0% found this document useful (0 votes)
9 views16 pages

Igbt Ikw75n60h3

The IKW75N60H3 is a high-speed IGBT featuring Trench and Fieldstop technology, designed for applications such as uninterruptible power supplies and welding converters. It operates at a maximum voltage of 600V and current of 75A, with a maximum junction temperature of 175°C, and is compliant with RoHS standards. The datasheet includes detailed specifications, electrical characteristics, and thermal resistance parameters for optimal performance in industrial applications.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
9 views16 pages

Igbt Ikw75n60h3

The IKW75N60H3 is a high-speed IGBT featuring Trench and Fieldstop technology, designed for applications such as uninterruptible power supplies and welding converters. It operates at a maximum voltage of 600V and current of 75A, with a maximum junction temperature of 175°C, and is compliant with RoHS standards. The datasheet includes detailed specifications, electrical characteristics, and thermal resistance parameters for optimal performance in industrial applications.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

IGBT

High speed DuoPack: IGBT in Trench and Fieldstop technology


with soft, fast recovery anti-parallel diode

IKW75N60H3
600V high speed switching series third generation

Data sheet

Industrial & Multimarket


IKW75N60H3
High speed switching series third generation

High speed IGBT in Trench and Fieldstop technology

Features: C

TRENCHSTOPTM technology offering


• very low VCEsat
• low EMI
• maximum junction temperature 175°C
• qualified according to JEDEC for target applications
G
E
• Pb-free lead plating, halogen-free mould compound, RoHS
compliant
• complete product spectrum and PSpice Models:
http://www.infineon.com/igbt/

Applications:

• uninterruptible power supplies


• welding converters
• converters with high switching frequency

Package pin definition:

1
• Pin 1 - gate 2
3
• Pin 2 & backside - collector
• Pin 3 - emitter

Key Performance and Package Parameters


Type V c) Ic V c),ęt, T vj=25°C T vj,ęY Marking Package
IKW75N60H3 600V 75A 1.85V 175°C K75H603 PG-TO247-3

2 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

Table of Contents
Description .......................................................................................................................................................................... 2
Table of Contents .............................................................................................................................................................. 3
Maximum ratings ............................................................................................................................................................... 4
Thermal Resistance .......................................................................................................................................................... 4
Electrical Characteristics ................................................................................................................................................. 5
Electrical Characteristics diagrams ............................................................................................................................... 7
Package Drawing ............................................................................................................................................................1
.4
Testing Conditions .......................................................................................................................................................... 15
Revision History ...............................................................................................................................................................1
.6
Disclaimer......................................................................................................................................................................... 16

3 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

Maximum ratings
Parameter Symbol Value Unit
Collector-emitter voltage Vc) 600 V
DC collector current, limited by T vj,ęY1)
Tc = 25°C Ic 80.0 A
Tc = 100°C 75.0
Pulsed collector current, tp limited by Tvj,ęY Icp,j, 225.0 A
Turn off safe operating area Vc) ≤ 600V, Tvj ≤ 175°C - 225.0 A
Diode forward current, limited by Tvj,ęY
Tc = 25°C IF 80.0 A
Tc = 100°C 50.0
Diode pulsed current, tp limited by Tvj,ęY IFp,j, 150.0 A
Gate-emitter voltage VF) ±20 V
Short circuit withstand time
VF) = 15.0V, Vcc ≤ 400V
Allowed number of short circuits < 1000 tçc µs
Time between short circuits: ≥ 1.0s
Tvj = 150°C 5
Power dissipation Tc = 25°C Ptot 428.0 W
Operating junction temperature Tvj -40...+175 °C
Storage temperature T,tg -55...+150 °C
Soldering temperature,
°C
wave soldering 1.6 mm (0.063 in.) from case for 10s 260
Mounting torque, M3 screw
M 0.6 Nm
Maximum of mounting processes: 3

Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
Rtµçj-c) 0.35 K/W
junction - case
Diode thermal resistance,
Rtµçj-c) 0.80 K/W
junction - case
Thermal resistance Rtµçj-ę) 40 K/W
junction - ambient

1) 80A value limited by bondwire

4 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

Electrical Characteristic, at T vj = 25°C, unless otherwise specified


Value
Parameter Symbol Conditions Unit
min. typ. max.
Static Characteristic
Collector-emitter breakdown voltage VçpR)c)ç VF) = 0V, Ic = 2.00mA 600 - - V
VF) = 15.0V, Ic = 75.0A
Vc),ęt Tvj = 25°C - 1.85 2.30
Collector-emitter saturation voltage V
Tvj = 125°C - 2.10 -
Tvj = 175°C - 2.25 -
VF) = 0V, IF = 50.0A
VF Tvj = 25°C - 1.65 2.00
Diode forward voltage V
Tvj = 125°C - 1.65 -
Tvj = 175°C - 1.60
Gate-emitter threshold voltage VF)çtµ) Ic = 1.20mA, Vc) = VF) 4.1 5.1 5.7 V
Vc) = 600V, VF) = 0V
Zero gate voltage collector current Ic)ç Tvj = 25°C - - 40.0 µA
Tvj = 175°C - - 5000.0
Gate-emitter leakage current IF)ç Vc) = 0V, VF) = 20V - - 100 nA
Transconductance gç, Vc) = 20V, Ic = 75.0A - 41.0 - S

