Maths2 Pyqs
Maths2 Pyqs
                                                  B. TECH
                                    (SEM-II) THEORY EXAMINATION 2017-18
                                       ENGINEERING MATHEMATICS - II
Time: 3 Hours                                                                                          Total Marks: 70
Note: Attempt all Sections. If require any missing data, then choose suitably.
SECTION A
(e)          
        If L F ( t )  e 1 / s
                           s
                                                        
                                 , find L e  t F (3 t ) .
                                                                  
        Solve: ( D  4 D   5) z  0 , where D            , D' 
                                  2
(f)                                                                   .
                                                         x        y
(g)    Classify the equation: z xx  2 x z xy  (1  y 2 ) z yy  0 .
SECTION B
                                     2  3  x 2      3 cos x 
(b)    Prove that: J 5 / 2 ( x)        2  sin x          .
                                    x  x               x 
(c)    Draw the graph and find the Laplace transform of the triangular wave function of period 2 given by
                                     t,         0t 
                           F (t )                        .
                                    2  t ,     t  2
                                                                              2t , 0  t  1
(d)    Obtain half range cosine series for e x the function f (t )  
                                                                            2(2  t ),1  t  2
                                                             u u
(e)    Solve by method of separation of variables:                 2u ; u ( x, 0)  10e  x  6e 4 x .
                                                             t x
                                                         SECTION C
3.     Attempt any one part of the following:                                                                    7x1=7
(a)    Solve the simultaneous differential equations:
               d 2x     dx               d2y     dy
                  2
                     4     4 x  y and    2
                                               4  4 y  25x  16e t .
               dt       dt               dt      dt
(b)    Use variation of parameter method to solve the differential equation x 2 y   xy   y  x 2 e x .
4.    Attempt any one part of the following:                                                                7x1=7
(a)   State and prove Rodrigue’s formula for Legendre’s polynomial.
(b)   Solve in series: 2 x(1  x) y   (1  x) y   3 y  0 .
                                                                                     d3y      d2y     dy
(b)   Solve the following differential equation using Laplace transform                 3
                                                                                           3    2
                                                                                                    3  y  t 2et
                                                                                     dt       dt      dt
            where y (0)  1, y (0)  0 and y (0)  2 .
                                       B. TECH.
                         (SEM II) THEORY EXAMINATION 2018-19
                                    MATHEMATICS-II
Time: 3 Hours                                                              Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.
SECTION A
                                                                 A
d.                 5                                                       2            2
                                                               PT
       Evaluate Γ  −  . where Γ is gamma function
                   2
e.
                                                         U
       Find the Fourier constant 𝑎 of 𝑓(𝑥) = 𝑥 , −𝜋 ≤ 𝑥 ≤ 𝜋                  2            3
                                                      G
f.                                                                           2            3
                                                                                            .2
       Discuss the convergence of sequence 𝑎 =         .
                                               AR
                                                                                        62
g.     Show that complex function 𝑓(𝑧) = 𝑧 is analytic.                           2       4
                                            M
                                                                                      5.
                                        KU
                                                                                  11
i.     Evaluate      (𝑥 − 𝑖𝑦)𝑑𝑧 along the path 𝑦 = 𝑥.                             2       5
j.     Find residue of 𝑓(𝑧) =           at 𝑧 = 0
                                                                                 5.
                                                                                  2       5
                                    Y
                                (   )
                                                                          |4
                                JA
                                                                      49
                            VI
                                          SECTION B
                                                                   9:
                     R
c.                                                  𝑥  0<𝑥<2                      10      3
                                             ay
                                1
       Expand f ( z ) =                  in regions
                        ( z − 1)( z − 2)
        (i) 1 < |𝑧| < 2      (ii) 2 < |𝑧|
                                         SECTION C
3.     Attempt any one part of the following:
QNo.                                     Question                                 Marks   CO
a.     Solve      + 𝑦 = 𝑡𝑎𝑛𝑥 by method of variation of parameter.                 10      1
                                                                                   Page 1 of 2
                                           DR VIJAY KUMAR GUPTA | 15-May-2019 08:59:49 | 45.115.62.2
                                                                                                           KAS203
b.     Solve 𝑥      − 2(𝑥 + 𝑥)          + (𝑥 + 2𝑥 + 2)𝑦 = 0 by Normal Form.                           10      1
                                                                                  A
6.     Attempt any one part of the following:
                                                                              PT
QNo.                                         Question                                                 Marks   CO
a.
