0% found this document useful (0 votes)
36 views56 pages

Series and Proofs Questions 0525

The document contains a series of mathematical problems related to sequences, series, and mathematical induction, with varying maximum marks assigned to each problem. Topics include arithmetic and geometric sequences, sums of series, and proofs using induction. Each section outlines specific tasks such as finding sums, determining terms, and proving properties of sequences.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
36 views56 pages

Series and Proofs Questions 0525

The document contains a series of mathematical problems related to sequences, series, and mathematical induction, with varying maximum marks assigned to each problem. Topics include arithmetic and geometric sequences, sums of series, and proofs using induction. Each section outlines specific tasks such as finding sums, determining terms, and proving properties of sequences.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 56

D

2)

3)

5)

6)
=

9
10)

)
12)

13

14)

15)

16)
18)

(a)

as

2)
2. [Maximum mark: 6]
(a) Find the value of sum
39 + 48 + 57 + 66 + L + 246. [3 marks]
n
(b) This sum can be expressed in the form ∑ (ak + b) .
k =1

Find the values of a, b and n. [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

2
3. [Maximum mark: 6]
Consider the infinite geometric series
1 1 3
− 2
+ +L
3k 3 6k 12k 3
(a) Find the possible values of k given that the series converges. [4 marks]
(b) Find the exact value of the infinite sum for k = 1. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

3
4. [Maximum mark: 7]
In an arithmetic sequence the sum of the first six terms is 75 and the sum of
the first ten terms is 185.
(a) Find the sum of the first eight terms. [5 marks]
(b) Find the number of terms which are less than 1000. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

4
5. [Maximum mark: 5]
The third term of an infinite geometric sequence is –108 and the fifth term is –72.
Find the possible values for the sum to infinity of the sequence.

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

5
6. [Maximum mark: 7]
The value of a share decreases by 2% each day. Its value today is 680€.
Find
(a) the value of the share after 9 days. [2 marks]
(b) the value of the share 10 days ago. [2 marks]
(c) after how many days the value of the share will fall below 400€ [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

6
7. [Maximum mark: 8]
(a) In an arithmetic sequence, the sum of the first ten terms is equal to the tenth
term. Find S 9 and u 5 . [5 marks]

(b) The third term of an arithmetic sequence is 7. Find S 5 [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

7
8. [Maximum mark: 6]
The sum of the first n terms of a series is given by
S n = n 3 + n where n ∈ +.
(a) Find the first three terms of the sequence and show that it is
neither arithmetic nor geometric. [4 marks]

(b) Find the 10th term of the sequence. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

8
9. [Maximum mark: 8]
(a) Consider the expansion of
8
 3 3
x − 
 x
Find
(i) Find the constant term.
(ii) Find the term in x 4 . [5 marks]

(b) Consider now


8
 3 3
 x −  3x − 2
2
( )
2

 x
Find the term in x 4 . [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
9
10. [Maximum mark: 6]
In the expansion of
n
 3
x 3 1 − 
 x
the constant term is – 3240. Find
(a) the value of n. [4 marks]
(b) the coefficient of x. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
10
11. [Maximum mark: 8]
The distinct numbers
x + 9y , x + 3y , x
are the first three terms of a geometric sequence.
(a) Find the common ratio. [5 marks]
(b) Given that the sum to infinity is 48, find the values of x and y. [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

11
12. [Maximum mark: 12]
1 2 3 n
Let Sn = + + + L +
2! 3! 4! (n + 1)!
(a) Calculate S1 , S 2 , S 3 , S 4 [2 marks]
(b) Write down the values of 1!, 2!, 3!, 4!, 5! [2 marks]
(c) Hence, guess a formula for S n , for any n ∈ Z + [1 mark]
(d) Show by using mathematical induction that your guess is true. [7 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

12
13. [Maximum mark: 15]
(a) Express ( 3+ 2 ) 3
in the form a 2 + b 3 where a, b ∈ Z + [2 marks]
(b) Express ( 2) ( )
2 4
3+ and 3+ 2 in the form a + b 6 ,
+
where a, b ∈ Z [3 marks]
+
(c) By using mathematical induction, show that, for any n ∈ Z
( 3+ 2 )
2n
has the form a + b 6 , where a, b ∈ Z + [7 marks]
(d) Hence show that, for any n ∈ Z +
( 3+ 2 )
2 n +1
has the form a 2 + b 3 , where a, b ∈ Z + [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

