Mhf4ut Unit Two Notes
Mhf4ut Unit Two Notes
}
function
Pc>c) >
Polynomial + pcse) =/ 0
• fcx) =
A Rational Function "
ratio "
que,
is a
must be at least
>
polynomial function t
degree 1 of two
polynomial functions .
•
Rational Functions will have
asymptotes : vertical asymptotes horizontal asymptotes , ,
and oblique asymptotes
✓
•
Vertical Asymptotes
Occurs when the denominator is
equal to zero
Determine the roots of the polynomial function in the denominator to find vertical asymptotes
Ex .
in 3×+5 '
^
I fc
f-
=
>c)
zoe -4
I > or 2×-4=0
- - - - -
?
I
2>c = 4
* x=2 1
This is what
4
a V. A looks like .
a.
It is not a
physical
line but more of an
invisible barrier .
•
Horizontal Asymptotes
If degree of the numerator is less than the degree of the denominator then H.tt is @
y=o
if of the numerator the degree of the denominator
degree is
equal to
^
then Hit is @
lead coefficient
Ex ,
or
I Y =
lead coefficient
4×+5
fc c)
> =
- - - -
l y=z
];
2×-3 I
-
?
equal
- - - - - -
degrees
)
< or are
y=¥=2
o
00
u ✗= 1.5
✓
H A . follows same
idea 4×+1
as V. A bat is in in
fc =
just
>
now horizontal x2 -4 1
I 1
degree in numerator is - - -
1-
- -
"
y :O
loess than denominator C
: ,
'
00
ye 0
I
Ii .z%=z
INTERCEPTS) +
4- INTERLINK)
intercept y intercept
•
•
x -
-
kg
=
-
x = zco) -
l
ooo a -
int @ (5-10) To
y
- int @ (0 1)
,
-
END BEHAVIOURS
•
For vertical asymptotes
1 Pick to the of the
value
right asymptote and sub in in the equation
.
an x -
as x .
2.
Repeat same process
but this time with an a- value to the left of the asymptote .
42C I 410) -1 ^
!
-
EX .
fcsc) =
2×+2
•
f. ( o) =
zig +2
=
2×+2=0 I
4C 2) l 8 l
%
- - -
,
-
=
22C = -2 •
fc -
2) =
zczy +2
=
-4-+2 I
x= -1 -
,
VI
K=-1
For horizontal
•
asymptotes
1. For end behaviour as x → x sub in 1000 as x .
3 .
If as x→±x , y → a value
greater than the H.tt , then the end behaviour is above the H.tt ( fac) > H.tl
If as x → IX
, y
→ a value less than the 1-1.1 ,
then the end behaviour is below the H.lt/fc c)> < 1-1. A)
^
42€ 411000) - l I
ÉX fc>c) = •
f ( 1000) =
/ 99 ←
2110003+2
f
=
2×+2
'
.
4=2
- - - - - - - -
→
4. A- = 2 I
4C-10007 - I '
2 / l
•
f- C- 1000)
:
zc-10001+2
=
'
%
✗ = -1
Ex .
3×-2
fix =
Gu +3 V. A : 6×+3=0 Domain :{x x # É ,
KEIR }
-
Gx =-3
✗ =
the domain of the function is the set of all
real numbers
excluding
✗ =
.
Range
•
set of all
possible values for the function
y
-
Ex .
32C -2
fees :& É
Range :{ y / }
=
HA
y# ± yer
=
Goers ,
the
range
of the function is the set of all real
numbers
excluding y=É
HOW -10 GRAPH A RATIONAL FUNKO
* specific steps how to determine key characteristics from its equation is
explained above
on
up
1.
Simplify / factor rational function if needed
2. Determine interception
x -
and y
-
intercepted
3. Determine vertical and horizontal
asymptotes)
4. Determine end behaviours for V. A
22<+1 2-Ctl
ÉX fc>c) = FC c) =
4C>c. 2) (✗ +2
>
.
4×2-16
if f
_÷
I
[
l
l
I 1
X - int : 2×+1=0
I
a. ÷
an " . >
y.int :
=
-16
- - - - - -
- -
=
←
I ,
7.
Licorice
/ (0-5,0)
I
V. A :
4L>c-2) (2+2)=0 1 I
✗ 1- 2=0 2C -2=0 / /
✗ = -2 2<=2
I
v1 : t !
HA : 2=-2 2=2
.
y=o
21 3) +1-
End behaviours V. A : fc c)
>
=
41.35-16
=
t
2C 1) +I
#F
-
fc>c) =
yup -16
=
2 (1) tl I
f- c c) at
-
=
=
> '
4111 -16
2 (3) + I
fczcj =
41312-16
=
¥ f
24000) +1
End behaviours fc
= 0.0005 above
HA : > c) =
yaooojr.io
21-1000) +1
= -0.0005 below
food =
41-100012-16
Check :
-10W TO SOLVE RATIONAL INEQUALITIES
4×+2
5
EX .
2 >e -
l
424-2
za -
i
< 5
when ✗<
É and x >
¥ > 5=II
✗ =
I
•
:÷:÷÷÷
Graphically Ex .
>c-
✗ +1
3
= 0
intercepts •
>
roots are the solution
Algebraically
•
X -
l 3, I
xt2_ ✗ =/ -
-
2C +3 ✗ 1- 1
Ex . XI 0
=
:÷=o
7<+1
:÷ -
X -
3--0 or
Get 2) ( act 1) be -1/(20-3)
2C =3 - = 0
(20+3×+2) (20+2×-3)=0 -
+3kt 2 -
¥ - 2×1--3 = 0
✗ +5=0
2=-5