1st Module:
1.- First-Order Logic - Raymond M. Smullyan
2.- Logic, Language, and Meaning, Vol. 1, Introduction to Logic - Gamut L.T.F.
3.- Crash Course on Higher-Order Logic - Theodore Sider
4.- Invitation to Formal Semantics - Elizabeth Coppock, Lucas Champollion
4.5.- Articles: 1.- Higher-order metaphysics - Lukas Skiba - Compass, 2.- Model
Theory - Wilfrid Hodges - SEP.
5.- Model Theory - María Manzano, Ruy J. G. B. de Queiroz
6.- An Introduction to Gödel's Theorems - Peter Smith
2nd Module:
1.- An Invitation to Model Theory - Jonathan Kirby
2.- Computability and Logic, 5th Ed. - George S. Boolos, John P. Burgess, Richard
C. Jeffrey
2.5.- Computability and Logic, 5th Ed. Solutions Manual
3.- Gödels Incompleteness Theorems - Raymond M. Smullyan
4.- Introduction to Set Theory, 3th Ed. - Karel Hrbacek, Thomas Jech
5.- Logic, Language, and Meaning, Vol. 2, Intensional Logic and Logical Grammar -
L.T.F. Gamut
3rd Module:
1.- An Introduction to Non-Classical Logic, From If to Is, 2nd Ed. - Graham Priest
1.5.- Articles: 1.- Intuitionistic logic - Joan Moschovakis - SEP (Read Passages 1
to 5).
2.- Constructivism in Mathematics, Vol. 1 - A. S. Troelstra, Dirk van Dalen
2.5.- Articles: 1.- Intuitionistic logic - Joan Moschovakis - SEP (Finish the
rest), 2.- Proof theory - Michael Rathjen, Wilfrid Sieg - SEP (Read Passages 1 to
3).
3.- An Introduction to Proof Theory, Normalization, Cut-Elimination, and
Consistency Proofs - Paolo Mancosu, Sergio Galvan, Richard Zach
3.5.- An Introduction to Proof Theory, Normalization, Cut-elimination, and
Consistency Proofs - Revision and Correction
5.- Structural Proof Theory - Sara Negri, Jan von Plato
6.- The Consistency of Arithmetic - Timothy Y. Chow
7.- Proof Analysis, A Contribution to Hilberts Last Problem - Sara Negri, Jan von
Plato
7.5.- Articles: Proof theory - Michael Rathjen, Wilfrid Sieg - SEP (Finish the
rest).
4th Module:
1.- A Mathematical Introduction to Modal Logic (2009) - Can Başkent
1.5.- Articles: 1.- Modal Logic - James W. Garson - SEP.
2.- Intuitionistic Logic, Model Theory, and Forcing, Part I. - Melvin Fitting
3.- Modal Logic - Alexander Chagrov, Michael Zakharyaschev
3.5.- Articles: Provability Logic - Rineke Verbrugge - SEP.
4.- The Logic of Provability - George Boolos
5.- A Philosophical Introduction to Higher Order Logics - Andrew Bacon
6.- Language and Logics, An Introduction to the Logical Foundations of Language -
Howard Gregory
7.- Modal Logic as Metaphysics - Timothy Williamson
5th Module:
1.- Basic Category Theory - Tom Leinster
2.- An Invitation to General Algebra and Universal Constructions - George M.
Bergman
3.- Algebraic Methods in Philosophical Logic - Gary M. Hardegree, Jon Michael Dunn
3.5.- Articles: 1.- First-order Model Theory - Wilfrid Hodges, Thomas Scanlon -
SEP.
4.- Model Theory, 3rd Ed. - C. C. Chang, H. Jerome Keisler
5.- An Algebraic Introduction to Mathematical Logic - D. W. Barnes, J. M. Mack
6th   Module:
1.-   A Course in Model Theory - Katrin Tent, Martin Ziegler
2.-   Computability, An Introduction to Recursive Function Theory - Nigel Cutland
3.-   The Incompleteness Theorems - Craig Smoryński
4.-   Recursion Theory for Metamathematics - Raymond M. Smullyan
5.-   Diagonalization and Self-Reference - Raymond M. Smullyan
6.-   Aspects of Incompleteness - Per Lindström
7.-   Computability, A Mathematical Sketchbook - Douglas S. Bridges
8.-   Elements of Finite Model Theory - Leonid Libkin
7th   Module:
1.-   Philosophy and Model Theory - Tim Button, Sean Walsh
2.-   Models of Peano Arithmetic - Richard Kaye
3.-   Model Theory of Arithmetic - Tin Lok Won (Lectures)
4.-   The Structure of Models of Peano Arithmetic - Roman Kossak, Jim Schmerl
5.-   Metamathematics of First-Order Arithmetic - Petr Hajek, Pavel Pudlak
6.-   Subsystems of Second-Order Arithmetic - Stephen Simpson
8th   Module:
1.-   Set Theory and its Philosophy, A Critical Introduction - Michael Potter
2.-   Basic Set Theory - Azriel Levy
3.-   Set Theory, An Introduction to Large Cardinals - Frank R. Drake
4.-   The Foundations of Mathematics - Kenneth Kunen
5.-   Set theory - Kenneth Kunen
6.-   Forcing For Mathematicians - Nik Weaver
9th Module:
1.- Combinatorial Set Theory, With a Gentle Introduction to Forcing - Lorenz J.