14
2. [Maximum mark: 5]
Consider the infinite geometric series
r

9  3k + 1 
∑ 
r =1 2  3 

(a) Find the possible values of k given that the series converges. [3 marks]
(b) Find the exact value of the infinite sum for k = – 1. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

2
3. [Maximum mark: 6]
In an arithmetic sequence the sixth term is 95 while the sum of the first 21 terms is
3360. Find
(a) the first term which exceeds 1000. [4 marks]
(b) the sum of the terms which are less than 1000. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

3
4. [Maximum mark: 6]
The population of ants in a field today, 10 October 2017, is 120,000 and increases
by 9% each day.
(a) Find the population of ants on 31 October 2017. [3 marks]
This population at some time exceeds 1,000,000.
(b) Write down an inequality to represent this information for the number
of days needed and hence find the date when it will happen. [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

4
5. [Maximum mark: 6]
The integers a, b and b+2a are consecutive terms in an arithmetic sequence.
The integers a, 20 and a+5b are consecutive terms in a geometric sequence.
Find the values of a and b.

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

5
6. [Maximum mark: 7]
(a) In an arithmetic sequence, the sum of the first ten terms is equal to the sum of
the first 9 terms. Show that
u16 = −u4 [3 marks]
(b) Find the sum of the numbers which are multiples of 8 but not multiples of 6,
between 100 and 3100. [4 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

6
7. [Maximum mark: 6]
The sum of the first n terms of a series is given by
S n = 5n +1 − 5 where n ∈ +.
(a) Find the fifth term of the sequence. [2 marks]
(b) Find the n-th term of the sequence in terms of n. [2 marks]
(c) Show that the sequence is geometric. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

7
8. [Maximum mark: 7]
(a) Find the constant term in the expansion of
10
 3 3
x − 2  [3 marks]
 x 
(b) Find the constant term in the expansion of
10
 3 3 1 
 x − 2   5 + x + 2
3
[4 marks]
 x  x 

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

8
9. [Maximum mark: 6]
In the expansion of
(2a + ax ) n
the coefficient of x 4 is five times the coefficient of x 2 . Find the value of n.

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

9
10. [Maximum mark: 8]
The numbers a, b and c are the second, the fifth and the eleventh term of an
arithmetic sequence. They are also consecutive terms in an increasing geometric
sequence.
(a) Find the common ratio of the geometric sequence. [5 marks]
(b) Given that the third term of the arithmetic sequence is 20, find the values of
a, b and c . [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

10
11. [Maximum mark: 7]
Using mathematical induction, prove that
the number 2 2 n +1 − 6n + 16 is divisible by 18, for any n ∈ Z +

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

11
12. [Maximum mark: 10]
(
(a) Express 1+ 2 3 ) 3
in the form a + b 3 where a, b ∈ Z + [2 marks]
(b) By using mathematical induction, show that for any n ∈ Z + ,
(1 + 2 3 ) n
has the form a + b 3
where a is an odd integer and b is an even integer. [8 marks]

.................................. ...................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
12
2. [Maximum mark: 9]
(a) Prove by mathematical induction that [7]
n

∑r ⋅2
r =2
r
= (n − 1)2 n +1 for any integer n ≥ 2 .

(b) Confirm that the statement is true for n = 3 . [2]

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

2
3. [Maximum mark: 7]
Prove by mathematical induction that
(n + 1)!≥ 2 n n for any integer n ≥ 3 .

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................
Turn over

3
4. [Maximum mark: 8]
A sequence is defined recursively as follows
u1 = 1
u n +1 = 3u n +1
(a) Write down the first four terms of the sequence. [2]
(b) Prove by mathematical induction that
3n − 1
un = for any n = 1,2,3,... . [6]
2

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

4
5. [Maximum mark: 10]

(a) Expand ( 2 + 5 ) 2 . [1]

(b) Prove by mathematical induction that ( 2 + 5 ) 2 n has the form

a + b 10 , where a is an odd integer and b is an even integer.


for any n ∈ Z + . [7]

(c) Hence, show that ( 2 + 5 ) 2 n +1 has the form

c 2 + d 5 , where c, d ∈ Z for any n ∈ Z +


without using mathematical induction. [2]

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................
Turn over

5
2. [Maximum mark: 9]
(a) Prove by mathematical induction that [7]
1 ⋅ 21 + 2 ⋅ 2 2 + 3 ⋅ 2 3 + L + n ⋅ 2 n = (n − 1)2 n +1 + 2 for any n ∈ Z + .

(b) Confirm that the statement is true for n = 3 . [2]

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

2
3. [Maximum mark: 7]
Prove by mathematical induction that
3 n > n 2 + 2n for any integer n ≥ 2 .

