Haque 2017
Haque 2017
To cite this article: Sk Moquammel Haque & Biswajit Ghosh (2018) An improved micropropagation
protocol for the recalcitrant plant Capsicum – a study with ten cultivars of Capsicum spp.
(C. annuum, C. chinense, and C. frutescens) collected from diverse geographical regions of
India and Mexico, The Journal of Horticultural Science and Biotechnology, 93:1, 91-99, DOI:
10.1080/14620316.2017.1345331
Article views: 68
absent; in vitro propagation is the only alternative way 1.04 kg cm–2 pressure and 121°C for 18 min. All cultures
to produce large quantities of true-to-type plants of the were incubated at 22 ± 2°C under the 16-h light and 8-h
elite genotype that do not depend on seasons. Gunay dark cycle with the light intensity of 50 μmol m–2 s–1
and Rao (1978) first reported the in vitro regeneration provided by Philips cool-white fluorescent lamps in an
of Capsicum over three decades ago; since then, several environment-controlled culture room.
researchers have attempted to develop and improve the
in vitro methods for propagating Capsicum spp. Plant materials
(Bairwa, Kachhwaha, & Kothari, 2012; Barrales-López, All the 10 cultivars of Capsicum spp. (Capsi-1 to 10)
Robledo-Paz, Trejo, Espitia-Rangel, & Rodríguez-De La used in the present experiment along with their scien-
O, 2015; Christopher & Rajam, 1994; Dabauza & Peña, tific name, local name/cultivar, area of collection, geo-
2001; Kehie et al., 2012, 2013; Kundu et al., 2015b; graphic locations are summarized in Table 1. Fresh
Mohamed & Alsadon, 2011; Orlińska & Nowaczyk, and ripened red chili was collected from fields or local
2015; Sanatombi & Sharma, 2008a, 2008b). But unlike markets of seven different regions in India (Figure 1).
other Solanaceous species, Capsicum has been a recal- The seeds of these ripened fruits were used for in vitro
citrant species in terms of in vitro organogenesis and culture establishment. Seeds of the Mexican cultivars
plant regeneration (Kothari, Joshi, Kachhwaha, & were collected from the Chile Pepper Institute, New
Ochoa-Alejo, 2010; Máthé, Hassan, & Kader, 2015). It Mexico State University, Mexico (Figure 1).
has been challenging to establish efficient, reliable, and
broad-spectrum protocols for members of this recalci- Surface sterilization and in vitro seed germination
trant genus Capsicum (Kehie et al., 2013). However, all The seeds of all 10 cultivars were surface-sterilized in
of the previous reports deal with any one or very few 2.5 % (w/v) systematic fungicide (Bavistin®) for
cultivars of Capsicum. Considering this, the present 12 min, then in a 5.0 % (v/v) liquid detergent
study was designed with 10 cultivars belonging to (tween-20) for 5 min, then in 0.1 % (w/v) mercuric
three different species of Capsicum (C. annuum, C. chloride (HgCl2) for 10 min, and rinsed three times
chinense, and C. frutescens), and the addition of spermi- (5 min each) in sterile distilled water to remove traces
dine (SDN) with the aim of improving the micropro- of HgCl2. Then, surface-sterilized seeds were inocu-
pagation methods which would possibly help in lated aseptically on half-strength of the MS basal
understanding the in vitro regeneration of this recalci- medium and kept in a dark chamber for germination.
trant genus.
Table 1. Detail of the ten cultivars of Capsicum spp. used in this experiment.