                                                                          U
                                      𝑤ℎ𝑒𝑛 𝑧 ≠ 0, 𝑓(𝑧) = 0 𝑤ℎ𝑒𝑛 𝑧 = 0. Prove 10                               4
                          (       )
                                                                  G
       Let    𝑓(𝑧) =
                                                                                                               .2
                                                   AR
                                                                                                            62
       at 𝑧 = 0.
                                                M
                                                                                                       5.
b.     Find Mobius transformation that maps points 𝑧 = 0, −𝑖, 2𝑖 into the 10                                  4
                                            KU
                                                                                                      11
       points 𝑤 = 5𝑖, ∞, − respectively.
                                                                                                5.
                                      Y
                                                                                              |4
                                 JA
a.                                                                        sin z                       10      5
       Using Cauchy Integral formula evaluate                      (z             dz    where c is
                                                                                :5
                    D
                                                                          2
                                                                      c    + 25) 2
                                                                              08
       circle |𝑧| = 8
b.                                                                                                    10      5
                                                                   9
                                                    (            )(           )
                                                   -2
                                                 ay
                                               M
                                            5-
                                      |1
                                                                                                      Page 2 of 2
                                              DR VIJAY KUMAR GUPTA | 15-May-2019 08:59:49 | 45.115.62.2
                                                                                                                                      Printed Page: 1 of 2
                                                                                                                                 Subject Code: KAS203T
                                                                         0Roll No:        0     0       0 0       0    0     0     0       0    0       0   0    0
                                                          BTECH
                                           (SEM II) THEORY EXAMINATION 2021-22
                                              ENGINEERING MATHEMATICS-II
Q.1(d) Find the volume of the solid obtained by rotating the ellipse 𝑥 9𝑦 9 about the 𝑥-axis. 2
Q.1(e)                                  𝟏     𝟏                                                                                                                      3
         Test the series ∑𝒏           𝟏 𝒏 𝐬𝐢𝐧 𝒏            .
Q.1(f)   Find the constant term when 𝑓 𝑥                                 1       |𝑥| is expanded in Fourier series in the interval (-3, 3).                          3
                                                                                           90
                                                                                                                                                                2
                                                                                                                                                            13
Q.1(g)   Show that 𝑓 𝑧                𝑧         2𝑧̅ is not analytic anywhere in the complex plane.                                                                   4
                                                                                        _2
                                                                                                                                                    2.
                                                                                 P2
                                                                                                                                               24
                                                2𝑖|=2 under the mapping 𝑤                           .
                                                                         2E
                                                                                                                                           5.
Q.1(i)   Expand 𝑓 𝑧          𝑒                   in a Laurent series about the point 𝑧                        2.                                                     5
                                                                                                                                   .5
                                                                     P2
                                                                                                                             17
Q.1(j)   Discuss the nature of singularity of                                    𝑎𝑡 𝑧     𝑎 𝑎𝑛𝑑 𝑧         ∞.                                                         5
                                                                   Q
                                                                                                                       |1
                                                                                                             5    0
Q.2(a)                                                                                                                                                               1
                                                                                                        :0
Q.2(b)                                                                                                            𝒙𝒑 𝟏                 𝝅                             2
         Assuming Γ𝑛 Γ 1                  𝑛          𝜋 𝑐𝑜𝑠𝑒𝑐 𝑛𝜋, 0                  𝑛     1, show that        𝟎
                                                                                                                         𝒅𝒙                    ;0       𝑝   1.
