0% found this document useful (0 votes)
21 views69 pages

Maths S3 - Merged

The document contains complex mathematical expressions and formulas related to complex numbers, including trigonometric and hyperbolic functions. It discusses various operations, limits, derivatives, and continuity in the context of complex functions. Additionally, it includes examples and proofs related to these mathematical concepts.

Uploaded by

xsterrrr
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
21 views69 pages

Maths S3 - Merged

The document contains complex mathematical expressions and formulas related to complex numbers, including trigonometric and hyperbolic functions. It discusses various operations, limits, derivatives, and continuity in the context of complex functions. Additionally, it includes examples and proofs related to these mathematical concepts.

Uploaded by

xsterrrr
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 69

Comple Nambs

"4 complex numbu,

Zt2

Z- z

no, -i ckey

Z (coso

tane p)

-j9
poler
Conper fimn

w fc):U t iVcoy)

fomalas
.o.sín.iz fenhz
coshz
.fanie tanhz

e sioh o
" (osho
temho
"aos ine hz 2

sin'z + cos'z I
" Cosh' - sioh':|
": sechzttanhz )
-cosech'z
the folaniy fnchira
two Yeal fumfiras.
) fce)=z

u= X

fce: z
fce):

utiv: z+ aiyt Cy
2

fca) e
e.iy
e
(cosg + isihy)
stiv t esna
4)|fcz: sinz
UtiV: sincr+ iy)
(CinCAtB): siAcosB + tasAsinR)

Utiv siha cosdY + cosx Sin y


u+iv sihA coshy ticaX

sihncahy
cosxiohy
COS

fce) = cos (ame)


u+iv: cosCxt iy)
Utiv: cos Xcosy
u+iv cosX coshy -isnx shy
cost asly
ve - sioxslahy
- sinbz

utiv: sin iz
9utiv:(sioiCx*y>)
) utiv
cotr) sin
L(isinhr ory -(esba siy)

sisba cosy - casbasia4 x


+ icoshasiny

corbasig
7afce): coshz
utiv coaiz)

(cos Catb)- csacosb+ ohasiob)


utiv cosiz)

utiY
roscicK tiy)
utiv cosCix -y

cosbx cosy + isio hx si'ag.


cosbxcorg
: singsiax
fc lge
fee): log 2
U+iv (gxtiy)

elcosv+ieov): xty
e"cosv
X: e

2 2 24
O+ e cosVt e

’ e2uCcos'r+si) e2u

loy fom both sta


cosy

) y : tan

3)
FC): z+3z fod pro va laer at
at
Note
2 : lt 3
fcz) z+ 3z

y3
2

= x?+ 3x-y+ ic2xyt3y)

CI,3)

fc) -e
-5-i23 fcz)
-S 3-8= 4) C½
iC2xy 6x-2y
+ u+iv
t4i 2-4 at f value te fnd
6z +aiz fcz) =
&
part wel the Find Q) 4
Fdthe roal pont
fcz): Gz-12z +3+2'
findthaiy vale at z: 4-3

fe): Gz?-122 +t3t 2/


2.
3+

2
-l2x -il2y +3+2g'

5x?-12 -5yt+3 120

t2
2
: 5C4)-(2c4)- s(-)+3
dcet,-3)

: -12O + 36 t2
8
fumim F():
|-i

at bi poi

Fc):

Utiy

utiv

Cltx)-i

Utiv C1+)

u cit) V

Ue,-) 49+1 a,-1) 4+1


m
20
Cim1
2’0 fCe) 250
(in
2.2.0
that show 72)
sl<spato.
coumbhay
to. anchony
g
lz-al<e where fce:l in
Linit
aachn ompler (oantinuih
a Limit
<S+m

Jitmt
m, fhenu
mot entt. Thnfore he

t fe Rec' z:X+y
220 220 z' xy'riy

y0 y
yo

m,

’-m
thngre
Tm (z)
The fc s lz

ot cobnu at 2=0.
2- X+*y
290 2'

pa mX,
t y2
)

hene the Limit d


nt ew't. Theafre be funetim
Com t
Pelz)
ros) feo: (24

ceuwboue ot
Rel2)
t fes:
2>0 (z)
pele) x

chaig -m'y

Jttmz

t fsfeo
Hene tiit exist 2 tir conthue.
2f0

contuon
Z0

t fces:
Z90

(0umbno.