Collection area /Source
Code name Local name (cultivar) Species District and State Country Geographic location (latitude & longitude)
Capsi-1 Bhut Jolokia C. chinense Silchar, Assam India 24°49′N 92°48′E
Capsi-2 Dhani Lanka C. frutescens Nadia, West Bengal India 23°24′N 88°30′E
Capsi-3 Kull Lanka C. frutescens Cooch Behar, West Bengal India 26°22′N 89°29′E
Capsi-4 Beldanga Lanka C. annuum Murshidabad, West Bengal India 24°08′N 88°16′E
Capsi-5 Jhanti Lanka C. annuum Howrah, West Bengal India 22°36′N 87°92′E
Capsi-6 Bullet Lanka C. annuum Malda, West Bengal India 25°00′N 88°09′E
Capsi-7 Acchar Lanka C. annuum Shamshabad, Hyderabad India 17°15′N 78°23′E
Capsi-8 Serrano C. annuum The Chile Paper Institute, Las Cruces Mexico 32°16′N 106°44′W
Capsi-9 deArbol C. annuum The Chile Paper Institute, Las Cruces Mexico 32°16′N 106°44′W
Capsi-10 NuMex Mirasol C. annuum The Chile Paper Institute, Las Cruces Mexico 32°16′N 106°44′W
THE JOURNAL OF HORTICULTURAL SCIENCE AND BIOTECHNOLOGY 93
Figure 1. Fruits of seven Indian cultivars of Capsicum and three packets of seeds of the Mexican cultivars of Capsicum.
Table 2. Effect of Spermidine (SDN) on in vitro shoot multiplication of ten different cultivars of Capsicum spp. cultured on MS medium suplimented with 6 mg l−l BAP or KIN. (Data collected after 60
days of implantation).
Total number of shoots induced per nodal explant after 60 days of implantation
BAP mg l–l KIN mg l–l SDN mM Capsi-1 Capsi-2 Capsi-3 Capsi-4 Capsi- 5 Capsi-6 Capsi-7 Capsi-8 Capsi-9 Capsi-10
6.0 - - 8.6 ± 0.56d 8.2 ± 0.38de 7.7 ± 0.42de 5.3 ± 0.36c 9.1 ± 0.48de 4.5 ± 0.52bcd 5.6 ± 0.42a 4.9 ± 0.26bc 4.0 ± 0.37b 5.5 ± 0.40bc
6.0 - 1.0 10.2 ± 0.45e 9.3 ± 0.55def 8.6 ± 0.51ef 5.9 ± 0.51d 10.4 ± 0.51ef 5.0 ± 0.62cd 6.3 ± 0.58b 6.2 ± 0.38cde 5.1 ± 0.48cd 6.6 ± 0.47d
6.0 - 1.5 10.9 ± 0.62ef 9.6 ± 0.51ef 9.0 ± 0.63f 6.1 ± 0.42d 10.7 ± 0.37ef 5.4 ± 0.54d 6.8 ± 0.36c 7.2 ± 0.44de 5.3 ± 0.54d 7.0 ± 0.36de
6.0 - 2.0 11.8 ± 0.73f 10.4 ± 0.42f 9.2 ± 0.65f 6.5 ± 0.52de 11.2 ± 0.68f 5.7 ± 0.51de 7.4 ± 0.25d 7.4 ± 0.54e 5.4 ± 0.62d 7.3 ± 0.52de
6.0 - 2.5 11.4 ± 0.71ef 10.1 ± 0.41ef 8.9 ± 0.58ef 6.9 ± 0.44e 10.5 ± 0.49ef 6.1 ± 0.48e 6.4 ± 0.38abc 6.8 ± 0.43de 5.0 ± 0.51cd 7.6 ± 0.38e