                                                                                                                  𝟏 𝒙             𝐬𝐢𝐧 𝒏𝝅
                                                                                          2
Q.2(c)                      𝒙             𝒙𝟐         𝒙𝟑            𝒙𝟒                                                                                                3
                                                                                        02
                                                                                                                                  𝐜𝐨𝐬𝐡 𝒚 𝐜𝐨𝐬 𝒙
          𝑓             .
                                                                         6-
Q.2(e)                                                                                                                                                               5
                                                                   |1
                                                  BTECH
                                   (SEM II) THEORY EXAMINATION 2021-22
                                      ENGINEERING MATHEMATICS-II
                                                                                                                                         2
Q.5(a)   Test for convergence of the series                                               ⋯⋯⋯                                                3
                                                                                                                                     13
                                                      !        !           !
                                                                   _2
Q.5(b) 1 , 𝜋 𝑥 0 3
                                                                                                                                 2.
                                                           P2
                                                                                                                             24
                                                                   1           ,     0    𝑥       𝜋
                                                          2E
                                                                                                                        5.
         Hence deduce that                        ⋯⋯⋯          .
                                                                                                                    .5
                                                     P2
                                                                                                              17
                                                Q
|1
Q.6(a)   Prove that 𝑤         maps the upper half of the z-plane onto upper half of the w-plane. What is                                     4
                                                                                        5
         Find a bilinear transformation which maps the points 𝑖, 𝑖, 1 of the 𝑧 plane into 0, 1, ∞ of the                                     4
                                                                                   :0
Q.6(b)
          𝑤 𝑝𝑙𝑎𝑛𝑒 respectively.
                                                                           09
                                                                     2
                                                                   02
Q.7(b)   Find the Taylor’s and Laurent’s series which represent the function                                         when 𝑖 |𝑧|      2       5
                                                     6-
                                                |1
                                          B. Tech.
                           (SEM II) THEORY EXAMINATION 2022-23
                              ENGINEERING MATHEMATICS-II
Time: 3 Hours                                                                              Total Marks: 70
le;% 03 ?k.Vs                                                                              iw.kkZad% 70
Note:
     1. Attempt all Sections. If require any missing data; then choose suitably.
     2. The question paper may be answered in Hindi Language, English Language or
        in the mixed language of Hindi and English, as per convenience.
uksV% 1- lHkh iz”uks dk mRrj nhft,A fdlh iz”u esa] vko”;d MsVk dk mYys[k u gksus dh
     fLFkfr esa mi;qDr MsVk Lor% ekudj iz”u dks gy djsaA
     2- iz”uksa dk mRrj nsus gsrq lqfo/kkuqlkj fgUnh Hkk’kk] vaxzsth Hkk’kk vFkok fganh ,oa vaxzsth
     dh fefJr Hkk’kk dk iz;ksx fd;k tk ldrk gSA
                                                SECTION A
                                                                                                                    2
                                                                   .
                                                                dx
                                                                                                                   13
                                                         _2
                हल क िजये:
                                                                                                             2.
                                                        d
                                                      P2
( D 3  2 D 2  3D ) y  e x , D 
                                                                                                          24
                                                           .
                                                        dx
                                             3E
                                                                                                      5.
                                                                                                 .5
        (b)     Explain the first shifting property of the Laplace transform with example.
                                       P2
        (e)                                                e1 / z
                                                                         :
                                                            z
                           e1 / z
                                                          3
                            z
        (f)                                                                    1
                                                -2
                               1
                 F (s)               का       ु म ला लास             पांतरण ात क िजए।
                                          1-
                           s  2s  2
                            2
                                     |3
        (g)                                                                     2z  6
                Find the invariant points of the transformation w                     .
                                                                                 z7
                                     2z  6
                  ांसफॉमशन w               के अप रवतनीय बदु ात क िजए।
                                      z7
            e
                 x 3
                      x sin xdx  0.
            0
            e        x 3 sin xdx  0 .
                 x
            0
     (c)    Test the convergence of following series:
            िन िलिखत ृंखला के अिभसरण का परी ण कर:
                1        x      x2
                                     ..., Where x is a real number.
