0% found this document useful (0 votes)
24 views4 pages

Trignometric Formulas

The document provides a comprehensive overview of trigonometric identities and equations, including standard results for sum and difference of angles, multiple and submultiple angles, and transformation formulas. It outlines various trigonometric ratios and their applications, along with important values for specific angles. Additionally, it emphasizes the importance of careful calculation when determining square roots of trigonometric functions.

Uploaded by

aicandomusictoo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views4 pages

Trignometric Formulas

The document provides a comprehensive overview of trigonometric identities and equations, including standard results for sum and difference of angles, multiple and submultiple angles, and transformation formulas. It outlines various trigonometric ratios and their applications, along with important values for specific angles. Additionally, it emphasizes the importance of careful calculation when determining square roots of trigonometric functions.

Uploaded by

aicandomusictoo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Trigonometric Identities and Equations Vidyamandir Classes

STANDARD RESULTS IN TRIGONOMETRY Section - 3

3.1. Trigonometric Ratios for sum and difference of angles :


 sin (A + B) = sinA cosB + cosA sinB
 sin (A – B) = sinA cosB – cosA sinB
 cos (A + B) = cosA cosB – sinA sinB
 cos (A – B) = cosA cosB + sinA sinB

tan A  tan B   
tan ( A  B )  where A  n   , B  n  
1  tan A tan B  2 2
 
tan A  tan B  
tan ( A  B )   and A  B  m 
1  tan A tan B  2

cot A · cot B  1 
cot ( A  B ) 
cot A  cot B  where A  n , B  n 
 
cot A · cot B  1  and A  B  m
cot ( A  B )  
cot B  cot A 

tan A  tan B  tan C  tan A tan B tan C


 tan (A + B + C) =
1  tan A tan B  tan B tan C  tan C tan A

cot A  cot B  cot C  cot A cot B cot C


 cot (A + B + C) =
1  cot A cot B  cot B cot C  cot C cot A
 sin (A + B + C) = sinA cosB cosC + cosA sinB cosC + cosA cosB sinC – sinA sinB sinC
or,
sin (A + B + C) = cosA cosB cosC (tanA + tanB + tanC – tanA tanB tanC)

 cos (A + B + C) = cosA cosB cosC – sinA sinB cosC – sinA cosB sinC – cosA sinB sinC
or,
cos (A + B + C) = cosA cosB cosC (1 – tanA tanB – tanB tanC – tanC tanA)

 sin (A + B) sin (A – B) = sin2A – sin2B = cos2B – cos2A

 cos (A + B) cos (A – B) = cos2 A – sin2B = cos2 B – sin2 A


S1  S3  S5  S7  ....
 tan (A 1 + A 2 + .... + An) = , where
1  S2  S 4  S6  ....
S1 = tan A1 + tan A2 + ..... + tan An = the sum of the tangents of the separate angles,

16 Section 3 Self Study Course for IITJEE with Online Support


Vidyamandir Classes Trigonometric Identities and Equations

S2 = tan A 1 tan A2 + tan A 2 tan A3 + ..... = the sum of the tangents taken two at a time,

S3 = tan A1 tan A2 tan A3 + tan A2 tan A3 tan A4 + ..... = the sum of the tangents taken three at
a time, and so on.

3.2. Trigonometric Ratios of Multiple and Submultiple Angles


(i) sin 2A = 2 sin A cosA
(ii) cos 2A = cos2 A – sin2 A
(iii) cos 2A = 2 cos2 A – 1 or, 1 + cos 2A = 2 cos2 A
(iv) cos 2A = 1 – 2 sin2 A or, 1 – cos 2A = 2 sin2 A

2 tan A 2 tan A
(v) tan 2A = (vi) sin 2A =
1  tan 2 A 1  tan 2 A

1  tan 2 A
(vii) cos 2A = (ix) sin 3A = 3 sinA – 4 sin3A
Illustration - 5 1  tan 2 A
3 tan A  tan 3 A
(x) cos 3A = 4 cos3A – 3 cosA (xi) tan 3A =
1  3 tan 2 A
3.3 Tranformation Formulae

3.3A Expressing Product of Trigonometric Functions as Sum or Difference


(i) 2 sin A cos B = sin (A + B) + sin (A – B) (ii) 2 cos A sin B = sin (A + B) – sin (A – B)
(iii) 2 cos A cos B = cos (A + B) + cos (A – B) (iv) 2 sin A sin B = cos (A – B) – cos (A + B)
The above four formula can be obtained by expanding the right hand side and simplifying.

Note : In the fourth formula, there is a change in the pattern. Angle (A – B) comes first and (A + B) later. In
the first quadrant, the greater the angle, the less the cosine. Hence cosine of the smaller angle is written
first [to get a positive result]

3.3B Expressing Sum or Difference of Two Sines or Two Cosines as a Product


CD
In the formulae derived in the earlier section if we put A + B = C and A – B = D, then A =
2
CD
and B = , these formulae can be rewritten as
2

CD CD
sinC + sinD = 2 sin · cos
2 2

Self Study Course for IITJEE with Online Support Section 3 17


Trigonometric Identities and Equations Vidyamandir Classes

CD CD
sinC – sinD = 2 sin · cos
2 2

CD CD
cosC + cosD = 2cos · cos
2 2

CD CD CD DC


cosC – cosD = – 2sin · sin or 2 sin · sin
2 2 2 2
3.4 General formulae
sin ( A  B)  
 tan A  tan B   where A, B  n   , n  Z
cos A cos B  2

sin ( B  A) 
 cot A  cot B  where A, B  n , n  Z
sin A sin B 

cos ( A  B)  
 1  tan A · tan B   where A, B  n   , n  Z
cos A cos B  2

cos ( A  B) 
 1  cot A · cot B   where A, B  n , n  Z
sin A sin B 

1  cos   sin 
  tan  where   n 
sin  2 1  cos 

1  cos  
  cot , where   (2n  1) n
sin  2

1  cos  
  tan 2 , where   (2n  1) 
1  cos  2

1  cos  
  cot 2 , where   2n 
1  cos  2

  1  tan  cos   sin  1  sin 2


 tan       
4  1  tan  cos   sin  cos 2

  1  tan  cos   sin  1  sin 2


 tan       
4  1  tan  cos   sin  cos 2

18 Section 3 Self Study Course for IITJEE with Online Support


Vidyamandir Classes Trigonometric Identities and Equations

3.5 Values of Trigonometrical Ratios of Some Important Angles and Some Important Results

3 1 3 1
 sin 15° = cos 75   cos 15 
2 2 2 2

 tan 15  2  3  cot 75  cot 15  2  3  tan 75

1 1 1 1
 sin 22 
2 2
 2 2   cos 22 
2 2
 2 2 
1 1
 tan 22  2 1  cot 22  2 1
2 2

5 1 10  2 5
 sin 18   cos 72  cos 18   sin 72
4 4

10  2 5 5 1
 sin 36   cos 54  cos 36   sin 54
4 4

3 5  5 5 3 5  5 5
 sin 9   cos 81  cos 9   sin 81
4 4
1 1
 cos 36  cos 72   cos 36 cos 72 
2 4
 sin sin (60° – ) sin (60° + ) = 1/4 sin 3
 cos cos (60° – ) cos (60° + ) = 1/4 cos 3
 tan tan (60° – ) tan (60° + ) = tan 3
3.6 Expressions of sin A/2 and cos A/2 in terms of sin A
A A
1  sin A  sin  cos
2 2

Note : We must be careful while determining the square root of trigonometrical function e.g.

sin 2 x | sin x | not sin x

Self Study Course for IITJEE with Online Support Section 3 19

You might also like