S. M. HAQUE AND B. GHOSH
6.0 - 3.0 9.6 ± 0.59de 8.7 ± 0.47de 8.2 ± 0.55e 5.8 ± 0.41cde 9.7 ± 0.36e 5.5 ± 0.42d 5.9 ± 0.45ab 5.4 ± 0.51c 4.3 ± 0.35bc 6.3 ± 0.55cd
- 6.0 - 4.3 ± 0.52a 3.8 ± 0.56a 4.1 ± 0.46a 3.6 ± 0.35a 5.1 ± 0.42a 3.3 ± 0.36a 5.7 ± 0.41a 3.7 ± 0.35a 3.2 ± 0.40a 4.2 ± 0.62a
6.0 1.0 6.6 ± 0.62bc 4.9 ± 0.34b 5.0 ± 0.44b 4.5 ± 0.62b 5.8 ± 0.28ab 3.8 ± 0.52abc 6.3 ± 0.36b 4.6 ± 0.28b 3.8 ± 0.43b 5.0 ± 0.56b
- 6.0 1.5 7.1 ± 0.43c 5.5 ± 0.51bc 5.4 ± 0.50bc 4.7 ± 0.51bc 5.9 ± 0.51ab 4.0 ± 0.29b 6.7 ± 0.33c 4.9 ± 0.34bc 4.2 ± 0.24bc 5.5 ± 0.50bc
- 6.0 2.0 7.7 ± 0.24cd 6.1 ± 0.38bc 6.9 ± 0.33d 5.1 ± .28c 6.2 ± 0.61b 4.3 ± 0.36bc 7.3 ± 0.56d 5.5 ± 0.26c 4.4 ± 0.15bcd 5.8 ± 0.57c
- 6.0 2.5 6.8 ± 0.31bcd 5.1 ± 0.25b 5.8 ± 0.45bc 5.0 ± 0.53bcd 5.8 ± 0.57ab 4.5 ± 0.42bc 6.4 ± 0.43abc 5.1 ± 0.29bc 4.0 ± 0.26b 6.0 ± 0.51c
- 6.0 3.0 5.4 ± 0.45b 4.0 ± 0.42a 4.3 ± 0.39a 4.2 ± 0.46b 5.3 ± 0.54a 4.8 ± 0.37b 6.0 ± 0.38ab 4.2 ± 0.32ab 3.3 ± 0.39a 5.2 ± 0.46abc
Each value represents the mean ± standard error, n = 30 (3 sets, 10 samples in each set). Mean followed by the same letters in each column are not significantly different at P ≤ 0.05 according to Tukey’s multiple range tests.
Table 3. Effect of cytokinin and auxin on in vitro shoots multiplication of ten different cultivars of Capsicum spp. cultured on MS medium suplimented with 2 mM spermidine. (Data collected after
60 days of implantation).
Total number of shoots induced per nodal explant after 60 days of implantation
BAP mg l–l KIN mg l–l IAA mg l–l Capsi-1 Capsi-2 Capsi-3 Capsi-4 Capsi- 5 Capsi-6 Capsi-7 Capsi-8 Capsi-9 Capsi-10
- - - 1.7 ± 0.21a 1.6 ± 0.34a 1.9 ± 0.27a 1.5 ± 0.08a 1.8 ± 0.17a 1.6 ± 0.08a 1.2 ± 0.06a 1.1 ± 0.04a 1.3 ± 0.03a 0a
2.0 - - 6.2 ± 0.57c 5.4 ± 0.33c 4.5 ± 0.34b 3.3 ± 0.25ab 4.3 ± 0.32bc 2.9 ± 0.06b 3.5 ± 0.15bc 3.6 ± 0.23b 2.6 ± 0.12ab 2.2 ± 0.33b
4.0 - - 9.4 ± 0.48de 7.3 ± 0.25d 6.8 ± 0.54bc 4.2 ± 0.34b 8.8 ± 0.41ef 4.2 ± 0.15bc 5.7 ± 0.35cd 5.8 ± 0.27cd 4.2 ± 0.35bc 4.9 ± 0.32cd
6.0 - - 11.8 ± 0.73ef 10.4 ± 0.42f 9.2 ± 0.65cd 6.5 ± 0.52cd 11.2 ± 0.68g 5.7 ± 0.51cd 7.4 ± 0.25e 7.4 ± 0.54de 5.4 ± 0.62cd 7.3 ± 0.52e
8.0 - - 10.7 ± 0.65e 9.7 ± 0.41ef 8.3 ± 0.53c 7.3 ± 0.36de 9.4 ± 0.82f 7.1 ± 0.55de 9.2 ± 0.26fg 7.1 ± 0.62de 6.3 ± 0.33de 8.8 ± 0.15f