Pece
f:
124) sT the fn
2 : D,

Lt Re (2)
22f)
X

-XJitm

Deietve

z= 5t2g
3

fe)3(2- ai)
fc2): 3(2-21)*
put 2- S+2
3(s+2i-)
f'Ce):
) 3 25
deivakie
at 2: i
duivatre i-)

() fin (i
.n("(-)

fc: (a+s)
3z2) (32i+ bz)
fez) 3(i2)+

2
s(3-12)·(42i+l21)
be

tßD.
22

Ezuetis CCRE)
caacy
domain D md
cadifs couchy - Premn qubin 7

Equabin.
-Yx

Neresay Condien
ia a domais D, Whse
Panta! eniveti
proof
FC2) =

at her
(t tletaz) - fe)
A270

boytey)
+ i /
fcz+): U
CK+ox,ytay)
CKr, ytoy

oytay tìVoy

AX-’0

Ucy) i(oxtas ytay)


>f)toxg>ooy ( cKtO,g) V
C9))

f) +

pot AX = O,

cheing becomes.
V
Cxgtoy)

fta: t

(le.
-Du
Safp'eient Contm

it cahtes cR

I6)s‘ the
16

Fc2) z

utive x*-2*

Vy ax

Fcr 2 1t

Fz)
U=X

-)
Vy
Ux Vy

tdow mot ttiu


mot

f(z): e 2

-Cx+iy

utiy- e. (cosg -i siny


-X -X
uttv= eoy -iea
^eosg
-e cos
Ux = Vy

Hene CR E2".

2
1) f ) > e it

utiv e

ut fv e (cosytisny)
eosyt ietry

Me Ux Vy &
-X
dy
ce

etosy t i siny
e(ioy sing)
,x+i'y e2 .
PT te trmtin
deivebe

fce sioz

cosx si'y)

uttr sinx " coshy ticosxsishy

coshy
" cosxt oslg
ayesix.
Uy siox

Ux Vy

fre) st2

LOSX

coscos Ciy)- ox s'y


tos(K+y)
fd doivta
fc: ces z
cos cXiy)

UttV CosX coshy - iiaxeisby


coKcosby
-siox coshy
cox siohg Vy - six corhy

Uy-vx
Hene CR e
& te tee): corr ii

icoxsinbg

-(siXeosciyt cox site'y')


Tufon

(oumbauy
200) Fod
Z= O.

) Derive e nean (ovdihin

Aoswn

(z, zz

Tml2)
20

chooce a peth mx
0

-ni()

a4)

foto):
27

(ot)

Goin'otx? +
Koit

(2),

waas

+
- Vixy

tquatng

Vy -Uy
Uy-V,

dunedve
sinhe: sitiD

utiv -ístnc iz)

utiv -(CiA)Cosg cosbxcosi'x) cy)


4tV:-i (isinbx coy - ciny
utiv: sinbx(osy +i coshesiny

ur: coshx cocy

Ux

Nene
Thera e

coshr cony ti cise any.

) cos (ix -
cos fi (x +iy)
) cosz) ) coshz
260) Pr:
ti fc:cosbz ie

fc cothe
U+iv cos(iz)
utiv cosi(x+{y

utiv cos(i)cos (y2t sicI sio)


utN- coshx cosy+isinbx siny

cos hnsin
uycochesng Vy:siobr ony
Ux Vy
Ug

siobrcorg t i cosbeg.
sin) cory + I cos(ix) siny.

i(-sit)casy + cos(ix> siny


’-i(sinCix -g>
)-i(sin icx tiy2) -i)(sind))
(9a) V=tam V
(xty-du log
bo" from logTaHhg
e2u
stso) 2
2 2
cos*
eCeos+r'sto)
e.
rom erponnti
bo tog Tale
Cxtiy log
detvative. itbnd
erpet
onalgte
27
'S 2
Y -te (9,.)

+ i(ay

fC2): Pe (z4i Tn (22)9


h t
a0) Fod the coustutc a, b, c fou
c

ae

xt ay-i (bx ty)


ay2, + iCxg

) f(2) ti(eey)

)
utiv a+x

tecuni) 9 %+ietx)
e
ueosX
U e
osx
i(2)

Ujv iCxty)

Vy 2
t

fo:
utir

-eioy
Vy-eo

utiv: Re ( x o y
fear
f)-*tay -i(bx*
u+iv= xt a -i Cbxrgy

u: xta V: -bX

Uya

Aceord tng t cp tqn


Ux =|

aa -b)

( Let
u+iv: an- by+i
2
U
an-by
-aby ry
ax =cX

a- b:

Hormorie fuetns
ARaal vehed comtouour

cld a Monnh

Utiy be
the Pact -et2 Imtr) Pe ffc) &Im (fe)

U
Re (

()
Rene
e

e
an'4 b
sioce is ham onie tor
+

Bor?4 bg ty bx
fxx 6ax

b ax o

f
1's
31 Q) ST

Constant
given Pealpat
So lx

Since fce)

Ux Uy b
ts G constt. .fcz is
3) a) An fun cion

conslont

alro y - =o

Uy o

Comstt
32)
Comtont
a.

2
(Jutr cost
to .