Electrical Characteristic, at T vj = 25°C, unless otherwise specified


Value
Parameter Symbol Conditions Unit
min. typ. max.
Dynamic Characteristic
Input capacitance Ci@, - 4620 -
Output capacitance Co@, Vc) = 25V, VF) = 0V, f = 1MHz - 240 - pF
Reverse transfer capacitance C,@, - 138 -
Vcc = 480V, Ic = 75.0A,
Gate charge QF - 470.0 - nC
VF) = 15V
Internal emitter inductance L) - 13.0 - nH
measured 5mm (0.197 in.) from case
Short circuit collector current VF) = 15.0V, Vcc ≤ 400V,
Max. 1000 short circuits Icççc) tçc ≤ 5µs - - A
Time between short circuits: ≥ 1.0s Tvj = 150°C 685

Switching Characteristic, Inductive Load, at T vj = 25°C


Value
Parameter Symbol Conditions Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time tqço,) Tvj = 25°C, - 31 - ns
Vcc = 400V, Ic = 75.0A,
Rise time t, VF) = 0.0/15.0V, - 60 - ns
Turn-off delay time tqçoçç) rF = 5.2M, Lg = 90nH, - 265 - ns
Cg = 50pF
Fall time tç Lg, Cg from Fig. E - 27 - ns
Turn-on energy Eo, Energy losses include “tail” and - 3.00 - mJ
diode reverse recovery.
Turn-off energy Eoçç - 1.70 - mJ
Total switching energy Et, - 4.70 - mJ

5 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

Diode reverse recovery time t,, Tvj = 25°C, - 190 - ns


VR = 400V,
Diode reverse recovery charge Q,, IF = 50.0A, - 1.80 - µC
Diode peak reverse recovery current I,,, diF/dt = 800A/µs - 19.0 - A
Diode peak rate of fall of reverse di,,/dt
recovery current during tp - -110 - A/µs

Switching Characteristic, Inductive Load, at T vj = 175°C


Value
Parameter Symbol Conditions Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time tqço,) Tvj = 175°C, - 30 - ns
Vcc = 400V, Ic = 75.0A,
Rise time t, VF) = 0.0/15.0V, - 55 - ns
Turn-off delay time tqçoçç) rF = 5.2M, Lg = 90nH, - 305 - ns
Cg = 50pF
Fall time tç Lg, Cg from Fig. E - 27 - ns
Turn-on energy Eo, Energy losses include “tail” and - 4.20 - mJ
diode reverse recovery.
Turn-off energy Eoçç - 2.00 - mJ
Total switching energy Et, - 6.20 - mJ

Diode reverse recovery time t,, Tvj = 175°C, - 300 - ns


VR = 400V,
Diode reverse recovery charge Q,, IF = 50.0A, - 4.30 - µC
Diode peak reverse recovery current I,,, diF/dt = 800A/µs - 28.0 - A
Diode peak rate of fall of reverse
recovery current during tp
di,,/dt - -95 - A/µs

6 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

90

80
100

70
Ic, COLLECTOR CURRENT [A]

Ic, COLLECTOR CURRENT [A]


tp=1µs
60
10µs
10
50 50µs

100µs
40
200µs

30 500µs

Tc=80° 1 DC
20 Tc=110°

10

0 0.1
1 10 100 1 10 100 1000
f, SWITCHING FREQUENCY [kHz] Vc), COLLECTOR-EMITTER VOLTAGE [V]
Figure 1. Collector current as a function of switching Figure 2. Forward bias safe operating area
frequency (D=0, Tc=25°C, Tj≤175°C; VF)=15V)
(Tj≤175°C, D =0.5, V c)=400V, V F)=15/0V,
RF=5,2M)

450 90

400 80

350 70
Ptot, POWER DISSIPATION [W]

Ic, COLLECTOR CURRENT [A]

300 60

250 50

200 40

150 30

100 20

50 10

0 0
25 50 75 100 125 150 175 25 50 75 100 125 150 175
Tc, CASE TEMPERATURE [°C] Tc, CASE TEMPERATURE [°C]
Figure 3. Power dissipation as a function of case Figure 4. Collector current as a function of case
temperature temperature
(Tj≤175°C) (V F)≥15V, Tj≤175°C)