10.0 - - 8.9 ± 0.45d 6.3 ± 0.36cd 6.1 ± 0.51bc 6.4 ± 0.25cd 8.1 ± 0.67e 7.8 ± 0.38e 8.6 ± 0.24f 4.8 ± 0.54bcd 4.8 ± 0.54bcd 6.4 ± 0.24de
- 2.0 - 4.1 ± 0.32bc 3.3 ± 0.17b 2.6 ± 0.22a 2.7 ± 0.45ab 3.4 ± 0.56b 2.5 ± 0.56ab 2.9 ± .52b 2.2 ± 0.05ab 2.2 ± 0.35ab 2.7 ± 0.26b
- 4.0 - 6.3 ± 0.36c 4.8 ± 0.25bc 5.1 ± 0.28b 3.9 ± 0.26b 4.3 ± 0.25bc 3.1 ± 0.45b 5.2 ± 0.25cd 4.1 ± 0.28bc 3.5 ± 0.12b 4.2 ± 0.55c
- 6.0 - 7.7 ± 0.24cd 6.1 ± 0.38cd 6.9 ± 0.33bc 5.1 ± .28bc 6.2 ± 0.61cd 4.3 ± 0.36bc 7.3 ± 0.56e 5.5 ± 0.26cd 4.4 ± 0.15bc 5.8 ± 0.57d
- 8.0 - 8.6 ± 0.41d 7.5 ± 0.32de 8.4 ± 0.42c 6.6 ± 0.62cd 8.1 ± 0.28e 4.9 ± 0.25c 8.5 ± 0.27f 6.4 ± 0.56d 5.8 ± 0.27cde 7.1 ± 0.68e
- 10.0 - 9.2 ± 0.52de 6.8 ± 0.29cde 8.8 ± 0.47cd 7.1 ± 0.56de 8.9 ± 0.60ef 5.6 ± 0.58cd 7.8 ± 0.85ef 7.0 ± 0.57de 5.5 ± 0.36cd 6.5 ± 0.15de
6.0 - 0.5 13.3 ± 0.56fg 11.9 ± 0.62g 11.9 ± 0.84e 6.8 ± 0.45cd 12.7 ± 0.84gh 6.7 ± 0.48d 9.9 ± 0.56g 9.7 ± 0.48fg 8.1 ± 0.25f 11.3 ± 0.81gh
8.0 - 0.5 12.5 ± 0.74f 11.2 ± 0.74fg 11.3 ± 0.78de 7.6 ± 0.26de 10.8 ± 0.87fg 7.4 ± 0.69de 11.2 ± 0.25gh 9.2 ± 0.75f 8.4 ± 0.28fg 11.9 ± 0.48h
6.0 - 1.0 14.2 ± 0.68g 13.5 ± 0.95h 12.5 ± 0.93ef 7.7 ± 0.61de 15.3 ± 0.69i 7.2 ± 0.80de 10.9 ± 0.98gh 10.1 ± 0.59g 8.2 ± 0.42f 10.0 ± 0.85g
8.0 - 1.0 13.0 ± 0.72fg 12.1 ± 0.75gh 11.4 ± 0.68de 8.0 ± 0.58e 13.1 ± 0.61h 9.4 ± 0.73f 12.7 ± 0.46i 9.5 ± 0.82fg 8.9 ± 0.52g 10.4 ± 0.74gh
6.0 - 1.5 13.4 ± 0.46fg 10.3 ± 0.68f 12.0 ± 0.77e 8.9 ± 0.45ef 11.6 ± 0.40g 9.1 ± 1.03ef 11.1 ± 0.78gh 9.3 ± 0.58f 7.8 ± 0.68ef 9.6 ± 0.56fg
8.0 - 1.5 11.7 ± 0.54ef 9.4 ± 0.71ef 11.6 ± 0.71de 9.8 ± 0.76f 10.2 ± 0.36fg 10.9 ± 0.83g 12.1 ± 1.20hi 8.6 ± 0.94ef 8.3 ± 0.56g 10.2 ± 0.93g
6.0 - 2.0 11.6 ± 0.83ef 6.6 ± 0.52cd 10.7 ± 0.63d 8.2 ± 0.59e 8.3 ± 0.70e 8.0 ± 0.56e 9.4 ± 0.56 8.1 ± 0.77e 6.1 ± 0.51de 8.3 ± 0.58ef
8.0 - 2.0 10.3 ± 0.66e 6.2 ± 0.64cd 9.4 ± 0.72 8.5 ± 0.67ef 8.0 ± 0.35e 9.2 ± 0.60ef 9.7 ± 0.84 7.5 ± 0.56de 6.7 ± 0.48e 9.1 ± 0.47f
Each value represents the mean ± standard error, n = 30 (3 sets, 10 samples in each set). Mean followed by the same letters in each column are not significantly different at P ≤ 0.05 according to Tukey’s multiple range tests.
