0% found this document useful (0 votes)
10 views6 pages

Uu 224

The document outlines a thermodynamic analysis of a superheated Rankine cycle, detailing the calculations for various points in the cycle including pressure, temperature, enthalpy, and entropy of water. It provides formulas for work done by the pump and turbine, heat input and output, as well as the net work and thermal efficiency of the cycle. The results include specific values for each parameter, indicating the performance of the cycle.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views6 pages

Uu 224

The document outlines a thermodynamic analysis of a superheated Rankine cycle, detailing the calculations for various points in the cycle including pressure, temperature, enthalpy, and entropy of water. It provides formulas for work done by the pump and turbine, heat input and output, as well as the net work and thermal efficiency of the cycle. The results include specific values for each parameter, indicating the performance of the cycle.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

File:yas224.

EES 04/05/2025 21:23:58 Page 1


EES Ver. 10.561: #3905: DownLoadLy.iR, https://downloadly.ir?¬???«™?—?™???????””‘—–??™›“??‹???™•

1: "cycle de Hirn à surchauffe"


2: "Données"
3: "Point 1"
4: x[1]=0
5: P[1]=P[6]
6: h[1]=Enthalpy(water;P=P[1];x=x[1])
7: s[1]=Entropy(water;P=P[1];x=x[1])
8: T[1]=Temperature(water;P=P[1];x=x[1])
9: v[1]=Volume(water;P=P[1];x=x[1])
10: "Point 2"
11: P[2]=P[3]
12: W_p=v[1]*(P[2]-P[1])
13: h[2]=h[1]+W_p
14: s[2]=Entropy(water;h=h[2];P=P[2])
15: T[2]=Temperature(water;h=h[2];P=P[2])
16: x[2]=0
17: "Point 3"
18: P[3]=14,5e3[kPa]
19: T[3]=550[C]
20: h[3]=Enthalpy(water;T=T[3];P=P[3])
21: s[3]=Entropy(water;T=T[3];P=P[3])
22: x[3]=Quality(water;T=T[3];s=s[3])
23: "Point 4"
24: P[4]=3,5e3[Kpa]
25: s[4]=s[3]
26: T[4]=Temperature(Water;p=p[4];s=s[4])
27: h[4]=Enthalpy(Water;p=p[4];s=s[4])
28: x[4]=Quality(water;T=T[4];s=s[4])
29: "Point 5"
30: T[5]=550[C]
31: p[5]=p[4]
32: x[5]=Quality(water;T=T[5];s=s[5])
33: h[5]=Enthalpy(Water;T=T[5];p=p[5])
34: s[5]=Entropy(Water;T=T[5];p=p[5])
35: "Point 6"
36: p[6]=10[Kpa]
37: s[6]=s[5]
38: T[6]=Temperature(Water;p=p[6];s=s[6])
39: h[6]=Enthalpy(Water;p=p[6];s=s[6])
40: x[6]=Quality(Water;p=p[6];s=s[6])
41: "Solution"
File:yas224.EES 04/05/2025 21:23:59 Page 2
EES Ver. 10.561: #3905: DownLoadLy.iR, https://downloadly.ir?¬???«™?—?™???????””‘—–??™›“??‹???™•

42: " le travail total de la pompe"


43: W_pt=(h[2]-h[1])
44: "Chaudière"
45: Q_in=((h[3]-h[2])+(h[5]-h[4]))
46: "Turbine"
47: W_t=((h[3]-h[4])+(h[5]-h[6]))
48: "Condenseur"
49: Q_out=(h[6]-h[1])
50: " Le travail net"
51: W_net=W_t-W_p
52: " le rendement"
53: Eta_th=(W_net/Q_in)*100

cycle de Hirn à surchauffe

Données

Point 1

x1 = 0

P1 = P6

h 1 = h Water ; P = P 1 ; x = x 1

s 1 = s Water ; P = P 1 ; x = x 1

T 1 = T Water ; P = P 1 ; x = x 1

v 1 = v Water ; P = P 1 ; x = x 1

Point 2

P2 = P3

W p = v1 · P2 – P1

h2 = h1 + W p

s 2 = s Water ; h = h 2 ; P = P 2
File:yas224.EES 04/05/2025 21:23:59 Page 3
EES Ver. 10.561: #3905: DownLoadLy.iR, https://downloadly.ir?¬???«™?—?™???????””‘—–??™›“??‹???™•

T 2 = T Water ; h = h 2 ; P = P 2

x2 = 0

Point 3

P 3 = 14500 [kPa]

T 3 = 550 [C]

h 3 = h Water ; T = T 3 ; P = P 3

s 3 = s Water ; T = T 3 ; P = P 3

x 3 = x Water ; T = T 3 ; s = s 3

Point 4

P 4 = 3500 [kPa]

s4 = s3

T 4 = T Water ; P = P 4 ; s = s 4

h 4 = h Water ; P = P 4 ; s = s 4

x 4 = x Water ; T = T 4 ; s = s 4

Point 5

T 5 = 550 [C]

p5 = P4

x 5 = x Water ; T = T 5 ; s = s 5

h 5 = h Water ; T = T 5 ; P = p 5

s 5 = s Water ; T = T 5 ; P = p 5

Point 6
File:yas224.EES 04/05/2025 21:24:00 Page 4
EES Ver. 10.561: #3905: DownLoadLy.iR, https://downloadly.ir?¬???«™?—?™???????””‘—–??™›“??‹???™•