              1.2.3 4.5.6 7.8.9
               1       x      x2
                                   ..., जहाँ x एक वा तिवक सं या है।
            1.2.3 4.5.6 7.8.9
                                                          90
                                                                                                                 2
     (d)                                                             x 3 y 5 ( x  iy )
                                                                                                                13
            Show that the function f(z) defined by f ( z )                             , z  0, f (0)  0 is
                                                    _2
                                                                        x 6  y 10
                                                                                                         2.
            not analytic at the origin even though it satisfies Cauchy-Riemann equations at
                                               P2
                                                                                                    24
            the origin.
                                          3E
x 3 y 5 ( x  iy )
                                                                                                5.
             दखाएँ क f ( z )                      , z  0, f (0)  0 ारा प रभािषत फ़ं शन f(z) मूल
                                                                                            .5
                                   x 6  y 10
                                       P2
            करता हो।
                                                                                 |1
     (e)                                                              sin 2 z
            Using Cauchy-integral formula, evaluate                                dz , where C is a
                                                                             1
                                                               C ( z  3)( z  1)
                                                                                  2
                                                                         :2
                                                       sin 2 z
            कॉची-इं टी ल सू का उपयोग करके                           dz का मू यांकन कर। जहाँ पर C,
                                                                :
                                                             08
                                                C
                                                  ( z  3)( z  1) 2
            3  i,  2  i शीष वाला एक आयत है।
                                                      3
                                                    02
                                            -2
                                            SECTION C
                                          07
      (b)   Solve the differential equation by the changing the independent variable:
             वतं चर को बदलकर अवकल समीकरण को हल कर:
                                                                                                      2
                                ...     .
                                                                                                  13
            12 2 2 32 4 2                 12
                                                       _2
            clear
                                                                                              2.
             f ( x)  x  x 2 ,  x   . को          करने के िलए फू रयर ृंखला ात क िजये। तथा
                                               P2
                                                                                         24
                           1   1   1   1         2
                                         3E
दशाइए क     ...  .
                                                                                      5.
                          12 2 2 32 4 2          12
                                                                                  .5
                                   P2
     (b)                                                                      17
            Find the half range cosine series for the function f ( x )  ( x  1) 2 in the interval
                               Q
                                                                           |1
            (0,1). Hence, prove that
             1 1       1    1          2
                                                                        1
                             ...     .
                                                                     :2
            12 32 5 2 7 2              8
                                                                 46
            clear
            अंतराल (0,1) म फ़ं शन f ( x )  ( x  1) 2 के िलए हाफ रज कोसाइन ृंखला ात कर।
                                                               :
                                                            08
                                 1 1    1   1          2
            तथा िस      कर क                 ...     .
                                 12 32 5 2 7 2
                                                         3
                                                       8
                                                       02
                                            -2
     (a)    Determine an analytic function f(z)=u+iv in terms of z whose real part u(x,y) is
            e x ( x cos y  y sin y ) and f(1)=e.
                                 |3
     (b)    Find the bilinear transformation which maps the points z  0,  1, i onto
            w  i, 0, . Also, find the image of the unit circle |z|=1.
            ऐसा ि रे खीय प रवतन ात क िजये जो बदु   z  0,  1, i को w  i, 0, . , पर मैप
            करता है। इकाई वृ |z|=1 क इमेज भी ात क िजये।
                                               7z  2
            िन िलिखत े म f ( z )  3                         का िव तार क िजयेA
                                             z  z 2  2z
             (i ) 0 | z | 1 (ii ) 1 | z | 2 (iii ) | z | 2.
     (b)                                                                   
                                                                                     a d
            Using contour integration, evaluate the real integral          a
                                                                           0
                                                                                 2
                                                                                      sin 2 
                                                                                               , a  0.