THE JOURNAL OF HORTICULTURAL SCIENCE AND BIOTECHNOLOGY 95
Figure 2. In vitro micropropagation of different Capsicum cultivars. In vitro seed germination in Capsi-4 (Panel a). In vitro grown
seedling of Capsi-2 (Panel b). In vitro shoot multiplication in Capsi-8 (Panel c), Capsi-6 (Panel d), Capsi-7 (Panel e), Capsi-9 (Panel f),
Capsi-3 (Panel g), Capsi-10 (Panel h), Capsi-1 (Panel i), Capsi-5 (Panel j).
different cultivars, the best results were noted between 6 optimum concentration of auxins had enhanced the
and 8 mg l−l BAP. The SDN in combination with the rate of in vitro root induction in all 10 cultivars
optimum concentration of cytokinin had significantly (Table 4 and Figure 3(a–h)); for example, in Capsi-5
enhanced the growth and multiplication rate of all 10 just 30.2 ± 0.33 roots were induced in the presence of
cultivars (Table 2). Above than the optimum concen- IBA (2.0 mg l−1) plus NAA (1.0 mg l−1), but these
tration of PGRs, a negative effect was observed and the numbers were improved to 36.8 ± 0.29 when 1.5 μM
number of multiplied shoots reduced in all 10 cutivars SND was added along with optimum PGRs.
(Table 3). Overall trends indicate that IAA at low con- Depending upon the cultivar, highest 18.4 ± 0.20
centration in combination with optimal BAP and SDN (maximum for Capsi-9) to 36.8 ± 0.29 (maximum
had enhanced the multiplication rate significantly for Capsi-5) number of roots were induced within
(Table 3). However, the maximum number of multi- 30 days of culture in a half-strength MS medium
plied shoots differed along with different cultivars from containing 2.0 mg l−1 IBA, 1.0 mg l−1 NAA, and
8.9 ± 0.52 (maximum for Capsi-9) to 15.3 ± 0.69 (max- 1.5 mM SDN.
imum for Capsi-5) shoots per explant. This noticeable
difference in the optimum response of different culti-
vars could be because of the recalcitrant nature of the Acclimatization of regenerated plants
genus Capsicum (Figure 2(c–j)). The micropropagated plants of all 10 cultivars were
acclimatized successfully (Figure 3(i–l)), but the sur-
vival rates varied from 40.0 to 86.7 %, depending on
Effect of different auxins and spermidine on in
different cultivars (Figure 4). A maximum 86.7 % (13
vitro root induction
out of 15 plants survived) plants survived in Capsi-5
Multiplied shoots had successfully rooted in the half- followed by 80.0 % (12 out of 15 plants survived) in
strength MS media supplemented with IBA alone or Capsi-2. The lowest survival rate 40.0 % (6 out of 15
in combination with NAA. The best results were plantlets survived) was noted in Capsi-9 and Capsi-
obtained in the presence of 2.0 mg l−1 IBA plus 10. During these hardening periods plantlets grew
1.0 mg l−1 NAA. The SDN in combination with the about 4.0–5.5 cm with two to four new leaf
96 S. M. HAQUE AND B. GHOSH
Table 4. Effect of IBA, NAA and Spermidine (SDN) on in vitro root induction of ten different cultivars of Capsicum spp. cultured on half strength MS medium. (Data collected after 30 days of
17.7 ± 0.25def
13.6 ± 0.26de
15.0 ± 0.54de
5.8 ± 0.42bc
10.4 ± 0.29cd
18.3 ± 0.38ef
19.4 ± 0.24ef
12.5 ± 0.35d
13.1 ± 0.35d
16.8 ± 0.26e
0.4 ± 0.14a
9.2 ± 0.36c
8.3 ± 0.30c
20.9 ± 0.18f
Capsi-10
rates of the local cultivars are better than the Mexican
Each value represents the mean ± standard error, n = 30 (3 sets, 10 samples in each set). Mean followed by the same letters in each column are not significantly different at P < 0.05 according to Tukey’s multiple range tests.
cultivars (Figure 4). Thereafter, the acclimatized
plants were ready for transfer to field condition.
