0% found this document useful (0 votes)
58 views15 pages

IR2104

The IR2104/IR21044 are high voltage, high-speed power MOSFET and IGBT drivers capable of operating up to 600V with features such as undervoltage lockout, cross-conduction prevention, and matched propagation delay. They offer a gate drive supply range from 10 to 20V and include a floating channel for high-side driving. The document includes specifications, absolute maximum ratings, recommended operating conditions, and dynamic electrical characteristics for these drivers.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
58 views15 pages

IR2104

The IR2104/IR21044 are high voltage, high-speed power MOSFET and IGBT drivers capable of operating up to 600V with features such as undervoltage lockout, cross-conduction prevention, and matched propagation delay. They offer a gate drive supply range from 10 to 20V and include a floating channel for high-side driving. The document includes specifications, absolute maximum ratings, recommended operating conditions, and dynamic electrical characteristics for these drivers.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

Preliminary Data Sheet No.

PD60046I

IR2104/IR21044
HIGH AND LOW SIDE DRIVER
Features Product Summary
• Floating channel designed for bootstrap operation
Fully operational to +600V
VOFFSET 600V max.
Tolerant to negative transient voltage
dV/dt immune
IO+/- 130 mA / 270 mA
• Gate drive supply range from 10 to 20V
VOUT 10 - 20V
• Undervoltage lockout
• 5V Schmitt-triggered input logic ton/off (typ.) 680 & 150 ns
• Cross-conduction prevention logic
• Internally set deadtime Deadtime (typ.) 520 ns
• High side output in phase with input
• Shut down input turns off both channels
• Matched propagation delay for both channels Packages
Description
The IR2104/IR21044 are high voltage, high speed
power MOSFET and IGBT drivers with dependent high 8 Lead SOIC
and low side referenced output channels. Proprietary IR2104S 14 Lead SOIC
IR21044S
HVIC and latch immune CMOS technologies enable
ruggedized monolithic construction. The logic input is
compatible with standard CMOS or LSTTL output. The
output drivers feature a high pulse current buffer stage
designed for minimum driver cross-conduction. The
floating channel can be used to drive an N-channel
power MOSFET or IGBT in the high side configura- 8 Lead PDIP 14 Lead PDIP
tion which operates from 10 to 600 volts. IR2104 IR21044

Typical Connection
up to 600V

VCC

VCC VB
IN IN HO
SD SD VS TO
LOAD

COM LO
IR2104/IR21044
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.

Symbol Definition Min. Max. Units


VB High side floating absolute voltage -0.3 625
VS High side floating supply offset voltage V B - 25 VB + 0.3
VHO High side floating output voltage VS - 0.3 VB + 0.3
VCC Low side and logic fixed supply voltage -0.3 25 V

VLO Low side output voltage -0.3 VCC + 0.3


VIN Logic input voltage (IN & SD ) -0.3 VCC + 0.3
dVs/dt Allowable offset supply voltage transient — 50 V/ns
PD Package power dissipation @ TA ≤ +25°C (8 lead PDIP) — 1.0
(8 lead SOIC) — 0.625
W
(14 lead PDIP) — 1.6
(14 lead SOIC) — 1.0
RthJA Thermal resistance, junction to ambient (8 lead PDIP) — 125
(8 lead SOIC) — 200
°C/W
(14 lead PDIP) — 75
(14 lead SOIC) — 120
TJ Junction temperature — 150
TS Storage temperature -55 150 °C
TL Lead temperature (soldering, 10 seconds) — 300

Recommended Operating Conditions


The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.

Symbol Definition Min. Max. Units


VB High side floating supply absolute voltage VS + 10 VS + 20
VS High side floating supply offset voltage Note 1 600
VHO High side floating output voltage VS VB
V
VCC Low side and logic fixed supply voltage 10 20
VLO Low side output voltage 0 VCC
VIN Logic input voltage (IN & SD ) 0 VCC
TA Ambient temperature -40 125 °C

Note 1: Logic operational for V S of -5 to +600V. Logic state held for VS of -5V to -VBS.

2
IR2104/IR21044
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, C L = 1000 pF and TA = 25°C unless otherwise specified.

Symbol Definition Min. Typ. Max. Units Test Conditions


ton Turn-on propagation delay — 680 820 VS = 0V
toff Turn-off propagation delay — 150 220 VS = 600V
tsd Shutdown propagation delay — 160 220
tr Turn-on rise time — 100 170 ns
tf Turn-off fall time — 50 90
DT Deadtime, LS turn-off to HS turn-on & 400 520 650
HS turn-on to LS turn-off
MT Delay matching, HS & LS turn-on/off — — 60

Static Electrical Characteristics


VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol Definition Min. Typ. Max. Units Test Conditions