                                                                                 
                                                                                          a d
            contour integration का उपयोग करके , वा तिवक समाकलन                   a
                                                                                 0
                                                                                      2
                                                                                           sin 2 
                                                                                                    , a  0. का
आकलन कर।
90
                                                                                                                   2
                                                                                                                  13
                                                   _2
                                                                                                            2.
                                             P2
                                                                                                       24
                                       3E
                                                                                                   5.
                                                                                               .5
                                  P2
                                                                                          17
                              Q
                                                                                 |1
                                                                           1
                                                                       :2
                                                               :  46
                                                            08
                                                    3
                                                  02
                                           -2
                                         07
                                     1-
                                |3
0Roll No: 0 0 0 0 0 0 0 0 0 0 0 0 0
                                             BTECH
                              (SEM II) THEORY EXAMINATION 2023-24
                                 ENGINEERING MATHEMATICS-II
TIME: 3 HRS                                                                                              M.MARKS: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A
                                                                                                                                     2
   g.       Define Laurent’s series.                                                                         2           5
                                                                                                                                 13
                                                                  90
                                                                                                                         2.
                                                          _2
                                                                                                                     24
                                                   SECTION B
                                                     P2
                                                                                                              5.
    2.      Attempt any three of the following:                                                              7 x 3 = 21
                                                   4E
                                                                                                         .5
    Q no.                                          Question                                                  Marks       CO
                                                                                                     17
                                          P2
    a.                                                             𝑑2𝑦          𝑑𝑦                           7           1
            Using variation of parameter method, solve x2
                                                                                               |1
                                                                          +2x            -12y = 0.
                                       Q
                                                                   𝑑𝑥 2         𝑑𝑥
                                                                                         AM
    c.                                             2    6   14               7                                           3
            Test the convergence of the series 1+ x + x2 + x3 +…
                                                                        :3
                                                   5     9  17
            Show that the function u = ½ log (x2 + y2) is harmonic .Find its 7
                                                                      01
    d.                                                                                                                   4
            harmonic conjugate.
                                                                  9:
                    4−3𝑧                               3
             ∫𝑐            dz, where C is circle |𝑧| =
                  𝑧(𝑧−1)(𝑧−2)                                 2
                                                      20
                                                   g-
                                                   SECTION C
                                              Au
                                                                                                              1|Page
                                                          QP24EP2_290 | 06-Aug-2024 9:01:32 AM | 117.55.242.132
                                                                                              Printed Page: 2 of 2
                                                                                          Subject Code: BAS203
0Roll No: 0 0 0 0 0 0 0 0 0 0 0 0 0
                                            BTECH
                             (SEM II) THEORY EXAMINATION 2023-24
                                ENGINEERING MATHEMATICS-II
TIME: 3 HRS                                                                                   M.MARKS: 70
                                                                                                                          2
              2   2.4       2.4.6
                                                                                                                      13
                                                                   90
                                                                                                              2.
                                                          _2
                                                                                                          24
                                                     P2
                                                                                                  5.
    a.      Show that ex (x cosy – y siny) is a harmonic function. Find the     7                             4
                                                4E
                                                                                              .5
            analytic function for which ex (x cosy – y siny) is imaginary part.
                                                                                          17
                                            P2
    b.      Define analytic function and show that f(z) = z |𝒛| is not analytic 7                             4
                                                                                      |1
            anywhere.
                                         Q
AM
                                 𝑧
    a.      Expand f(z) =                 is Laurent series valid for                             7           5
                                                                       01
                             (𝑧−1)(2−𝑧)
            𝑎)|𝑧 − 1| > 1           and b) 0 < |𝑧 − 2| < 1
                                                                   9:
    b.                        𝒆𝒛
            Evaluate    ∫ (𝒛−𝟏)(𝒛−𝟒)   dz where C is the circle |z| = 2 by using Cauchy’s 7                   5
                                                             24
            integral formula.
                                                      20
                                                  g-
                                              Au
                                           6-
                                       |0
                                                                                                  2|Page
                                                          QP24EP2_290 | 06-Aug-2024 9:01:32 AM | 117.55.242.132