Trigonometric Identities and Equations                                               Vidyamandir Classes
STANDARD RESULTS IN TRIGONOMETRY                                                              Section - 3
3.1.    Trigonometric Ratios for sum and difference of angles :
            sin (A + B) = sinA cosB + cosA sinB
            sin (A – B) = sinA cosB – cosA sinB
            cos (A + B) = cosA cosB – sinA sinB
            cos (A – B) = cosA cosB + sinA sinB
                               tan A  tan B                              
              tan ( A  B )                    where A  n   , B  n  
                              1  tan A tan B                 2            2
                                             
                               tan A  tan B                       
              tan ( A  B )                    and  A  B  m 
                              1  tan A tan B                      2
                             cot A · cot B  1 
             cot ( A  B ) 
                              cot A  cot B  where A  n , B  n 
                                              
                             cot A · cot B  1  and A  B  m
             cot ( A  B )                    
                              cot B  cot A 
                                   tan A  tan B  tan C  tan A tan B tan C
            tan (A + B + C) =
                                  1  tan A tan B  tan B tan C  tan C tan A
                                   cot A  cot B  cot C  cot A cot B cot C
            cot (A + B + C) =
                                  1  cot A cot B  cot B cot C  cot C cot A
            sin (A + B + C) = sinA cosB cosC + cosA sinB cosC + cosA cosB sinC – sinA sinB sinC
             or,
             sin (A + B + C) = cosA cosB cosC (tanA + tanB + tanC – tanA tanB tanC)
            cos (A + B + C) = cosA cosB cosC – sinA sinB cosC – sinA cosB sinC – cosA sinB sinC
             or,
             cos (A + B + C) = cosA cosB cosC (1 – tanA tanB – tanB tanC – tanC tanA)
            sin (A + B) sin (A – B) = sin2A – sin2B = cos2B – cos2A
            cos (A + B) cos (A – B) = cos2 A – sin2B = cos2 B – sin2 A
                                             S1  S3  S5  S7  ....
            tan (A 1 + A 2 + .... + An) =                            , where
                                             1  S2  S 4  S6  ....
             S1 = tan A1 + tan A2 + ..... + tan An = the sum of the tangents of the separate angles,
  16        Section 3                                         Self Study Course for IITJEE with Online Support
 Vidyamandir Classes                                                    Trigonometric Identities and Equations
                 S2 = tan A 1 tan A2 + tan A 2 tan A3 + ..... = the sum of the tangents taken two at a time,
                 S3 = tan A1 tan A2 tan A3 + tan A2 tan A3 tan A4 + ..... = the sum of the tangents taken three at
                 a time, and so on.
3.2.      Trigonometric Ratios of Multiple and Submultiple Angles
          (i)    sin 2A = 2 sin A cosA
          (ii)   cos 2A = cos2 A – sin2 A
          (iii) cos 2A = 2 cos2 A – 1 or,          1 + cos 2A = 2 cos2 A
          (iv) cos 2A = 1 – 2 sin2 A         or,   1 – cos 2A = 2 sin2 A
                              2 tan A                                         2 tan A
          (v)    tan 2A =                                 (vi)   sin 2A =
                            1  tan 2 A                                      1  tan 2 A
                            1  tan 2 A
          (vii) cos 2A =                                  (ix)   sin 3A = 3 sinA – 4 sin3A
 Illustration - 5           1  tan 2 A
                                                                             3 tan A  tan 3 A
          (x)    cos 3A = 4   cos3A     – 3 cosA          (xi)   tan 3A =
                                                                               1  3 tan 2 A
3.3       Tranformation Formulae
3.3A      Expressing Product of Trigonometric Functions as Sum or Difference
          (i)    2 sin A cos B = sin (A + B) + sin (A – B)       (ii)      2 cos A sin B = sin (A + B) – sin (A – B)
          (iii) 2 cos A cos B = cos (A + B) + cos (A – B) (iv)             2 sin A sin B = cos (A – B) – cos (A + B)
          The above four formula can be obtained by expanding the right hand side and simplifying.
