0% found this document useful (0 votes)
168 views8 pages

m2 Ans Key - 1

The document contains the answer key for the B. Tech End Semester Examinations in Engineering Mathematics II for June 2024. It includes solutions to various mathematical problems related to Fourier series, Laplace transforms, and Z-transforms, with specific questions and their corresponding answers. The document is structured into parts, with each part addressing different types of mathematical concepts and problems.

Uploaded by

Bhuvan Lifter
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
168 views8 pages

m2 Ans Key - 1

The document contains the answer key for the B. Tech End Semester Examinations in Engineering Mathematics II for June 2024. It includes solutions to various mathematical problems related to Fourier series, Laplace transforms, and Z-transforms, with specific questions and their corresponding answers. The document is structured into parts, with each part addressing different types of mathematical concepts and problems.

Uploaded by

Bhuvan Lifter
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 8

DEPARTMENT OF MATHEMATICS

B. TECH END SEMESTER EXAMINATIONS, JUNE 2024


II SEMESTER (COMMON TO ALL BRANCHES)
ENGINEERING MATHEMATICS – II (U23MATC02)
Answer Key
Q. Marks
Key Points
No. Allotted
PART A (10 2 = 20 Marks)
Answer all the Questions
Define Fourier series.
Solution:
If f(x) is a periodic function and satisfies Dirichlet’s condition,then it can be represented by an
Q.1 a ∞ 2 Marks
infinite series is called Fourier series, f(x) = 0 +∑ ( an cosnx+b n sin nx ) , where a 0 , an , ∧b nare called
2 n =1
Fourier coefficients.
Find b n in the expansion of x 2 as a Fourier series in the interval (−π , π ¿ .

Solution:
2
Given f(x) = x
Q.2 2 Marks
f ( x) ( x) 2  x 2  f ( x)
 f(x) is even function

 The Fourier coefficient bn = 0 .


State first shifting property of fourier transforms.
Solution:
Q.3 F[f(x-a)] = e ias F( s) 2 Marks
F[e iax f (x )¿=F [s+ a]

State change of scale property of Fourier Transforms.


Solution:
For any non zero real a, (i.e. a>0 )
(i) F[f(ax)] = F
1
a
s
a ()
Q.4 2 Marks
(ii)
1
F s [ f ( ax ) ] = F s
a
s
a ()
(iii) F c [ f ( ax ) ] =
1
a
Fc()
s
a

Q.5 Find the Laplace transform of e−t sin 2t 2 Marks


Solution:
L¿ sin 2t ) = ¿ ¿
2
=
( s +1 )2+ 4

State Convolution theorem of Laplace transforms.


Solution:
Q.6 2 Marks
If f(t) and g(t) are functions defined for t≥ 0 , then L[f(t) *g(t)] = L[f(t)] L[g(t)]

Find L
−1
( s +16
1
)
2

Q.7
Solution: 2 Marks
L
−1
( 2
1
s +16
1
= sin 4 t
4 )
Find L
−1
( s+1
2
(s+ 1) −4 )
Q.8 −t −1
Solution:e L
−t
s
(s) −4 ( 2 ) 2 Marks

= e cos 2t
Find Z ( a n U(n) )
Solution:

Z ( a n U(n) ) =∑ a z
n −n

n=0
Q.9 2 Marks
()
2
a a
=1+ + +…
z z
z
=
z−a

Q.10
Find Z
−1
( z +3z ) . 2 Marks
Solution: Z (
z +3 )
z
−1 n
=(−3 )
PART B (5 5 = 25 Marks)
Answer ALL the Questions.
Q.11 Find the cosine series of f(x) = x in ( 0 , π ). 5 Marks
Solution:
a ∞
f ( x )= 0 + ∑ an cos nx
2 n=1
π
a 0 = 2 ∫ f ( x ) dx
π 0
π
a n = 2 ∫ f ( x ) cos nx dx
π 0
π
a 0 = 2 ∫ f ( x ) dx
π 0
π
2
= ∫ x dx
π 0