8.3 ± 0.61bcd
12.5 ± 0.48de
12.8 ± 0.35de
5.1 ± 0.36bc
9.8 ± 0.62cd
10.1 ± 0.51cd
17.3 ± 0.57ef
16.5 ± 0.54ef
3.7 ± 0.71b
11.4 ± 0.58d
15.2 ± 0.62e
6.9 ± 0.65c
18.4 ± 0.20f
Discussion
Capsi-9
19.3 ± 0.51def
16.1 ± 0.28de
6.5 ± 0.25bc
7.4 ± 0.26bc
10.2 ± 0.36cd
12.8 ± 0.34cd
10.7 ± 0.15cd
20.1 ± 0.64ef
13.6 ± 0.24d
14.6 ± 0.28d
dence and recalcitrant nature, the in vitro growth of
0.7 ± 0.18a
9.7 ± 0.57c
22.6 ± 0.53f
Capsi-8
17.5 ± 0.52cde
18.2 ± 0.36de
9.6 ± 0.25bc
14.1 ± 0.51cd
30.3 ± 0.21fg
29.4 ± 0.28fg
25.3 ± 0.24ef
24.4 ± 0.26ef
32.2 ± 0.59g
31.7 ± 0.64g
21.6 ± 0.35e
1.4 ± 0.33a
11.2 ± 0.56c
28.0 ± 0.15f
21.2 ± 0.36def
13.5 ± 0.25cd
23.8 ± 0.34ef
21.5 ± 0.21ef
5.5 ± 0.30b
0.5 ± 0.23a
10.3 ± 0.35c
24.4 ± 0.26f
Capsi-6
34.3 ± 0.25gh
20.9 ± 0.25de
20.5 ± 0.37de
13.8 ± 0.62cd
30.2 ± 0.33fg
17.6 ± 0.24d
36.8 ± 0.29h
31.4 ± 0.18g
22.3 ± 0.12e
2.6 ± 0.12a
12.2 ± 0.26c
27.1 ± 0.21f
26.4 ± 0.28f
10.3 ± 0.54cd
9.7 ± 0.33cd
18.1 ± 0.21ef
17.7 ± 0.31ef
11.7 ± 0.42d
16.3 ± 0.16e
7.2 ± 0.38c
13.0 ± 0.5de
8.9 ± 0.5cd
19.2 ± 0.25f
19.6 ± 0.29f
Capsi-4
19.7 ± 0.52de
7.5 ± 0.24bc
8.8 ± 0.14bc
13.5 ± 0.25cd
24.4 ± 0.46ef
23.9 ± 0.36ef
22.3 ± 0.25e
0.6 ± 0.15a
10.3 ± 0.32c
11.2 ± 0.12c
26.3 ± 0.34f
Capsi-3
21.9 ± 0.25de
10.4 ± 0.42bc
10.7 ± 0.25bc
16.8 ± 0.35cd
15.0 ± 0.31cd
27.3 ± 0.48ef
28.8 ± 0.26ef
29.2 ± 0.42ef
25.5 ± 0.41e
1.8 ± 0.24a
13.5 ± 0.51c
31.7 ± 0.62f
2008a).
Polyamines occur universally in plants, especially in
actively growing tissues, and are considered plant growth
31.6 ± 0.38efg
19.5 ± 0.54de
17.3 ± 0.12cd
33.3 ± 0.52fg
32.4 ± 0.65fg
26.7 ± 0.14ef
18.4 ± 0.51d
35.2 ± 0.35g
2.1 ± 0.23a
13.2 ± 0.52c
20.1 ± 0.2de
29.2 ± 0.56f
35.5 ± 0.1g
Capsi-1
Figure 3. In vitro rooting and acclimatization of different Capsicum cultivars. In vitro rooting in Capsi-1 (Panel a), Capsi-7 (Panel
b), Capsi-10 (Panel c), Capsi-4 (Panel d). In vitro regenerated plants with well developed root system ready for acclimatization in
Capsi-9 (Panel e), Capsi-3 (Panel f), Capsi-2 (Panel g), Capsi-5 (Panel h). Acclimatization of regenerated plants of Capsi-8 (Panel i),
Capsi-3 (Panel j), Capsi-4 (Panel k), Capsi-6 (Panel l).