+ avv
gud
+
-0)-o
By ce
audu+ avd

u du
. (Dy

D
const
const

Canst
Dt pty dt

2 2

y
fc:

cmbt. poo e

iven ur is

Uvy =-VUx
- Ux
V

th e0.
dip pantaly

-vuy
-Uy .
- Ux -Uy
By
2 2
9-UxUy. Ux

tr
. By Ce tan
f: utiv i
Thue fre constat
ha6re
ke
he
M
Vx

cwes hors
-l. Then ee

utiv
harmonie
fher Ako
hamie fanetos
) Venty t t oe &
he whole conplex ane
Uxx t

hanmm.

V: S2ndy

ne)

CHennne cog
272) paooe that

Uxx + Uyy>
is mt hame
o u
38) prooe hmha
Jind te emupondig nate
Pee u t i

Uyy o

hmant

Vy -24
Vy 2x
)

(2xd v:
V ry2+e
i(*ytizrg)

394)

ciox cosny
cosX
uy siarihy

Uex -sioxcoby
+ cioxcoshy
Ux: Vy coSx coshg

*Vx=-shxsdaby

S-stoxiahy da cnxioy
fcosx casby'y
caNsinhy

Urxt Uyy 6x -6x


2
Bx2

-VY = - 6xy
Uy

VSocyda

+ c (hamni

hanmme

Vy Qx -

Vyy
hasmn
Voc +Vyy
-Uy
Vy u
u- f2x-1da
S-ydy
Ve z9-*+< (hanmmse
2

tral sT v:eia2y met hasmm's

Vxx esinly Vgg 4e sinly

haoc
430) P-T the tmtn utxyx?
harm oie hae

2
y -éxy -s
Uxx
yy
Uxx t Uyy Gx-6X D
Ux Vy ax-3y
-S
dy - éxg
3x-0 Vx: 6x4ts

V f3x4ydy v foryt s dn
3yx-yte SxytSx+
) y
-y'tc
+Sx e Charmomie njust)
Vi 3xy

lee

fod te hanmomk congat fenctin.


-TX
U e
-TX
-7X

-atr
Uso 1ecos ay

1e'oray t ~a'e"oy
X
Ur -7e os
-Y

) -7 cosd e +c
(-corhy):

- Ae tosM
-7.

dn

bat corar-eobiy
harmoni.
a24 a-12

-a unatoshnycly
2

put taluega-2
V 2

(heanena anpqtalo )

y-coshroany
Dyy-Cosbantosy
-(or nheAAyel,

(neimome cngeyt)

474). e

fmctn fes.
versiay te yay
e)+eyay.
Ve= siay Cane
sioy laetee4 eyosy

Vyy:enasiny t ely carg t Siny' t cuuy)


sirzgoay
yasy -erosy -einy tee
2 singne+ ae"iiay ta
sinyae esiay
(4
(fcl 2

4ux'+ 4vx
2 lfol'
- 2luux t VV)

feo] a o 2(2 auyt 2vvy)

2
auuxt ¥Ux)tavtacv)

Culv')

,fe»l'
+

)
avVyy
2

Quustalun'+ avey talw) duuyy


ta(uy+ avyy t d(y
Sinu it
Anaig
hammie aleo.
-Vy
dy
a(u+evw't ()' + uw)')

4ux' 4vy 4f'


2

Hene Pvo0ve d.

Confomel apig
AA Mepping w e floy i call tnfond
cnfoml
psesove
Cwer
,2
meppig
2

polar yir 2

2 21
Re
2 =20

Consides a Le x c.
2
+ V= 2

.: U c´-4 c uo hi'ch in a paraboa


a

l- plane
Consen
2.

Danabola cn w

20,
Consden
V: 0
-Ye

when

whih a tye

fhe plane.
+ the lires xz I,
2, &
ing
2
Let. 2

uti: -yt2ixy
2 2
V
24
2

V
2

Substhte
whih te a panslela
pla
when

u: v4
164a
poncbole plnd

when X>o
V= -ve.

te img
plene
522) fod te
2
to mapring
2
Let
In 2
Re'
2ig

Re
2

Th image
- K/g
is mped nto.

plame.
ocany2<1:
te imag t I</4<3,
Find 2

wnder
cef
2

Re (ae 20

Re
The lmmage
1< |z|s3,
m-ppd to
|<lwle4,
w pl

s4 frd te
te te
img
bamed X =1

utiv
V

when x =I
2

t y to uel-y
subrkha the vabe
nhich i's
4 plene
when y
V: 2

cabskht e ral
2.
An 2

-kty-4xy

[atg)
2

u -

mappd
4

Wee
Diicuss he mapra
Let we e
utiv
:e
utiy e e'

e oy tie'iy
v-einy
ecosy
In polw tom,

Re'i4
e r e
iy
cqmatng.

Reg

Re

when
esigD
2e

2c
)e
2c
(iotyco'ye
uty'

e clnc
tsiny:

Ue

nhich t at tve Uar.


-/< <),

mepp
hW: 2

Re it e

Rei

The image

esRee
S7 )

mdlu de mpp'g Wse2.

We e

Rel. eX,

You might also like