SCALE
12 cm
......................................... cm 2 [4]
DO NOT WRITE IN THIS MARGIN
DO NOT WRITE IN THIS MARGIN
Ĭ×ĉ¯Ġ³íÇíÛñĊÀčÖĄ×
© UCLES 2024 ĬĘěâÊĢèìÝĄýõÑČÄĪèĂ
ĥĥõÕõĕĥõõąąĕĕåąĕõÕ
0580/33/M/J/24 [Turn over
* 0019655331818 *
9 (a) Line L has a gradient of 4 and passes through the point (0, 3).
y = ................................................ [1]
x -4 -3 -2 -1 0 1 2 3 4
y 10 -2 -5 -5 -2 10
[2]
ĬÕĉ¯Ġ³íÇíÛñĊ½ďØĂ×
© UCLES 2024 ĬĘęáËĦä¾ÖíûĚĩòôÒàĂ
ĥµĥÕµõåĕÅÅÕÕĕĥĥÕÕÕ
0580/33/M/J/24
* 0019655331819 *
DO NOT WRITE IN THIS MARGIN
19
, ,
10
8
DO NOT WRITE IN THIS MARGIN
2
DO NOT WRITE IN THIS MARGIN
–4 –3 –2 –1 0 1 2 3 4 x
–1
–2
–3
–4
DO NOT WRITE IN THIS MARGIN
–5
–6
–7
[4]
(iii) Write down the equation of the line of symmetry of the graph.
................................................. [1]
DO NOT WRITE IN THIS MARGIN
x = ................................................ [1]
Ĭ×ĉ¯Ġ³íÇíÛñĊ½čØĂ×
© UCLES 2024 ĬĘĚâÃĤà®ãċĆÏĊèÒÐĂ
ĥµĕĕõĕÅõÕµąÕĕąąĕÅÕ
0580/33/M/J/24
* 0019655331820 *
BLANK PAGE
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.
Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.
ĬÕĉ¯Ġ³íÇíÛñĊ¿ďØĄ×
© UCLES 2024 ĬĘĚãÃĪÎ»ØąýØďæĆÂèĂ
ĥąÅĕµĕÅÕµĕõÕÕąåĕÕÕ
0580/33/M/J/24
Cambridge IGCSE™
*0123456789*
MATHEMATICS0580/03
Paper 3 Calculator (Core) For examination from 2025
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a scientific calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For π, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 80.
● The number of marks for each question or part question is shown in brackets [ ].
List of formulas
1
Area, A, of triangle, base b, height h. A = 2 bh
1
Volume, V, of pyramid, base area A, height h. V = 3 Ah
1
Volume, V, of cone of radius r, height h. V = 3 rr 2 h
4
Volume, V, of sphere of radius r. V = 3 rr 3
1 The pictogram shows the number of text messages sent by five students in one day.
Matt
Dani
Hana
Ramos
................................................ [1]
.................................................................... [2]
4 × 6 – 2 + 1 = 17
[1]
................................................ [1]
(a) 242
................................................ [1]
(b) 2197 .
3
................................................ [1]
............................................ °C [1]
t
8 W= (7t – 4)
2
W = ............................................... [2]
[2]
10 Calculate.
13.7 + 14.02
− 0.31 + 3 15.625
Give your answer correct to 2 decimal places.
................................................ [2]
11
X
NOT TO
R SCALE
................................................ [1]
................................................ [1]
........................................... cm [2]
.......................................... mm [3]
© Cambridge University Press & Assessment 2022 0580/03/SP/25 [Turn over
8
2 8 8 9
3 2 5 6 6 7 8 8
4 0 1 1 2 3 4 6 7 9
5 1 3 4 5 5 7 8
6 2
................................................ [1]
(b) When the score for another student is included in the diagram the new range is 38.
Town D 50
40
Town C 30
Distance from
Town A (km)
20
Town B
10
Town A 0
09 00 10 00 11 00 12 00 13 00 14 00
Time
(a) Find Jason’s average speed, in kilometres per hour, from Town A to Town B.
(i) Calculate the time Jason takes to travel from Town C to Town D.
Give your answer in hours and minutes.
(c) Find the total time, in minutes, that Jason stopped between Town A and Town D.
(d) Calculate Jason’s overall average speed, in kilometres per hour, from Town A to Town D.
(i) Draw a line on the travel graph to show Lisa’s journey. [2]
(ii) Find the distance from Town A when Lisa and Jason pass each other.
........................................... km [1]
14 (a)
6 cm
4 cm
NOT TO
SCALE
5 cm
(ii) Show that the total surface area of the cuboid is 148 cm2.
[2]
........................................... cm [2]
y
NOT TO
SCALE
(x – 1)
................................................ [3]
........................................... cm [2]
(a) They pay for the shop in the ratio Jo : Mira = 7 : 15.
Mira pays $84 000 more than Jo.
Jo $......................................................
Mira $......................................................
[3]
$................................................ [1]
(ii) Calculate the amount put into the bank account as a percentage of the profit.
............................................. % [2]
(iii) Mira invests $14 000 at a rate of 2.4% per year compound interest.
$................................................ [2]
© Cambridge University Press & Assessment 2022 0580/03/SP/25 [Turn over
16
N = 24 × 32
................................................ [1]
................................................ [2]
................................................ [1]
7 a b c 31
In the sequence, the same number is added each time to obtain the next term.
Find the value of each of the terms a, b and c.
a = .....................................................
b = .....................................................
c = .....................................................
[2]
4 11 18 25 32
................................................ [2]
[2]
................................................ [3]
21
NOT TO
P
SCALE
32° 6.2 cm
....................................................................................................................................................... [1]
PQ =........................................... cm [3]
22
NOT TO
SCALE
5.6 m
1.5 m
Calculate the distance from the top of the ladder to the base of the wall.
............................................. m [3]
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (Cambridge University Press & Assessment) to trace copyright holders, but if any items requiring clearance
have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
Cambridge Assessment International Education is part of Cambridge University Press & Assessment. Cambridge University Press & Assessment is a department
of the University of Cambridge.