Practical No-12
Aim: Write a program to find shortest paths in a graph with arbitrary edge weights using
Bellman-Ford’s algorithm.
Source Code:
#include <bits/stdc++.h>
struct Edge {
int src, dest, weight;
};
struct Graph* createGraph(int V, int E){
struct Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[E];
return graph;
}
void BellmanFord(struct Graph* graph, int src)
{
int V = graph->V;
int E = graph->E;
int dist[V];
for (int i = 1; i <= V - 1; i++) {
for (int j = 0; j < E; j++) {
int u = graph->edge[j].src;
int v = graph->edge[j].dest;
int weight = graph->edge[j].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;} }
for (int i = 0; i < E; i++) {
int u = graph->edge[i].src;
int v = graph->edge[i].dest;
int weight = graph->edge[i].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v]) {
printf("Graph contains negative weight cycle");
return; // If negative cycle is detected, simply return } }
printArr(dist, V);}
int main()
{
int V = 5; // Number of vertices in graph
int E = 8; // Number of edges in graph
struct Graph* graph = createGraph(V, E);
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 4;
31
graph->edge[2].src = 1;
graph->edge[2].dest = 2;
graph->edge[2].weight = 3;
graph->edge[4].src = 1;
graph->edge[4].dest = 4;
graph->edge[4].weight = 2;
graph->edge[5].src = 3;
graph->edge[5].dest = 2;
graph->edge[5].weight = 5;
graph->edge[6].src = 3;
graph->edge[6].dest = 1;
graph->edge[6].weight = 1;
graph->edge[7].src = 4;
graph->edge[7].dest = 3;
graph->edge[7].weight = -3;
BellmanFord(graph, 0);
return 0;
}
Output:
32
Practical No-13
Aim: Write a program to find shortest paths in a graph with arbitrary edge weights using
Flyod’s algorithm.
Source Code:
#include <bits/stdc++.h>
using namespace std;
#define V 4
#define INF 99999
void printSolution(int dist[][V]);
void floydWarshall(int graph[][V])
int dist[V][V], i, j, k;
for (i = 0; i < V; i++)
for (j = 0; j < V; j++)
dist[i][j] = graph[i][j];
for (k = 0; k < V; k++) {
for (i = 0; i < V; i++) {
for (j = 0; j < V; j++) {
if (dist[i][j] > (dist[i][k] + dist[k][j])
&& (dist[k][j] != INF
&& dist[i][k] != INF))
dist[i][j] = dist[i][k] + dist[k][j];} } }
printSolution(dist); }
void printSolution(int dist[][V]){
cout << "The following matrix shows the shortest "
"distances"
" between every pair of vertices \n";
33
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
if (dist[i][j] == INF)
cout << "INF"
<< " ";
else
cout << dist[i][j] << " ";
cout << endl;
int main()
int graph[V][V] = { { 0, 5, INF, 10 },
{ INF, 0, 3, INF },
{ INF, INF, 0, 1 },
{ INF, INF, INF, 0 } };
floydWarshall(graph);
return 0;
Output:
34
Practical No-14
Aim: Write a program to find the minimum spanning tree in a weighted, undirected graph using
Prim’s algorithm.
Source Code:
#include <bits/stdc++.h>
using namespace std;
#define V 5
int minKey(int key[], bool mstSet[])
{
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;
return min_index;
}
void printMST(int parent[], int graph[V][V])
{
cout<<"Edge \tWeight\n";
for (int i = 1; i < V; i++)
cout<<parent[i]<<" - "<<i<<" \t"<<graph[i][parent[i]]<<" \n";
}
void primMST(int graph[V][V])
{
int parent[V];
int key[V];
bool mstSet[V];
for (int i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = false;
key[0] = 0;
parent[0] = -1; // First node is always root of MST
for (int count = 0; count < V - 1; count++)
{
int u = minKey(key, mstSet);
mstSet[u] = true;
for (int v = 0; v < V; v++)
if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}
printMST(parent, graph);
35
}
int main()
{
int graph[V][V] = { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };
// Print the solution
primMST(graph);
return 0;
}
Output:
36
Practical No-15
Aim: Write a program to find the minimum spanning tree in a weighted, undirected graph using
Kruskal’s algorithm.
Source Code:
#include <bits/stdc++.h>
using namespace std;
#define V 5
int parent[V];
// Find set of vertex i
int find(int i)
{
while (parent[i] != i)
i = parent[i];
return i;
}
void union1(int i, int j)
{
int a = find(i);
int b = find(j);
parent[a] = b;
}
// Finds MST using Kruskal's algorithm
void kruskalMST(int cost[][V])
{
int mincost = 0; // Cost of min MST.
// Initialize sets of disjoint sets.
for (int i = 0; i < V; i++)
parent[i] = i;
int edge_count = 0;
while (edge_count < V - 1) {
int min = INT_MAX, a = -1, b = -1;
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
if (find(i) != find(j) && cost[i][j] < min) {
min = cost[i][j];
a = i;
b = j;
}
}
}
union1(a, b);
37
printf("Edge %d:(%d, %d) cost:%d \n",
edge_count++, a, b, min);
mincost += min;
}
printf("\n Minimum cost= %d \n", mincost);
}
// driver program to test above function
int main()
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| /\ |
6| 8/ \5 |7
|/ \|
(3)-------(4)
9 */
int cost[][V] = {
{ INT_MAX, 2, INT_MAX, 6, INT_MAX },
{ 2, INT_MAX, 3, 8, 5 },
{ INT_MAX, 3, INT_MAX, INT_MAX, 7 },
{ 6, 8, INT_MAX, INT_MAX, 9 },
{ INT_MAX, 5, 7, 9, INT_MAX },
};
// Print the solution
kruskalMST(cost);
return 0;
}
Output:
38