VIH Logic “1” (HO) & Logic “0” (LO) input voltage 3 — — VCC = 10V to 20V
VIL Logic “0” (HO) & Logic “1” (LO) input voltage — — 0.8 VCC = 10V to 20V
V
VSD,TH+ SD input positive going threshold 3 — — VCC = 10V to 20V
VSD,TH- SD input negative going threshold — — 0.8 VCC = 10V to 20V
VOH High level output voltage, VBIAS - VO — — 100 IO = 0A
mV
VOL Low level output voltage, VO — — 100 IO = 0A
ILK Offset supply leakage current — — 50 VB = VS = 600V
IQBS Quiescent VBS supply current — 30 55 VIN = 0V or 5V
IQCC Quiescent VCC supply current — 150 270 µA VIN = 0V or 5V
IIN+ Logic “1” input bias current — 3 10 VIN = 5V
IIN- Logic “0” input bias current — — 1 VIN = 0V
VCCUV+ VCC supply undervoltage positive going 8 8.9 9.8
threshold
V
VCCUV- VCC supply undervoltage negative going 7.4 8.2 9
threshold
IO+ Output high short circuit pulsed current 130 210 — VO = 0V
PW ≤ 10 µs
mA
IO- Output low short circuit pulsed current 270 360 — VO = 15V
PW ≤ 10 µs

3
IR2104/IR21044
Functional Block Diagram

VB

Q
HV
LEVEL PULSE R HO
DEAD SHIFT
TIME FILTER S
IN
PULSE VS
GEN
UV
DETECT VCC
v15V
cc

SD LO
DEAD
TIME

COM

4
IR2104/IR21044

Lead Definitions
Symbol Description
IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
SD Logic input for shutdown
VB High side floating supply
HO High side gate drive output
VS High side floating supply return
VCC Low side and logic fixed supply
LO Low side gate drive output
COM Low side return

Lead Assignments

1 VCC VB 8 1 VCC VB 8
2 IN HO 7 2 IN HO 7

3 SD VS 6 3 SD VS 6

4 COM LO 5 4 COM LO 5

8 Lead PDIP 8 Lead SOIC

IR2104 IR2104S

1 14 1 14

2 VCC 13 2 VCC 13

3 IN VB 12 3 IN VB 12

4 SD HO 11 4 SD HO 11

5 COM VS 10 5 COM VS 10

6 LO 9 6 LO 9

7 8 7 8

14 Lead PDIP 14 Lead SOIC

IR21044 IR21044S
5
IR2104/IR21044

8 Lead PDIP 01-3003 01

8 Lead SOIC 01-0021 08

6
IR2104/IR21044

14 Lead PDIP 01-3002 03

14 Lead SOIC (narrow body) 01-3063 00

7
IR2104/IR21044

IN IN(LO)
50% 50%
SD
IN(HO)
ton tr toff tf

HO 90% 90%

LO LO
HO 10% 10%

Figure 1. Input/Output Timing Diagram Figure 2. Switching Time Waveform Definitions

HIN 50% 50%


SD LIN
50%

90%
tsd

HO 90% HO 10%
LO DT DT
LO 90%

Figure 3. Shutdown Waveform Definitions


10%

Figure 4. Deadtime Waveform Definitions

IN (LO)
50% 50%
IN (HO)

LO HO

10%

MT MT

90%

LO HO

Figure 5. Delay Matching Waveform Definitions

8
IR2104/IR21044

1400 1400
1200

Turn-On Delay Time (ns)


1200
Turn-On Delay Time (ns)

Max.
1000 1000
Ma x.
800 800
Typ.
600 600
Typ. 400
400
200 200

0 0
-50 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 6A. Turn-On Time vs Voltage Figure 6B. Turn-On Time vs Voltage

50 0
500
Turn-Off Delay Time (ns)

Turn-Off Delay Time (ns)

40 0 400

30 0 300 Max.

20 0 Max . 200
Typ.
10 0 100
Ty p.

0 0
- 50 - 25 0 25 50 75 10 0 12 5 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 7A. Turn-Off Time vs Temperature Figure 7B. Turn-Off Time vs Voltage

500 500
Shutdown Delay Time (ns)

Shutdown Delay Time (ns)

400 400

300 Max.
300

200 Max .
200
Typ.
100 100
Ty p.
0 0
-50 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 8A. Shutdown Time vs Temperature Figure 8B. Shutdown Time vs Voltage

9
IR2104/IR21044

500 500

Turn-On Rise Time (ns)


Turn-On Rise Time (ns)

400 400

300 300
Max .
200 Max . 200

100 100
Ty p .
Ty p .
0 0
- 50 - 25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 9A. Turn-On Rise Time Figure 9B. Turn-On Rise Time vs Voltage
vs Temperature

200 200
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)

150 150

Max .
100 100
Max .

