「M2 Mock 2021 Marking
「M2 Mock 2021 Marking
(4)
3
2
2. (a) 1
x
2 3
2 2 2
1 3 3 1M
x x x
6 12 8
1 2 3 1A
x x x
k (k 3) 0
k 0 (rejected) or k 3 1A
(5)
3. (a) OP
3 1
a b
1 3 1 3
3 1
a b 1A
4 4
3 1 3 1 2
(b) (i) a b a b OP 1M
4 4 4 4
2
9 2 3 1 1 2 17
a 2 a b b
16 4 4 16 8
9 3 1 1 17
( 2) 2 2 a b (2) 2
16
4 4 16 8
a b 2 1A
(5)
4. (a) f ( x)
( x 5)(2) (2 x 4)(1)
1M
( x 5) 2
6
1A
( x 5) 2
2x 4
(b) y
x5
When y 0 , we have
2x 4
0
x 5
x2
∴ G cuts the x-axis at A(2, 0). 1A
6
f (2)
(2 5) 2
2
3
Slope of the normal to G at A
2
1
3
3
1M
2
The equation of the normal to G at A is
3
y 0 ( x 2) 1M
2
3x 2 y 6 0 1A
(6)
(2 5)( 1)
Since (E) has a unique solution, we have
1 1
2 2 1 0 1M
3 2
i.e. (2 5)( 1) 0
5
So, we have and 1 . 1A
2
5 5
Thus, we have 1 , 1 or .
2 2
So, we have
e 1
(b) 0
sin[ln (x 1)] dx
1
1M
e
1
u[sin(ln u ) cos(ln u )] (by (a)) 1M
2 1
1 1
e (sin cos ) (sin 0 cos 0)
2 2
e 1
1A
2
Alternative Solution
Let u ln( x 1) , we have
eu x 1 and dx eu du .
e 1
0
sin[ln (x 1)] dx
eu sin u du 1M
0
sin u d (eu )
0
[eu sin u ]0 eu cos u du
0
0 cos u d (eu )
0
[eu cos u ]0 eu sin u du
0
(7)
7. (a) f ( x) (2 2 x) dx
2 x x2 C 1M
Since passes through the point (–2, 7), we have
2(2) (2) 2 C 7 1M
C 15
∴ The equation of is y x 2 2 x 15 . 1A
( x 2 2 x 15) dx
5
3
2 3
x3 x2 1M
x 2 15 x 9 x
3 3 2 2
5
x3
x 2 15 x
3 3
11 95 40
3 2 3
129
1A
2
(8)
8. (a) When n 1 ,
L.H.S. sin x
1 cos 2 x 2sin 2 x
R.H.S. sin x 1
2sin x 2sin x
∴ L.H.S. = R.H.S.
∴ The statement is true for n 1 .
m
1 cos 2mx
Assume that sin(2k 1) x
k 1 2sin x
for some 1M
positive integer m.
When n m 1 ,
m 1
L.H.S. sin(2k 1) x
k 1
m
sin(2k 1) x sin[2( m 1) 1] x
k 1
1 cos 2mx
sin(2m 1) x 1M by induction assumption
2sin x
1 cos 2mx 2sin(2m 1) x sin x
2sin x
1 cos 2mx [cos 2mx cos(2m 2) x]
1M
2sin x
1 cos 2(m 1) x
2sin x
R.H.S.
∴ The statement is true for n m 1 .
integers n. 1
dy
a 3bx 2
dx
∵ (2, 16) is a stationary point.
dy
∴ 0 1M
dx x 2
a 12b 0 (1)
dy
(ii) 12 3x 2
dx
d2y
6 x 1M
dx 2
d2y
6(2)
dx 2 x 2
12 0
∴ (2, 16) is a maximum point of C1 . 1A
d2y
(iii) Solving 0 , we have x 0 .
dx 2
By substituting x 0 into C1 , we have
y 12(0) (0)3 0
x0 x0 x0
2
d y
+ 0 – 1M
dx 2
∴ (0, 0) is the point of inflexion of C1 . 1A
(7)
(b) (i) PQ (12r r ) ln(12r r )
3 3
12r r 3 ln(12r r 3 ) 1A
1 1 sin x
2
cos x cos x cos x
1 sin x
cos 2 x
1 sin x
1M
1 sin 2 x
1 sin x
(1 sin x)(1 sin x)
1
1
1 sin x
1
(ii) 0
4
1 sin x
dx 4 (sec 2 x sec x tan x) dx
0
4 sec 2 x dx 4 sec x tan x dx 1M
0 0
[tan x]04 [sec x]04 1M
1 2 1
2 1A
(5)
(b) (i) Let u x , then du dx .
0
f ( x) cos( x) dx
f ( x) cos( x) dx
0
f (u ) cos(u ) du
0
1M
f ( x) cos x dx 1
0
1 1
(ii) Note that .
1 sin( x) 1 sin x
1
Let f ( x) .
1 sin x
1 cos x
4 dx
04 3
1 sin x
4
cos x
4
1
dx 4 4 dx
0 3 0 3
1 sin x 1 sin x
4 4
1 1
4 du 4 d (1 sin x)
0 1 sin u 0 1 sin x
2 [ln(1 sin x)]04 (by (a)(i)) 1M
1
2 ln 1 1A
2
(5)
(c) The required volume
2
1 cos x
4 dx 1M
4 1 sin x
1
cos x
4 dx 4 dx
1 sin x 1 sin x
4 4
([tan x] 4 [sec x] 4 [ln(1 sin x)] 4 ) 1M
4 4 4
1 1
(1 1) ( 2 2) ln 1 ln 1
2 2
2 1
2 ln 1A
2 1
(3)
11. (a) (i) ( P 2I )( P 3I ) 4I
a 2 2 a 3 2 4 0
1 b 2 1 b 3 0 4
(a 2)(a 3) 2 2(a 2) 2(b 3) 4 0
a 3b 2 2 (b 2)(b 3) 0 4
a 2 5a 8 2(a b 5) 4 0
1M
a b5 b 2 5b 8 0 4
So, we have
a 2 5a 8 4
2(a b 5) 0
1M
a b5 0
b 2 5b 8 4
∴ a 4, b 1 1A for both correct
(iii) A Q PT xI
0 1 4 1 x 0
2 3 2 1 0 x
4 x 0
4 4 x
When x 4 , we have
0 0
A 1M
4 0
From (b)(ii), we have
0 0
An for n 2 1M
0 0
100
∴ (k 1) A
k 1
k
(1 1) A 2 A when x 4 . 1A
1 2 2
i j k 1A
3 3 3
(4)
1
(b) (i) Area of △OAB OA OB
2
15
1M
2
Volume of tetrahedron OABC
1
(area of △OAB)( OC )
3
1 2 2
∴ OC 5 i j k
3 3 3
5 10 10 1A
i j k
3 3 3
(ii) CA OA OC
1 19 4
i j k 1M
3 3 3
CB OB OC for either one
11 16 1
i j k
3 3 3
CA CB
i j k
1 19 4
3 3 3
11 16 1
3 3 3
5i 5 j 25k 1A
(5)
(c) The acute angle between △OAB and △ABC is equal to
the acute angle between OA OB and CA CB . 1M accept using other vectors
Let be the acute angle between △OAB and △ABC. perpendicular to △OAB and
△ABC
(OA OB ) (CA CB )
cos 1M
OA OB CA CB
(5i 10 j 10k ) (5i 5 j 25k )
15 (5) 2 52 (25) 2
25 50 250
15 675
15
675
1A
54.7 (cor. to the nearest 0.1)
(3)