Haque, S.M., & Ghosh, B. (2013c). Micropropagation, in Mohamed, M.A.-H., & Alsadon, A.A. (2011). Effect of
vitro flowering and cytological studies of Bacopa cha- vessel type and growth regulators on micropropagation
maedryoides, an ethno-medicinal plant. Environmental of Capsicum annuum. Biologia Plantarum, 55, 370–374.
and Experimental Biology, 11, 59–68. http://eeb.lu.lv/ doi:10.1007/s10535-011-0057-z
EEB/201303/EEB_11_Haque.pdf Murashige, T., & Skoog, F. (1962). A revised medium for
Haque, S.M., & Ghosh, B. (2014). Somatic embryogenesis rapid growth and bioassays with tobacco tissue cultures.
and synthetic seed production—A biotechnological Physiologia Plantarum, 15, 473–497. doi:10.1111/
approach for true-to-type propagation and in vitro con- ppl.1962.15.issue-3
servation of an ornamental bulbaceous plant Drimiopsis Ochoa-Alejo, N., & Ramirez-Malagon, R. (2001). In vitro
kirkii Baker. Applied Biochemistry and Biotechnology, chili pepper biotechnology. In Vitro Cellular &
172, 4013–4024. doi:10.1007/s12010-014-0817-2 Developmental Biology – Plant, 37, 701–729.
Haque, S.M., & Ghosh, B. (2016). High-frequency doi:10.1007/s11627-001-0121-z
somatic embryogenesis and artificial seeds for mass Orlińska, M., & Nowaczyk, P. (2015). In vitro plant regen-
production of true-to-type plants in Ledebouria revo- eration of 4 Capsicum spp. genotypes using different
luta: An important cardioprotective plant. Plant Cell, explant types. Turkish Journal of Biology, 39, 60–68.
Tissue and Organ Culture, 127, 71–83. doi:10.1007/ doi:10.3906/biy-1403-89
s11240-016-1030-5 Paul, S., Das, A., Sarkar, N.C., & Ghosh, B. (2013).
Haque, S.M., Paul, S., & Ghosh, B. (2016a). High-frequency Collection of chilli genetic resources from different geo-
in vitro flowering, hand-pollination and fruit setting in graphical regions of West Bengal, India. International
ten different cultivars of Capsicum spp. (C. annuum, C. Journal of Bio-Resource and Stress Management, 4,
chinense, and C. frutescens) — An initial step towards in 147–153. http://www.indianjournals.com/ijor.aspx?tar
vitro hybrid production. Plant Cell, Tissue and Organ get=ijor:ijbsm&volume=4&issue=2&article=007
Culture, 127, 161–173. doi:10.1007/s11240-016-1039-9 Podwyszyn’ska, M., Kosson, R., & Treder, J. (2015).
Haque, S.M., Paul, S., & Ghosh, B. (2016b). Karyological Polyamines and methyl jasmonate in bulb formation of
studies of two hot chilli pepper cultivars from two differ- in vitro propagated tulips. Plant Cell Tissue and Organ
ent geographical regions of India: Bhut jolokia, Capsicum Culture, 123, 591–605. doi:10.1007/s11240-015-0863-7
chinense Jacq. and Bullet Lanka, Capsicum annuum L. The Ramchiary, N., Kehie, M., Brahma, V., Kumaria, S., & Tandon,
Nucleus, 59, 227–233. doi:10.1007/s13237-016-0180-5 P. (2014). Application of genetics and genomics towards
Haynes, W. (2013). Tukey’s test. In W. Dubitzky, O. Capsicum translational research. Plant Biotechnology
Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Reports, 8, 101–123. doi:10.1007/s11816-013-0306-z
Encyclopedia of systems biology (pp. 2303–2304). New Sanatombi, K., & Sharma, G.J. (2008a). In vitro plant
York: Springer. regeneration in six cultivars of Capsicum spp. using
Kehie, M., Kumaria, S., & Tandon, P. (2012). In vitro different explants. Biologia Plantarum, 52, 141–145.