Halbeisen
2.- Universal Algebra - George Grätzer
3.- Universal Algebraic Logic, Dedicated to the Unity of Science - Hajnal Andréka,
Zalán Gyenis, István Németi, Ildikó Sain
4.- Abstract Algebraic Logic, An Introductory Textbook - Josep Maria Font
5.- Protoalgebraic Logics - Janusz Czelakowski
10th Module:
1.- An Introduction to Proof Theory - Samuel R. Buss
2.- Proof Theory - Gaisi Takeuti
2.5.- Articles: 1.- Substructural logics - Greg Restall - SEP.
3.- An Introduction to Substructural Logics - Greg Restall
4.- Residuated Lattices, An Algebraic Glimpse at Substructural Logics - Nikolaos
Galatos
5.- The Realm of Ordinal Analysis - Michael Rathjen
6.- Proof Theory, From Arithmetic to Set Theory - Michael Rathjen
7.- Proof Theory, The First Step into Impredicativity - Wolfram Pohlers
11th Module:
1.- Articles: 1.- Category Theory - Jean-Pierre Marquis - SEP, 2.- The Axiom of
Choice - John L. Bell - SEP.
2.- The Axiom of Choice - John L. Bell
2.5.- Articles: 1.- Alternative Axiomatic Set Theories - M. Randall Holmes - SEP.
3.- Set Theory and the Continuum Problem - Raymond Smullyan, Melvin Fitting
3.5.- Articles: 1.- Non-wellfounded Set Theory - Lawrence S. Moss - SEP.
4.- Non-Well-Founded Sets - Peter Aczel
4.5.- Articles: 1.- Quine’s New Foundations - T. F. Forster - SEP.
5.- Elementary Set Theory with a Universal Set - M. Randall Holmes
6.- Set Theory with a Universal Set, Exploring an Untyped Universe - Thomas Forster
6.5.- Articles: Set Theory: Constructive and Intuitionistic ZF - Laura Crosilla -
SEP.
7.- Real Analysis through Modern Infinitesimals - Nader Vakil
12th Module:
1.- Category Theory in Context - Emily Riehl
2.- Sets for Mathematics - F. William Lawvere, Robert Rosebrugh
3.- Topoi, The Categorial Analysis of Logic - Robert Goldblatt
4.- Cylindric Set Algebras - L. Henkin, J. D. Monk, A. Tarski, et al.
5.- Cylindric-like Algebras and Algebraic Logic - Hajnal Andréka, Miklós Ferenczi,
István Németi
13th Module:
1.- Lambda-Calculus and Combinators, An Introduction - J. Roger Hindley
2.- Type Theory and Formal Proof, An Introduction - Rob Nederpelt, Herman Geuvers
2.5.- Articles: 1.- Second-order and Higher-order Logic - Jouko Väänänen - SEP, 2.-
Type Theory - Thierry Coquand - SEP, 3.- Church’s Type Theory - Christoph
Benzmüller, Peter Andrews - SEP.
3.- Lambda Calculus, Its Syntax and Semantics - Henk Barendregt
3.5.- Articles: Intuitionistic Type Theory - Peter Dybjer, Erik Palmgren - SEP.
4.- Intuitionistic Type Theory - Per Martin-Löf
5.- Lectures on the Curry-Howard Isomorphism - Morten Heine Sørensen, Pawel
Urzyczyn
6.- Homotopy Type Theory - The Univalent Foundations of Mathematics
14th Module:
1.- The Logic of Categorial Grammars, A Deductive Account of Natural Language
Syntax and Semantics - Richard Moot, Christian Retoré
2.- Type-Logical Semantics - Bob Carpenter
3.- Categories for the Working Mathematician - Saunders Mac Lane
4.- Sheaves in Geometry and Logic - Saunders Mac Lane, Ieke Moerdijk
5.- Categorical Logic - Andrew M. Pitts
15th Module:
1.- Introduction to Higher-Order Categorical Logic - J. Lambek, P. J. Scott
2.- Constructivism in Mathematics, Vol. 2 - A.S. Troelstra, D. van Dalen
3.- Categorical Logic and Type Theory - Bart Jacobs