0% found this document useful (0 votes)
18 views4 pages

School-Based Assessment (Sba) - 2025 End-Of-Year Assessment Final Term

The document outlines the School-Based Assessment (SBA) for Grade 8 Mathematics for the year 2025, detailing the structure of the assessment, including two papers totaling 100 marks and a time limit of 3 hours. It provides answer keys for various questions and includes detailed solutions for specific mathematical problems, such as calculating profit percentage, finding square roots, and solving equations. The assessment also includes practical applications like constructing triangles and calculating the volume of a hemisphere.

Uploaded by

TayyabMT
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
18 views4 pages

School-Based Assessment (Sba) - 2025 End-Of-Year Assessment Final Term

The document outlines the School-Based Assessment (SBA) for Grade 8 Mathematics for the year 2025, detailing the structure of the assessment, including two papers totaling 100 marks and a time limit of 3 hours. It provides answer keys for various questions and includes detailed solutions for specific mathematical problems, such as calculating profit percentage, finding square roots, and solving equations. The assessment also includes practical applications like constructing triangles and calculating the volume of a hemisphere.

Uploaded by

TayyabMT
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

SCHOOL-BASED ASSESSMENT (SBA) - 2025

END-OF-YEAR ASSESSMENT
SUBJECT: MATHEMATICS FINAL TERM
GRADE-8
[Paper A: 48 Marks, Paper B: 52 Marks, Total: 100 Marks], Time = 3 hours
School Name: GGHS 21/2-L (EMIS: 39330583)

ANSWER KEYS
Q. No.1 : a Q. No.2 : a Q. No.3 : b

Q. No.4 : a Q. No.5 : c Q. No.6 : c

Q. No.7 : d Q. No.8 : b Q. No.9 : c

Q. No.10 : c Q. No.11 : b Q. No.12 : b

Q. No.13 : a Q. No.14 : a Q. No.15 : d

Q. No.16 : c Q. No.17 : a Q. No.18 : d

Q. No.19 : a Q. No.20 : c Q. No.21 : c

Q. No.22 : a Q. No.23 : a Q. No.24 : b

Q. No.25 : a Q. No.26 : d Q. No.27 : a

Q. No.28 : c Q. No.29 : c Q. No.30 : d

Q. No.31 : c Q. No.32 : a

ANSWERS / RUBRICS
Question No: 33
33‫وسالربمن‬
a ) If one packet contains 5
1

4
liters of oil, then find the quantity of oil in 5 such packets.(5 marks)
)‫ربمن‬5(‫وٹکیپںںیمانتکلیتوہاگ؟‬5‫رٹللیتوہوتاےسی‬5 ‫ارگاکیٹکیپںیم‬
1

‫رٹل=اکیٹکیپںیملیت‬5 1

Oil in 1 packet = 5 l 1 4

‫وٹکیپںںیملیت‬5=5 ×5)‫ربمن‬2(
4
1

Oil in 5 packets = 5 ×5 ( 2 marks)


1

4
4

= ×5 (1 mark )
21

4
= ×5)‫ربمن‬1(
21
4

= 105

4
(1 mark) = )‫ربمن‬1(
105

= 26 l (1mark )
1 4

4
26 ‫ربمن)رٹل‬1(
1

4
Find Square root of 3364 by prime factorization.(5 marks)
)‫ربمن‬5(‫اکذجرولعممرکںی۔‬3364‫رفمدزجتیےکذرےعی‬

√ 3364 =√2 × 2 × 29 × 29)‫ربمن‬1(


√ 3364 =√2 × 2 × 29 × 29 (1 mark)
=√2 × 29 2
(1 mark)
2 =√2 × 29 )‫ربمن‬1(
2 2

=√(2 × 29) (1 mark)


2
=√(2 × 29) )‫ربمن‬1( 2

=2 × 29 (1 mark) =2 × 29)‫ربمن‬1(
= 58 (1 mark)
=58)‫ربمن‬1(

Question No: 34
34‫وسالربمن‬
a ) If A = {a, b, c, d}, B = {a, e, i}andC = {e, c, g, h}, then verify associative law of intersection. (5 Marks)
)‫ ربمن‬5( ‫وہوتاقتعطےکاقوننالتزمیکڑپاتلرکںی۔‬C = {e, c, g, h}‫اور‬B = {a, e, i}, A = {a, b, c, d}‫ارگ‬
A = {a, b, c, d} , B = {a, e, i} , C = {e, c, g,h}
A∩(B∩C)=(A∩B)∩C)‫ربمن‬1(
A = {a, b, c, d} , B = {a, e, i} , C = {e, c, g,h} L.H.S= A∩(B∩C)
A (B C)=(A B) C (1 mark)
∩ ∩ ∩ ∩