π
a n = 2 ∫ f ( x ) cos nx dx
π 0
π
2
=
π 0
∫ x cos nx dx
2
= 2 [ (−1 ) −1 ]
n

n π
a ∞
f ( x )= 0 + ∑ an cos nx
2 n=1

π 2
¿ + ∑ 2 [ (−1 ) −1 ] cos nx
n

2 n=1 n π

Find the Fourier transform of f(x) given by f(x) given by {


f ( x )= 1 for|x| ≤a
0 for|x|≥ a

Solution:

The Fourier transform of is given by

Here,

=
Q.12 5 Marks

= =

= =

Q.13 5 Marks

(e )
−at −bt
−e
Find L
t
Solution:
[ ]

f (t )
L =∫ F ( s ) ds
t s

( )=∫ L (e
−at −bt ∞
e −e −at −bt
) ds
L −e
t s

∫ [ s+1 a − s+1 b ] ds

=
s

= [ log ( s+ a )−log (s +b) ] s

= log 1- log ( s+s+ ab )


= log (
s+ a )
s+ b

Using Convolution theorem find L


−1

(( s
s +1 )
2 2
) .

Solution:
L
−1

( s
( s +1 )
2 2
=L
) (
−1
2
1
. 2
s
s +1 s +1 )
¿ L−1 2
1
s +1 [ ] [ ]
∗L−1 2
1
s +1
¿ sint∗cost
t

∫ f ( u ) g ( t−u ) du=f ( t )∗g (t)


Q.14 0
t 5 Marks
=∫ sin u cos ( t−u ) du
0
t
1
¿ ∫ ¿¿
20

¿
1
2 [
t sint−
cost cos ⁡(−t)
2
+
2 ]
t sint
¿
2

Q.15 5 Marks

( z ( z −1 )
)
2
−1
Evaluate Z 2
( z 2+ 1 )
Solution:
z ( z 2−1 )
Let u ( z )= 2
( z 2 +1 )
u ( z ) ( z 2−1 )
= 2 2
z ( z + 1)
( z −1 ) Az+ B Cz+ D
2

2
= 2 + 2
( z 2+1 ) z +1 ( z 2 +1 )
( z 2−1 ) =( Az + B ) ( z2 +1 ) +Cz + D
A=0 , C= 0, D= -2 , B=1
u (z ) 1 2
= 2 −
z z +1 ( z +1 )
2 2

u ( n ) =z
−1
[ ] [
2
z
z +1
−z
−1 2z
( z 2 +1 )
2
]
nπ sin π (n−1)
¿ sin −2 n
2 2

PART C (3 10 = 30 Marks)
Answer any THREE Questions
Q.16 Find the Fourier series of f(x) = x ( π−x ¿ in (0, 2 π ¿ 10 Marks
Solution:
a0 ∞
f ( x )= + ∑ ( an cos nx +b n sin nx )
2 n=1

a 0 = 1 ∫ f ( x ) dx
π 0

1
= ∫ x ( π−x ) dx
π 0
2
a0 = - 2 π
3

a n = 1 ∫ f ( x ) cos nx dx
π 0


1
= ∫ x ( π−x ) cos nx dx
π 0

−4
a n= 2
n

b n = 1 ∫ f ( x ) sin nx dx
π 0


1
= ∫ x ( π−x ) sin nx dx
π 0


b n=
n

a0 ∞
f ( x )= + ∑ ( a cos nx +b n sin nx )
2 n=1 n

−π 2
f ( x )= +∑ ¿ ¿
3 n=1
∞ 2
x dx
Evaluate ∫ using fourier transforms.
0 ( a + x 2 ) ( b 2+ x 2 )
2

Solution:
Parseval’s identity is
∞ ∞

∫ f ( x ) g ( x ) dx =∫ F s [ f ( x ) ] F s [g ( x ) ]ds---------------------------- (1)
0 0
−ax
Let f ( x )=e