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................
Turn over

3
4. [Maximum mark: 8]
A sequence is defined recursively as follows
u1 = 5
u n +1 = 2u n +5
(a) Write down the first four terms of the sequence. [2]
(b) Prove by mathematical induction that
un = 5 ⋅ 2n − 5 for any n = 1,2,3,... . [6]

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

4
5. [Maximum mark: 10]
(a) Prove by mathematical induction that
n!×[2 × 6 × 10 × 14 × L × (4n − 2)] = (2n)! for any n ∈ Z + . [8]

a!
(b) Express (2 × 6 × 10 × 14 × L × 78) in the form . [2]
b!

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................
5
2. [Maximum mark: 9]
It is claimed that
1  21  2  2 2  3  2 3  ⋯  n  2 n  ( n  1) 2 n 1  2 for any n  Z  .

(a) Show that the claim is true for n  4 [2]


(b) Prove the claim by using mathematical induction. [7]

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

2
3. [Maximum mark: 6]
Prove by mathematical induction that
(2n)!  2n n for any integer n  2 .

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................
Turn over

3
4. [Maximum mark: 9]
(a) Prove, by using contradiction, that for a, b  ℝ  {2}

2a  3 2b  3
if a  b then  [5]
a2 b2
(b) State if the following statement is also true:
2a 2  3 2b 2  3
if a  b then  2
a2  2 b 2
Justify your answer, either by giving a proof, or by using a counterexample. [2]
(c) Based on the results in (a) and (b), write down a conclusion for the functions

2x  3 2 x2  3
f ( x)  , x  2 and g ( x )  2 . [2]
x2 x 2

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

4
2. [Maximum mark: 6]
Given that
(a − 3 ) 4
= 97 − b 3

where a and b are positive integers, find the value of a and of b. [6 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 2
3. [Maximum mark: 7]
Given that
(2 + x) 5 (1 + 2 x) n = 32 + ax + 27600 x 2 + L + 2 n x n + 5
find the values of the integers a and n. [7 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 3
4. [Maximum mark: 11]
Solve analytically the equations

(a) log 3 ( x − 3) = 1 + log 9 ( x + 1) (b) log x 2 − 3 log 2 x = 2 [6+5 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 4
5. [Maximum mark: 11]
Solve the exponential equations
3 ⋅ (5 x ) ln a
(a) 2 x +5 = x − 2 . Give your answer in the form x = , where a, b ∈ Q . [5 marks]
2 ln b
3
(b) 2 x +5 = 8 + . Give your answer in the form x = a + log 2 b , where a, b ∈ Z . [6 marks]
2 x −2

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 5
6. [Maximum mark: 9]
Solve the equations
x ln x x [4+5 marks]
(a) x log x = 10000 (b) 2
=
x e

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 6
7. [Maximum mark: 6]
x
It is given that log a ( x 2 y ) = 14 and log a ( )=2
y2
(a) Find log a x and log a y
[5 marks]
(b) Hence find log y x [1 mark]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 7
8. [Maximum mark: 6]

Solve the simultaneous equations:


log 2 x − log 4 y = 4
log 2 ( x − 2 y ) = 7 log 7 5

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 8
9. [Maximum mark: 11]
Solve the equations
(a) ln x 2 + ln x = 2 [3 marks]
(b) (ln x) 2 + ln x = 2 [4 marks]
(c) (ln x)(ln x)(ln x) = ln x 9 [4 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 9
10. [Maximum mark: 9]

(a) Prove by mathematical induction that 2 3n − 3 n is divisible by 5, for any n ≥ 1 . [7 marks]


(b) Hence find the last digit of the number 2( 2 6045 − 3 2015 ) [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 10
11. [Maximum mark: 12]
(a) Prove by using mathematical induction that
0 1 2 n − 1 n!−1
+ + +L+ = , for any n ≥ 1 . [7 marks]
1! 2! 3! n! n!
6
r −1 1
(b) Given that ∑
r =1 r!
= 1 − find the value of a.
a [2 marks]

n
r −1
(c) Find the smallest value of n so that ∑
r =1 r!
> 0.99999 [2 marks]
n
r −1
(d) Find the largest value of n so that ∑
r =1 r!
< 0.99999 [1 mark]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
Page 11
12. [Maximum mark: 8]
(a) Given the property
ln x + ln y = ln xy
prove by using mathematical induction that
n ln x = ln x n , for any positive integer n. [7 marks]
(b) Is the property true for n = 0 ? [1 mark]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

Page 13

You might also like