L.H.S= A (B C)
∩ ∩ =)}e,c,g,h{∩}a,e,i{(∩}a,b,c,d{
={a,b,c,d} ({a,e,i} {e,c,g,h})
∩ ∩
=}e{∩}a,b,c,d{)‫ربمن‬1(
={a,b,c,d} {e} (1 mark)

={ } (1 mark) =} { )‫ربمن‬1(
R.H.S= (A B) C
∩ ∩
R.H.S= (A∩B)∩C
=({a,b,c,d} {a,e,i}) {e,c,g,h}
∩ ∩

={a} {e,c,g,h} (1 mark)



=}e,c,g,h{∩)}a,e,i{∩}a,b,c,d{(
={ } (1 mark) =}e,c,g,h{∩}a{)‫ربمن‬1(
Hence proved that
A (B C)=(A B) C
∩ ∩ ∩ ∩
=} {)‫ربمن‬1(
‫سپاثتبوہا‬
A∩(B∩C)=(A∩B)∩C
Feroz bought a car for Rs 75000 and sold it for Rs 100000. Find his profit percentage. (5 Marks)
)‫ربمن‬5(‫روےپںیمرفوتخرکدی۔اساکعفنیفدصولعممرکںی۔‬100000‫روےپںیمرخدییاور‬75000‫ریفوزےناکیاگڑی‬

‫ =تمیقرخدی‬75, 000
Cost price (C.P)= 75000 ‫ =تمیقرفوتخ‬100, 000
Sale Price(S.P)= 100000
Profit=S.P - C.P ‫تمیقرفوتخ=عفن‬-‫تمیقرخدی‬
Profit = 100000 − 75000 = 25000 (2 Marks) ‫ =عفن‬100, 000 − 75, 000= 25, 000 Rs)‫ربمن‬2(
Profit %= prof it
× 100

Profit %=
C.P

× 100 = 33. 33% (3 Marks)


25000 ‫عفن‬%= prof it
× 100
C.P
75000

‫عفن‬%= × 100 = 33. 33‫ربمن) دصیف‬3(


25000

75000

Question No: 35
35‫وسالربمن‬
a ) Find the general term of arithmetic sequence 7,11,15,19,........ . ( 5 marks )
)‫ربمن‬5(‫یکرنجلرمقولعممرکںی۔‬7,11,15,19,........‫یعمجےلسلس‬
7,11,15,19,........,
7,11,15,19,........ a1 = 7, d = 11 − 7 = 4)‫ربمن‬1(

(1 mark )
‫مہاجےتنںیہہک‬
a1 = 7, d = 11 − 7 = 4

We know that
an = a1 + (n − 1)d (1 mark ) a = a + (n − 1)d)‫ربمن‬1(
n 1

an = 7 + (n − 1)(4) (1 mark ) a = 7 + (n − 1)(4))‫ربمن‬1(


an = 7 + 4n − 4 ( 1mark ) n

an = 3 + 4n (1 mark ) a = 7 + 4n − 4​)‫ربمن‬1(
n

a = 3 + 4n)‫ربمن‬1(
n

Evaluate (48)
2
by using formula. (5 marks)
)‫ربمن‬5(‫(وکافرومالیکدمدےسلحرکںی۔‬48) 2

2
(48)
2
(48)

= (50 − 2)
2
(1 mark) )‫ربمن‬1(
= (50 − 2)
2

(2 marks) − 2(50)(2) + (2) )‫ربمن‬2(


2 2 2 2
= (50) − 2(50)(2) + (2) = (50)