2
F s [ f ( x ) ]= ∫ f ( x ) sinsx dx
π 0



2
¿ ∫ e−ax sin sx dx
π 0

¿
√[ ] 2 s
π s + a2
2

Let g ( x )=e−bx



2
F s [ f ( x ) ]= ∫ f ( x ) sinsx dx
π 0



2
Q.17 ¿ ∫ e−bx sin sx dx
π 0
10 Marks

¿
√[ ]
2
π s +b 2
2
s

−ax −bx − ( a+b ) x


f ( x ) g ( x ) =e e =e

=∫ f ( x ) g ( x ) dx
0

¿∫ e
− ( a+b ) x
dx
0
1
=
a+b
∞ 2
1 2 s
Eqn (1) becomes = ∫ 2 2 ds
a+b π 0 ( s +a ) + ( s 2 +b2 )
∞ 2
∫ 2 2 s 2 2 ds= 2(a+b)
π
0 ( s +a )+ ( s +b )
∞ 2
x dx π
S is a dummy variable → ∫ 2 2 2 2 =
0 (a + x ) (b + x ) 2(a+ b)
{
T
E , 0 ≤t ≤
2
Find the Laplace transform of f(t) = and f (t+T) = f(t)
T
−E , ≤ t ≤ T
2
Solution:
Laplace transform of the periodic function is given by

T
1
−sT ∫
L [ f ( t ) ]=
−st
e f ( t ) dt
1−e 0
Period T= T

[ ]
T
2 T
1
Q.18 ¿
1−e
−sT ∫e −st
E dt +∫ e (−E)dt
−st 10 Marks
0 T
2

[( ) ( )]
− sT T −sT T
E e 2 e
¿ −sT

1−e −s 0 −s T
2

[ ]
− sT
E 1
¿ −sT
1+ e−sT −2e 2
s 1−e

=
E
s
tanh
sT
4 ( )
Q.19 Solve y ' ' −3 y ' +2 y=4 t +e 3t , y ( 0 ) =1 , y ' ( 0 )=−1 by Laplace transform method. 10 Marks
Solution:
Given :
'' ' 3t
y −3 y +2 y=4 t +e

Taking laplace transform on both sides we get,


' 3t
L( y ¿¿ ' ' )−3 L( y )+2 L( y)=4 L(t )+ L( e ) ¿
¿
¿
4 1
L y ( t ) [ s −3 s +2 ] = 2 +
2
+ s−4
s s−3
2 3 2
4 ( s−3 ) + s + s ( s−3 )−4 s (s−3)
L y ( t )=
s 2 ( s−3 ) ( s−1 ) (s−2)
2 3 2
4 ( s−3 ) + s + s ( s−3 )−4 s (s−3) A B C D E
2
= + 2+ + +
s ( s−3 )( s−1 ) (s−2) s s s−3 s−1 s−2

1 1
A= 3, B= 2, C= , D = - , E = -2
2 2

( ) ( )
1 −1
−1
y ( t ) =L ( 3s )+ L ( s2 )+ L
−1
2
−1 2
s−3
+L
−1 2
s−1
+L
−1 −2
s−2 ( )
1 3t 1 t 2t
y ( t ) =3+2 t+ e − e −2 e
2 2

Solve y n +2−4 y n+1 +4 y n=0 , y 1= 0 and y 0=1 , by using Z−transform .


Solution:
Given : y n +2−4 y n+1 +4 y n=0
Taking Z transform on both sides we get
Z( y n +2 ¿−4 Z ¿)
[ z y ( z )−z y ( 0 )−z y ( 1 ) ]−4 [ z y ( z )−z y ( 0 ) ]+ 4 y ( z )=0
2 2

[ z 2 y ( z )−z 2−0 ]−4 [ z y ( z )−z ]+ 4 y ( z )=0


y ( z ) [ z 2−4 z+ 4 ] =z 2−4 z
y (z) z−4
=
z ( z−2 )2
z−4 A B
= +
Q.20 ( z−2 ) z−2 ( z−2 )2
2

A= 1; B= -2
y (z) 1 −2
= +
z z−2 ( z−2 )2

y ( n )=z ( ) (
−1 z
z−2
−z
−1
) 2z
( z−2 )2
z az
z ( a )= ; z (n a )=
n n
z−a ( z −a )2
n
y ( n )=2 - 2n n

Prepared by Verified by Approved by

Staff Incharge HOD Dean Academics

(M. Guna) (Dr. T. Gayathri) (Dr. S. Anbumalar)

You might also like