50 50
Ty p.
Ty p .
0 0
- 50 - 25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 10A. Turn-Off Fall Time Figure 10B. Turn-Off Fall Time vs Voltage
vs Temperature

1 40 0 1400

1 20 0 1200
Deadtime (ns)

1 00 0 1000
Deadtime (ns)

Max .
8 00 800
Ma x .
6 00 600
Ty p.
Ty p .
4 00 400
Min.
2 00 Min . 200

0 0
-50 -25 0 25 50 75 1 00 1 25 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 11A. Deadtime vs Temperature Figure 11B. Deadtime vs Voltage

10
IR2104/IR21044

8 8
7 7
6 6

Input V oltage (V )
Input V oltage (V )

5 5
4 Min. 4 Min.
3 3
2 2
1 1
0 0
-50 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) Vcc Supply Voltage (V)

Figure 12A. Logic "1" (HO) & Logic “0” (LO) Figure 12B. Logic "1" (HO) & Logic “0” (LO)
& Inactive SD Input Voltage & Inactive SD Input Voltage
vs Temperature vs Voltage
4 4

3.2 3.2
Input Voltage (V)

Input Voltage (V)

2.4 2.4

1.6 1.6
Max. Max.
0.8 0.8

0 0
-50 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) Vcc Supply Voltage (V)

Figure 13A. Logic "0" (HO) & Logic “1” (LO) Figure 13B. Logic "0" (HO) & Logic “1” (LO)
& Active SD Input Voltage & Active SD Input Voltage
vs Temperature vs Voltage
1 1
High Level Output Voltage (V)
High Level Output Voltage (V)

0.8 0.8

0.6 0.6

0.4 0.4

Max . Max .
0.2 0.2

0 0
- 50 - 25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) Vcc Supply Voltage (V)

Figure 14A. High Level Output Figure 14B. High Level Output vs Voltage
vs Temperature

11
IR2104/IR21044

1 1

Low Level Output Voltage (V)


Low Level Output Voltage (V)

0.8 0 .8

0.6 0 .6

0.4 0 .4

0.2 0 .2
Max . Max .

0 0
- 50 - 25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) Vcc Supply Voltage (V)

Figure 15A. Low Level Output Figure 15B. Low level Output vs Voltage
vs Temperature
Offset Supply Leakage Current (µA)

Offset Supply Leakage Current (µA)

500 500

400 400

300 300

200 200

100 100
Max . Max.

0 0
-50 -25 0 25 50 75 100 125 0 100 200 300 400 500 600
Temperature (°C) VB Boost Voltage (V)

Figure 16A. Offset Supply Current Figure 16B. Offset Supply Current
vs Temperature vs Voltage

15 0 150
VBS Supply Current (µA)

VBS Supply Current (µA)

12 0 120

90 90

60 60
Max . Max .

30 30

Ty p. Ty p.
0 0
- 50 - 25 0 25 50 75 10 0 12 5 10 12 14 16 18 20
Temperature (°C) VBS Floating Supply Voltage (V)

Figure 17A. VBS Supply Current Figure 17B. VBS Supply Current
vs Temperature vs Voltage

12
IR2104/IR21044

700 700
Vcc Supply Current (µA)

Vcc Supply Current (µA)


600 600

500 500

400 400

300 Max . 300


Max .
200 200

100 Ty p . 100
Ty p.
0 0
- 50 - 25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) Vcc Supply Voltage (V)

Figure 18A. Vcc Supply Current Figure 18B. Vcc Supply Current vs Voltage
vs Temperature

30 30
Logic 1” Input Current (µA)

Logic 1” Input Current (µA)

25 25

20 20

15 15

10 10 Max .
Max .
5 5
Ty p. Ty p.

0 0
- 50 - 25 0 25 50 75 10 0 12 5 10 12 14 16 18 20
Temperature (°C) Vcc Supply Voltage (V)

Figure 19A. Logic"1" Input Current Figure 19B. Logic"1" Input Current
vs Temperature vs Voltage

5 5
Logic "0" Input Current (uA)
Logic “0” Input Current (µA)

4 4

3 3

2 2
Max. Max.
1 1

0 0
-50 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) VCC Supply Voltage (V)

Figure 20A. Logic "0" Input Current Figure 20B. Logic "0" Input Current
vs Temperature vs Voltage

13
IR2104/IR21044

11 11
Max .

VCC UVLO Threshold - (V)


VCC UVLO Threshold +(V)

10 10
Max.
Ty p.
9 9
Min . Typ.
8 8

7 7 Min.

6 6
-50 -25 0 25 50 75 10 0 12 5 -50 -25 0 25 50 75 100 125
Temperature (°C) Temperature (°C)

Figure 21A. Vcc Undervoltage Threshold(+) Figure 21B. Vcc Undervoltage Threshold(-)
vs Temperature vs Temperature

500 500
Output Source Current (mA)

Output Source Current (mA)

400 400

Typ.
300 300

200 200
Typ.
100 Min. 100
Min.
0 0
-50 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 22A. Output Source Current Figure 22B. Output Source Current
vs Temperature vs Voltage

70 0 700
60 0 600
Output Sink Current (mA)

Output Sink Current (mA)

50 0 Ty p. 500
40 0 400
Typ.
30 0 300
Min.
20 0 200
Min.
10 0 100
0 0
-50 -25 0 25 50 75 10 0 12 5 10 12 14 16 18 20
Temperature (°C) VBIAS Supply Voltage (V)

Figure 23A. Output Sink Current Figure 23B. Output Sink Current vs Voltage
vs Temperature

14
IR2104/IR21044

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2 Tel: (905) 453-2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: 65 838 4630
IR TAIWAN: 16 Fl. Suite D..207, Sec.2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/ Data and specifications subject to change without notice. 3/22/99
15

You might also like