7 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

200 200

175 VF)=20V 175 VF)=20V

17V 17V

150 15V 150 15V


Ic, COLLECTOR CURRENT [A]

Ic, COLLECTOR CURRENT [A]


13V 13V
125 11V 125 11V

9V 9V
100 100
7V 7V

5V 5V
75 75

50 50

25 25

0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Vc), COLLECTOR-EMITTER VOLTAGE [V] Vc), COLLECTOR-EMITTER VOLTAGE [V]
Figure 5. Typical output characteristic Figure 6. Typical output characteristic
(Tj=25°C) (Tj=175°C)

250 4.0
Tj=25°C Ic=37.5A
Tj=175°C Ic=75A
Ic=150A
Vc)ç,ęt), COLLECTOR-EMITTER SATURATION [A]

3.5
200
Ic, COLLECTOR CURRENT [A]

3.0

150

2.5

100

2.0

50
1.5

0 1.0
5 6 7 8 9 10 11 12 0 25 50 75 100 125 150 175
V F), GATE-EMITTER VOLTAGE [V] Tj, JUNCTION TEMPERATURE [°C]
Figure 7. Typical transfer characteristic Figure 8. Typical collector-emitter saturation voltage
(Vc)=20V) as a function of junction temperature
(VF)=15V)

8 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

tqçoçç)

tqço,)
t,
tqçoçç)
1000

tqço,)
t,
t, SWITCHING TIMES [ns]

t, SWITCHING TIMES [ns]


100

100

10 10
15 30 45 60 75 90 105 120 135 150 2 7 12 17 22 27 32
Ic, COLLECTOR CURRENT [A] RF, GATE RESISTOR [M]
Figure 9. Typical switching times as a function of Figure 10. Typical switching times as a function of
collector current gate resistor
(ind. load, Tj=175°C, Vc)=400V, (ind. load, Tj=175°C, Vc)=400V,
V F)=15/0V, RF=5,2M, test circuit in Fig. E) V F)=15/0V, Ic=75A, test circuit in Fig. E)

6.0
typ.
min.
VF)çtµ), GATE-EMITTER THRESHOLD VOLTAGE [V]

5.5 max.

tqçoçç)
tç 5.0
tqço,)
t, SWITCHING TIMES [ns]

t,
4.5
100

4.0

3.5

3.0

2.5

10 2.0
25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Tj, JUNCTION TEMPERATURE [°C] Tj, JUNCTION TEMPERATURE [°C]
Figure 11. Typical switching times as a function of Figure 12. Gate-emitter threshold voltage as a
junction temperature function of junction temperature
(ind. load, Vc)=400V, V F)=15/0V, (Ic=1,2mA)
Ic=75A, RF=5,2M, test circuit in Fig. E)

9 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

18 16
Eoçç Eoçç
Eo, Eo,
16 Et, 14 Et,
E, SWITCHING ENERGY LOSSES [mJ]

E, SWITCHING ENERGY LOSSES [mJ]


14
12

12
10

10
8
8

6
6

4
4

2 2

0 0
10 30 50 70 90 110 130 150 2 7 12 17 22 27 32
Ic, COLLECTOR CURRENT [A] RF, GATE RESISTOR [M]
Figure 13. Typical switching energy losses as a Figure 14. Typical switching energy losses as a
function of collector current function of gate resistor
(ind. load, Tj=175°C, Vc)=400V, (ind. load, Tj=175°C, Vc)=400V,
V F)=15/0V, RF=5,2M, test circuit in Fig. V F)=15/0V, Ic=75A, test circuit in Fig. E)
E)

7 8
Eoçç Eoçç
Eo, Eo,
Et, Et,
7
6
E, SWITCHING ENERGY LOSSES [mJ]

E, SWITCHING ENERGY LOSSES [mJ]

6
5

3
3

2
2

1 1
25 50 75 100 125 150 175 200 250 300 350 400 450
Tj, JUNCTION TEMPERATURE [°C] Vc), COLLECTOR-EMITTER VOLTAGE [V]
Figure 15. Typical switching energy losses as a Figure 16. Typical switching energy losses as a
function of junction temperature function of collector emitter voltage
(ind load, V c)=400V, V F)=15/0V, Ic=75A, (ind. load, Tj=175°C, VF)=15/0V, Ic=75A,
RF=5,2M, test circuit in Fig. E) RF=5,2M, test circuit in Fig. E)

10 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

16 1E+4
120V
480V
14
VF), GATE-EMITTER VOLTAGE [V]

12
Ci,,
Co,,

C, CAPACITANCE [pF]
C,,,
10

8 1000

0 100
0 100 200 300 400 500 0 5 10 15 20 25 30
QF), GATE CHARGE [nC] Vc), COLLECTOR-EMITTER VOLTAGE [V]
Figure 17. Typical gate charge Figure 18. Typical capacitance as a function of
(Ic=75A) collector-emitter voltage
(V F)=0V, f=1MHz)