plantlet regeneration from nodal segments and shoot doi:10.1007/s10535-008-0029-0
tips of Capsicum chinense Jacq. cv. Naga King Chili. 3 Sanatombi, K., & Sharma, G.J. (2008b). In vitro propaga-
Biotech, 2, 31–35. doi:10.1007/s13205-011-0025-5 tion of Capsicum chinense Jacq. Biologia Plantarum, 52,
Kehie, M., Kumaria, S., & Tandon, P. (2013). In vitro plant- 517–520. doi:10.1007/s10535-008-0100-x
let regeneration from cotyledon segments of Capsicum Saraswathi, M.S., Uma, S., Kannan, G., Selvasumathi, M.,
chinense Jacq. cv. Naga King Chili, and determination of Mustaffa, M.M., & Backiyarani, S. (2016). Cost-effective
capsaicin content in fruits of in vitro propagated plants by tissue culture media for large-scale propagation of three
High PerformanceLiquid Chromatography. Scientia commercial banana (Musa spp.) varieties. Journal of
Horticulturae, 164, 1–8. doi:10.1016/j.scienta.2013.08.018 Horticultural Science and Biotechnology, 91, 23–29.
Kothari, S.L., Joshi, A., Kachhwaha, S., & Ochoa-Alejo, N. doi:10.1080/14620316.2015.1117227
(2010). A review on tissue culture and transgenesis. Satish, L., Rency, A.S., Rathinapriya, P., Ceasar, S.A.,
Biotechnology Advances, 28, 35–48. doi:10.1016/j. Pandian, S., Rameshkumar, R., . . . Ramesh, M. (2016).
biotechadv.2009.08.005 Influence of plant growth regulators and spermidine on
Kumar, V., Sharma, A., Prasad, B.C.N., Gururaj, H.B., Giridhar, somatic embryogenesis and plant regeneration in four
P., & Ravishankar, G.A. (2007). Direct shoot bud induction Indian genotypes of finger millet (Eleusine coracana (L.)
and plant regeneration in Capsicum frutescens Mill.: Gaertn). Plant Cell Tissue and Organ Culture, 124, 15–
Influence of polyamines and polarity. Acta Physiologiae 31. doi:10.1007/s11240-015-0870-8
Plantarum, 29, 11–18. doi:10.1007/s11738-006-0002-5 Sivanandhan, G., Theboral, J., Dev, G.K., Selvaraj, N.,
Kundu, S., Das, A., & Ghosh, B. (2015a). Modulation of Manickavasagam, M., & Ganarathi, A. (2015). Effect of
pungency and major bioactive compounds in pepper due carbon and 426 nitrogen sources on in vitro flower and
to agro-climatic discrepancy: A case study with Capsicum fruit formation and withanolides production in
chinense Bhut Jolokia fruit. International Journal of Withania somnifera (L.) Dunal. Indian Journal of
Pharmacy and Pharmaceutical Sciences, 7, 294–298. Experimental Biology, 53, 177–183.
Kundu, S., Das, A., Haque, S.M., & Ghosh, B. (2015b). Thul, S.T., Lal, R.K., Shasany, A.K., Darokar, M.P., Gupta,
Chemotypic diversity in different bhut jolokia fruits: In M.M., Verma, R.K., & Khanuja, S.P.S. (2009). Estimation
vitro conservation and mass propagation of superior of phenotypic divergence in a collection of Capsicum
ecotype. International Journal of Pharmaceutical species for yield-related traits. Euphytica, 168, 189–196.
Sciences Review and Research, 34, 47–53. doi:10.1007/s10681-009-9882-y
Máthé, Á., Hassan, F., & Kader, A.A. (2015). In vitro Zribi, I., Bayoudh, C., & Haouala, R. (2015). In vitro regen-
micropropagation of medicinal and aromatic plants. In eration of the medicinal plant Cassia absus L. Journal of
Á. Máthé (Ed.), Medicinal and aromatic plants of the Horticultural Science and Biotechnology, 90, 14–19.
world. Netherlands: Springer. doi:10.1080/14620316.2015.11513147