P 6 = 10 [kPa]

s6 = s5

T 6 = T Water ; P = P 6 ; s = s 6

h 6 = h Water ; P = P 6 ; s = s 6

x 6 = x Water ; P = P 6 ; s = s 6

Solution

le travail total de la pompe

W pt = h 2 – h 1

Chaudière

Q in = h 3 – h 2 + h 5 – h 4

Turbine

W t = h3 – h4 + h5 – h6

Condenseur

Q out = h6 – h1

Le travail net

W net = Wt – Wp

le rendement

W net
h th = · 100
Q in
File:yas224.EES 04/05/2025 21:24:00 Page 5
EES Ver. 10.561: #3905: DownLoadLy.iR, https://downloadly.ir?¬???«™?—?™???????””‘—–??™›“??‹???™•

SOLUTION
Unit Settings: SI C kPa kJ mass deg
hth = 43,87 Qin = 3780 Qout = 2122 W net = 1659 W p = 14,64
W pt = 14,64 W t = 1673

27 potential unit problems were detected.

Arrays Table: Main


hi Pi si Ti vi xi
[kPa] [c]

1 191,8 10 0,6492 45,81 0,00101 0


2 206,4 14500 0,6493 46,3 0
3 3456 14500 6,544 550 100
4 3034 3500 6,544 321,4 100
5 3565 3500 7,301 550 100
6 2314 10 7,301 45,81 0,887

There are a total of 38 equations.


Block Rel. Res. Abs. Res. Units Calls Time(ms) Equations
0 0.000E+00 0.000E+00 OK 0 0 x[1]=0
0 0.000E+00 0.000E+00 OK 0 0 x[2]=0
0 0.000E+00 0.000E+00 ? 0 0 P[3]=14,5e3[kPa]
0 0.000E+00 0.000E+00 ? 0 0 T[3]=550[C]
0 0.000E+00 0.000E+00 ? 0 0 P[4]=3,5e3[Kpa]
0 0.000E+00 0.000E+00 ? 0 0 T[5]=550[C]
0 0.000E+00 0.000E+00 ? 0 0 P[6]=10[Kpa]
0 0.000E+00 0.000E+00 ? 4 0 h[3]=Enthalpy(water;T=T[3];P=P[3])
0 0.000E+00 0.000E+00 ? 4 0 s[3]=Entropy(water;T=T[3];P=P[3])
0 0.000E+00 0.000E+00 ? 4 0 x[3]=Quality(water;T=T[3];s=s[3])
0 0.000E+00 0.000E+00 OK 4 0 s[4]=s[3]
0 0.000E+00 0.000E+00 ? 4 0 T[4]=Temperature(Water;p=p[4];s=s[4])
0 0.000E+00 0.000E+00 ? 4 0 h[4]=Enthalpy(Water;p=p[4];s=s[4])
0 0.000E+00 0.000E+00 ? 4 15 x[4]=Quality(water;T=T[4];s=s[4])
0 0.000E+00 0.000E+00 ? 4 0 p[5]=p[4]
0 0.000E+00 0.000E+00 ? 4 0 h[5]=Enthalpy(Water;T=T[5];p=p[5])
0 0.000E+00 0.000E+00 ? 4 0 s[5]=Entropy(Water;T=T[5];p=p[5])
0 0.000E+00 0.000E+00 OK 4 0 s[6]=s[5]
File:yas224.EES 04/05/2025 21:24:01 Page 6
EES Ver. 10.561: #3905: DownLoadLy.iR, https://downloadly.ir?¬???«™?—?™???????””‘—–??™›“??‹???™•

0 0.000E+00 0.000E+00 ? 4 0 T[6]=Temperature(Water;p=p[6];s=s[6])


0 0.000E+00 0.000E+00 ? 4 0 h[6]=Enthalpy(Water;p=p[6];s=s[6])
0 0.000E+00 0.000E+00 ? 4 15 x[6]=Quality(Water;p=p[6];s=s[6])
0 0.000E+00 0.000E+00 OK 4 0 W_t=((h[3]-h[4])+(h[5]-h[6]))
0 0.000E+00 0.000E+00 ? 4 0 P[1]=P[6]
0 0.000E+00 0.000E+00 ? 4 0 h[1]=Enthalpy(water;P=P[1];x=x[1])
0 0.000E+00 0.000E+00 ? 4 0 s[1]=Entropy(water;P=P[1];x=x[1])
0 0.000E+00 0.000E+00 ? 4 0 T[1]=Temperature(water;P=P[1];x=x[1])
0 0.000E+00 0.000E+00 ? 4 0 v[1]=Volume(water;P=P[1];x=x[1])
0 0.000E+00 0.000E+00 ? 4 0 P[2]=P[3]
0 0.000E+00 0.000E+00 ? 4 0 W_p=v[1]*(P[2]-P[1])
0 0.000E+00 0.000E+00 OK 4 0 h[2]=h[1]+W_p
0 0.000E+00 0.000E+00 ? 4 0 s[2]=Entropy(water;h=h[2];P=P[2])
0 0.000E+00 0.000E+00 ? 4 0 T[2]=Temperature(water;h=h[2];P=P[2])
0 0.000E+00 0.000E+00 ? 4 15 x[5]=Quality(water;T=T[5];s=s[5])
0 0.000E+00 0.000E+00 OK 4 0 W_pt=(h[2]-h[1])
0 0.000E+00 0.000E+00 OK 4 0 Q_in=((h[3]-h[2])+(h[5]-h[4]))
0 0.000E+00 0.000E+00 OK 4 0 Q_out=(h[6]-h[1])
0 0.000E+00 0.000E+00 OK 4 0 W_net=W_t-W_p
0 0.000E+00 0.000E+00 OK 4 0 Eta_th=(W_net/Q_in)*100

You might also like