1300 15
Icççc), SHORT CIRCUIT COLLECTOR CURRENT [A]

1200
tçc, SHORT CIRCUIT WITHSTAND TIME [µs]

1100 12

1000

900 9

800

700 6

600

500 3

400

300 0
12 13 14 15 16 17 18 19 20 10 11 12 13 14 15
V F), GATE-EMITTER VOLTAGE [V] V F), GATE-EMITTER VOLTAGE [V]
Figure 19. Typical short circuit collector current as a Figure 20. Short circuit withstand time as a function
function of gate-emitter voltage of gate-emitter voltage
(Vc)≤400V, start atTj=25°C) (Vc)≤400V, start at Tj≤150°C)

11 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

1
Ztµtc, TRANSIENT THERMAL IMPEDANCE [K/W]

Ztµtc, TRANSIENT THERMAL IMPEDANCE [K/W]


0.1 D=0.5 D=0.5
0.2 0.2
0.1 0.1
0.1
0.05 0.05
0.02 0.02
0.01 0.01
single pulse single pulse

0.01
0.01

i: 1 2 3 4 i: 1 2 3 4 5
ri[K/W]: 0.029 0.0509 0.0733 0.1968 ri[K/W]: 0.07228401 0.1019218 0.1401017 0.2213981 0.2642944
τ i[s]: 1.2E-4 8.2E-4 9.3E-3 0.115504 τi[s]: 9.4E-6 1.3E-4 1.5E-3 0.02221235 0.3064102

0.001 0.001
1E-6 1E-5 1E-4 0.001 0.01 0.1 1 1E-7 1E-6 1E-5 1E-4 0.001 0.01 0.1 1
tp, PULSE WIDTH [s] tp, PULSE WIDTH [s]
Figure 21. IGBT transient thermal impedance Figure 22. Diode transient thermal impedance as a
(D=tp/T) function of pulse width
(D=tp/T)

600 5
Tj=25°C, IF = 50A Tj=25°C, IF = 50A
Tj=175°C, IF = 50A Tj=175°C, IF = 50A

500
Q,,, REVERSE RECOVERY CHARGE [µC]

4
t,,, REVERSE RECOVERY TIME [ns]

400

300

200

1
100

0 0
400 500 600 700 800 900 1000 1100 1200 400 500 600 700 800 900 1000
diF/dt, DIODE CURRENT SLOPE [A/µs] diF/dt, DIODE CURRENT SLOPE [A/µs]
Figure 23. Typical reverse recovery time as a Figure 24. Typical reverse recovery charge as a
function of diode current slope function of diode current slope
(VR=400V) (VR=400V)

12 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

35 0
Tj=25°C, IF = 50A Tj=25°C, IF = 50A
Tj=175°C, IF = 50A Tj=175°C, IF = 50A
I,,, REVERSE RECOVERY CURRENT [A]

30 -40

dI,,/dt, diode peak rate of fall of I,, [A/µs]


25 -80

20 -120

15 -160

10 -200
400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
diF/dt, DIODE CURRENT SLOPE [A/µs] diF/dt, DIODE CURRENT SLOPE [A/µs]
Figure 25. Typical reverse recovery current as a Figure 26. Typical diode peak rate of fall of reverse
function of diode current slope recovery current as a function of diode
(VR=400V) current slope
(V R=400V)

200 2.5
Tj=25°C IF=10A
Tj=175°C IF=25A
180 IF=50A
IF=100A
160 2.0
VF, FORWARD VOLTAGE [V]
IF, FORWARD CURRENT [A]

140

120 1.5

100

80 1.0

60

40 0.5

20

0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 25 50 75 100 125 150 175
V F, FORWARD VOLTAGE [V] Tj, JUNCTION TEMPERATURE [°C]
Figure 27. Typical diode forward current as a Figure 28. Typical diode forward voltage as a
function of forward voltage function of junction temperature

13 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

PG-TO247-3

14 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

15 Rev. 1.2, 2011-12-13


IKW75N60H3
High speed switching series third generation

Revision History
IKW75N60H3

Revision: 2011-12-13, Rev. 1.2


Previous Revision
Revision Date Subjects (major changes since last revision)
1.1 2011-12-07 Preliminary data sheet
1.2 2011-12-13 Preliminary data sheet

We Listen to Your Comments


Any information within this document that you feel is wrong, unclear or missing at all ?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by
Infineon Technologies AG
81726 Munich, Germany
81726 München, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. W ith
respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the
application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including
without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon
Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question,
please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or
automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies,
if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and
aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems
are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they
fail, it is reasonable to assume that the health of the user or other persons may be endangered.

16 Rev. 1.2, 2011-12-13

You might also like