Note : In the fourth formula, there is a change in the pattern. Angle (A – B) comes first and (A + B) later. In
       the first quadrant, the greater the angle, the less the cosine. Hence cosine of the smaller angle is written
       first [to get a positive result]
3.3B      Expressing Sum or Difference of Two Sines or Two Cosines as a Product
                                                                                                             CD
          In the formulae derived in the earlier section if we put A + B = C and A – B = D, then A =
                                                                                                              2
                     CD
          and B =        , these formulae can be rewritten as
                      2
                                          CD       CD
                 sinC + sinD = 2 sin          · cos
                                           2         2
Self Study Course for IITJEE with Online Support                                               Section 3     17
Trigonometric Identities and Equations                                                    Vidyamandir Classes
                                        CD       CD
            sinC – sinD = 2 sin             · cos
                                         2         2
                                          CD       CD
            cosC + cosD = 2cos                · cos
                                           2         2
                                           CD       CD                         CD       DC
            cosC – cosD = – 2sin               · sin              or    2 sin        · sin
                                            2         2                           2         2
3.4    General formulae
                                        sin ( A  B)                    
            tan A  tan B                           where A, B  n   , n  Z
                                        cos A cos B                     2
                                        sin ( B  A) 
            cot A  cot B                            where A, B  n , n  Z
                                        sin A sin B 
                                          cos ( A  B)                    
           1  tan A · tan B                          where A, B  n   , n  Z
                                          cos A cos B                     2
                                           cos ( A  B) 
           1  cot A · cot B                           where A, B  n , n  Z
                                           sin A sin B 
            1  cos          sin 
                      tan           where   n 
              sin         2 1  cos 
            1  cos       
                      cot , where   (2n  1) n
              sin         2
            1  cos         
                      tan 2 , where   (2n  1) 
            1  cos         2
            1  cos         
                      cot 2 , where   2n 
            1  cos         2
                      1  tan  cos   sin  1  sin 2
            tan                           
                 4     1  tan  cos   sin    cos 2
                      1  tan  cos   sin  1  sin 2
            tan                           
                 4     1  tan  cos   sin    cos 2
  18       Section 3                                             Self Study Course for IITJEE with Online Support
 Vidyamandir Classes                                              Trigonometric Identities and Equations
3.5      Values of Trigonometrical Ratios of Some Important Angles and Some Important Results
                                          3 1                                   3 1
             sin 15° = cos 75                                   cos 15 
                                         2 2                                    2 2
              tan 15  2  3  cot 75                           cot 15  2  3  tan 75
                        1 1                                                 1 1
              sin 22     
                         2 2
                                  2 2                           cos 22     
                                                                             2 2
                                                                                       2 2   
                        1                                                   1
              tan 22       2 1                                  cot 22       2 1
                         2                                                   2
                           5 1                                                 10  2 5
              sin 18          cos 72                          cos 18              sin 72
                            4                                                      4
                           10  2 5                                              5 1
              sin 36              cos 54                      cos 36           sin 54
                              4                                                   4
                           3 5  5 5                                          3 5  5 5
              sin 9                  cos 81                   cos 9                  sin 81
                                4                                                    4
                                     1                                                  1
              cos 36  cos 72                                  cos 36 cos 72 
                                     2                                                  4
             sin sin (60° – ) sin (60° + ) = 1/4 sin 3
             cos cos (60° – ) cos (60° + ) = 1/4 cos 3
             tan tan (60° – ) tan (60° + ) = tan 3
3.6      Expressions of sin A/2 and cos A/2 in terms of sin A
                                   A       A
                1  sin A  sin       cos
                                   2       2
Note :   We must be careful while determining the square root of trigonometrical function e.g.
               sin 2 x | sin x | not sin x
Self Study Course for IITJEE with Online Support                                        Section 3    19