= 2500 − 200 + 4 (1 mark) = 2500 − 200 + 4 )‫ربمن‬1(


= 2304 (1 mark)
= 2304)‫ربمن‬1(

Question No: 36
36‫وسالربمن‬
a ) Find solution of 3x + 5y =2 , x+ 2y = 4 with the help of substitution method. (5 marks)
)‫ربمن‬5(-‫ اکلحولعممرکںی‬3x+ 5y =2،x +2y = 4‫تمیقدرجرکےنےکرطہقییکدمدےس‬
3x+ 5y = 2 .................. (i)
x+ 2y = 4 .................... (ii)
3x+ 5y = 2 .................. (i)
x+ 2y = 4 .................... (ii) ‫) ےس‬ii(
from (ii) x = 4 - 2y.......... (A))‫ربمن‬1.5(
x = 4 - 2y.......... (A) (1.5 marks)
Put the value of x in (i) ‫)ںیمدرجرکےنےس‬i(‫ یکتمیق‬x
3(4- 2y) + 5y = 2 3(4 − 2y) + 5y = 2

12 - 6y + 5y = 2
12 − 6y + 5y = 2
y = 10 (1.5 marks)
put the vlaue of y =10 in (A) y = 10)‫ربمن‬1.5(
x = 4 - 2(10) ‫ ںیمدرجرکےنےس‬A‫ یکتمیق‬y=10
x = 4- 20
x = -16 (2 marks) x = 4 − 2(10)

x = -16 , y = 10 x = 4 − 20

x = −16 )‫ربمن‬2(
x = -16 , y = 10
Find the volume of a hemisphere whose radius is 10 cm. (5 marks)
)‫ربمن‬5(‫یٹنیسرٹیمےہ۔‬10‫اکیفصنرکہاکمجحولعممرکںیسجاکرداس‬
Radius of hemisphere = 10 ‫ =فصنرکہاکرداس‬10‫یٹنیسرٹیم‬
Volume of hemisphere= πr (1 mark) 2

3
3
‫ =فصنرکہاکمجح‬πr )‫ربمن‬1(
2
3
3

=
2
(
3
22
)(10)
7
(1 mark)3

=
2
( )(10) )‫ربمن‬1(
22 3

3 7

× 1000 (1 mark)
44

)‫ربمن‬1(
=
21 44
= × 1000
=
44000
(1 mark) 21

)‫ربمن‬1(
21

(1 mark)
44000
= 2095. 23cm
3 =
21

= 2095. 23‫ربمن)​​بعکمیٹنیسرٹیم‬1(

Question No: 37
37‫وسالربمن‬
¯
LM N mLM = 4cm m∠L = 60
o
a ) Construct a triangle
mLN = 5. 5cm with the help of compass and ruler when , and . (7 marks)
o
¯ )‫ربمن‬7(‫وہ۔‬mLN
‫انبںیئہکبج‬LM N ‫امیپےناوررپاکریکدمدےسثلثم‬
= 5. 5cm ‫اور‬m∠L = 60 ,mLM = 4cm

¯ )‫ربمن‬1(‫ےنچنیھکرپ‬mLM = 4cm
On drawing
¯
mLM = 4cm (1 Mark)
On making angle of at point L. (2 Mark) 60
0 )‫ربمن‬2(‫اکزاوہیانبےنرپ‬60 ‫ رپ‬L 0

On drawing an arc of 5.5cm at point L. (2 Mark) )‫ربمن‬2(‫یٹنیسرٹیمیکوقسانبےنرپ‬5.5‫ رپ‬L‫ہطقن‬


On correct completion and labeling. (2 Marks)
)‫ربمن‬2(‫درتسلیمکتاورلبیلرکےنرپ‬
A fair dice is rolled. Khalid wins the game if the result is less than three. What will be the probability of winning the game for Khalid? (5
Marks)

)‫ربمن‬5(‫اکیڈاسئامھگایایگےہ۔اخدللیھکتیجاجاتےہارگہجیتننیتےسمکوہ۔اخدلےکےیللیھکےنتیجاکایکااکمنوہاگ؟‬
‫ =لپمیسسیپس‬S = {1, 2, 3, 4, 5, 6})‫ربمن‬1(
Sample Space = S = (1 mark)
n(S) = 6)‫ربمن‬1(
{1, 2, 3, 4, 5, 6}

n(S) = 6 (1 mark)
Let, A = {1, 2}less than 3 (1 mark) A = {1, 2}‫ےسوھچاٹ‬3)‫ربمن‬1(

n(A) = 2 (1 Mark) n(A) = 2)‫ربمن‬1(


P(A) = n(A)

n(S) n(A)
P (A) =
= =
2

6
1

3
(1 mark) n(S)

=
2

6
=
1

3
)‫ربمن‬1(

You might also like