0% found this document useful (0 votes)
27 views4 pages

7 PRGM

The document outlines a program that demonstrates Linear Regression using the California Housing Dataset and Polynomial Regression using the Auto MPG Dataset. It includes functions to train models, make predictions, and visualize results with scatter plots. The program also calculates and displays the Mean Squared Error and R^2 Score for both regression analyses.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
27 views4 pages

7 PRGM

The document outlines a program that demonstrates Linear Regression using the California Housing Dataset and Polynomial Regression using the Auto MPG Dataset. It includes functions to train models, make predictions, and visualize results with scatter plots. The program also calculates and displays the Mean Squared Error and R^2 Score for both regression analyses.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 4

7.

Develop a program to demonstrate the working of Linear Regression and


Polynomial Regression. Use Boston Housing Dataset for Linear Regression
and Auto MPG Dataset (for vehicle fuel efficiency prediction) for Polynomial
Regression.

mport numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures, StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.metrics import mean_squared_error, r2_score

def linear_regression_california():

housing = fetch_california_housing(as_frame=True)

X = housing.data[["AveRooms"]]

y = housing.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,


random_state=42)

model = LinearRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

plt.scatter(X_test, y_test, color="blue", label="Actual")

plt.plot(X_test, y_pred, color="red", label="Predicted")

plt.xlabel("Average number of rooms (AveRooms)")

plt.ylabel("Median value of homes ($100,000)")

plt.title("Linear Regression - California Housing Dataset")

plt.legend()

plt.show()

print("Linear Regression - California Housing Dataset")

print("Mean Squared Error:", mean_squared_error(y_test, y_pred))

print("R^2 Score:", r2_score(y_test, y_pred))

def polynomial_regression_auto_mpg():

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-
mpg/auto-mpg.data"

column_names = ["mpg", "cylinders", "displacement", "horsepower",


"weight", "acceleration", "model_year", "origin"]

data = pd.read_csv(url, sep='\s+', names=column_names, na_values="?")


data = data.dropna()

X = data["displacement"].values.reshape(-1, 1)

y = data["mpg"].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,


random_state=42)

poly_model = make_pipeline(PolynomialFeatures(degree=2),
StandardScaler(), LinearRegression())

poly_model.fit(X_train, y_train)

y_pred = poly_model.predict(X_test)

plt.scatter(X_test, y_test, color="blue", label="Actual")

plt.scatter(X_test, y_pred, color="red", label="Predicted")

plt.xlabel("Displacement")

plt.ylabel("Miles per gallon (mpg)")

plt.title("Polynomial Regression - Auto MPG Dataset")

plt.legend()

plt.show()

print("Polynomial Regression - Auto MPG Dataset")


print("Mean Squared Error:", mean_squared_error(y_test, y_pred))

print("R^2 Score:", r2_score(y_test, y_pred))

if __name__ == "__main__":

print("Demonstrating Linear Regression and Polynomial Regression\n")

linear_regression_california()

polynomial_regression_auto_mpg()

You might also like