0% found this document useful (0 votes)
59 views13 pages

「M2 Mock 2021 Marking

The document is a marking scheme for a mock paper in mathematics, detailing solutions and marks for various problems. It includes calculations for derivatives, integrals, and equations of lines and curves, along with specific remarks on marking criteria. Each solution is broken down step-by-step, indicating how marks are awarded for correct answers and methods used.

Uploaded by

wingswin123
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
59 views13 pages

「M2 Mock 2021 Marking

The document is a marking scheme for a mock paper in mathematics, detailing solutions and marks for various problems. It includes calculations for derivatives, integrals, and equations of lines and curves, along with specific remarks on marking criteria. Each solution is broken down step-by-step, indicating how marks are awarded for correct answers and methods used.

Uploaded by

wingswin123
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


1. f (2)
f (2  h)  f (2)
 lim 1M
h 0 h
(2  h) 2  1  22  1
 lim
h 0 h
h 2  4h  3  3
 lim 1M
h 0
h( h 2  4h  3  3)
h(h  4)
 lim
h 0
h( h 2  4h  3  3)
h4
 lim 1M withhold 1M if the step is skipped
h 0
h 2  4h  3  3
2
 1A
3

(4)
3
 2
2. (a) 1  
 x
2 3
2 2 2
 1  3   3     1M
x x x
6 12 8
 1  2  3 1A
x x x

(b) Note that ( x  k )5  x5  C15 kx4  C25 k 2 x3   k5 . 1M


C k  6C k  12  12
5
2
2 5
1
1M
10k  30k  0
2

k (k  3)  0
k  0 (rejected) or k  3 1A

(5)
3. (a) OP
3 1
 a b
1 3 1 3
3 1
 a b 1A
4 4

3 1  3 1  2
(b) (i)  a  b    a  b   OP 1M
4 4  4 4 
2
9 2  3  1  1 2  17 
a  2    a  b  b   
16  4  4  16  8 
9  3  1  1 17
( 2) 2  2    a  b  (2) 2 
16   
4 4 16 8
a b  2 1A

2021-DSE-MATH-EP(M2)-MS 1 1 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


a b
(ii) cos AOB  1M
a b
2

( 2)(2)
1

2

AOB  1A
4

(5)
4. (a) f ( x)
( x  5)(2)  (2 x  4)(1)
 1M
( x  5) 2
6
 1A
( x  5) 2

2x  4
(b) y
x5
When y  0 , we have
2x  4
0
x 5
x2
∴ G cuts the x-axis at A(2, 0). 1A
6
f (2)  
(2  5) 2
2

3
Slope of the normal to G at A
 2
 1    
 3
3
 1M
2
The equation of the normal to G at A is
3
y  0  ( x  2) 1M
2
3x  2 y  6  0 1A

(6)

2021-DSE-MATH-EP(M2)-MS 2 2 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


5. (a) (i) Note that
1 1 
2 2 1
3  2
 2(2)  (1)(3)   (2)( )    (1)(2)(2)   (2)(3) 1
 2  7  5
2

 (2  5)(  1)
Since (E) has a unique solution, we have
1 1 
2 2 1 0 1M
3  2
i.e. (2  5)(  1)  0
5
So, we have   and   1 . 1A
2
5 5
Thus, we have   1 , 1    or   .
2 2

(ii) Since (E) has a unique solution, we have


1 1 1
2 2 5
3  t
z 1M for Cramer’s Rule
(2  5)(  1)
2t  5(3)  2  5  (1)(2)(t )  2(3)

(2  5)(  1)
4t  3  21

(2  5)(  1) 1A

(b) When   1 , the augmented matrix of (E) is


 1 1 1 1   1 1 1 1 
   
 2 2 1 5  ~  0 4 1 3 
 3 1 2 t   0 4 1 t  3 
   
 1 1 1 1 
 
1 3 
~ 0 1 
 4 4  1M
0 0 0 t  6 

Since (E) has infinitely many solutions,
we have t  6 .
Thus, the solution set of (E) is
 3u  7 u  3  
 , , u  : u  R . 1A
 4 4  
(7)

2021-DSE-MATH-EP(M2)-MS 3 3 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


6. (a)  sin(ln x) dx
 x sin(ln x)   x d [sin(ln x)]
1
 x sin(ln x)   x cos(ln x)  dx 1M
x
 x sin(ln x)   cos(ln x) dx
 x sin(ln x)  x cos(ln x)   x d [cos(ln x )]
 x sin(ln x)  x cos(ln x)   sin(ln x) dx 1M

So, we have

 sin(ln x) dx  x sin(ln x)  x cos(ln x)   sin(ln x) dx


2 sin(ln x) dx  x sin(ln x)  x cos(ln x)  C 1 1M
1
 sin(ln x) dx  2 x[sin(ln x)  cos(ln x)]  C 1A

e 1
(b) 0
sin[ln (x  1)] dx

  sin(ln u ) du (by letting u  x  1 )


e

1
1M

e
1 
  u[sin(ln u )  cos(ln u )] (by (a)) 1M
2 1
1 1
 e (sin   cos  )  (sin 0  cos 0)
2 2

e 1
 1A
2

Alternative Solution
Let u  ln( x  1) , we have
eu  x  1 and dx  eu du .
e 1
0
sin[ln (x  1)] dx

  eu sin u du 1M
0

  sin u d (eu )
0

 [eu sin u ]0   eu cos u du
0

 0   cos u d (eu )
0

 [eu cos u ]0   eu sin u du
0

2021-DSE-MATH-EP(M2)-MS 4 4 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


So, we have
 
 e sin u du  [eu cos u ]0   eu sin u du
u
0 0

2 e u
sin u du  [eu cos u ]0
0
e 1 1
 0
sin[ln (x  1)] dx   (e cos   e0 cos 0)
2
1M

e 1
 1A
2

(7)
7. (a) f ( x)   (2  2 x) dx
 2 x  x2  C 1M
Since  passes through the point (–2, 7), we have
2(2)  (2) 2  C  7 1M
C  15
∴ The equation of  is y   x 2  2 x  15 . 1A

(b) (i) By substituting the equation of L into the equation


of , we have
x  9   x 2  2 x  15 1M
x2  x  6  0
( x  2)( x  3)  0
x  2 or x  3
By substituting x  2 into the equation of L, we
have
y  2  9  7
By substituting x  3 into the equation of L, we
have
y  3  9  12
∴ The coordinates of the required points are
(–2, 7) and (3, 12). 1A

2021-DSE-MATH-EP(M2)-MS 5 5 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


(ii) By substituting y  0 into the equation of , we
have
 x 2  2 x  15  0
x 2  2 x  15  0
( x  3)( x  5)  0
x  3 or x  5
∴ The x-intercepts of  are –3 and 5.
The required area
2
  ( x 2  2 x  15) dx   ( x  9) dx
3
1M
3 2

  ( x 2  2 x  15) dx
5

3
2 3
 x3   x2  1M
    x 2  15 x     9 x 
 3  3  2  2
5
 x3 
    x 2  15 x 
 3 3
11 95 40
  
3 2 3
129
 1A
2

(8)
8. (a) When n  1 ,
L.H.S.  sin x
1  cos 2 x 2sin 2 x
R.H.S.    sin x 1
2sin x 2sin x
∴ L.H.S. = R.H.S.
∴ The statement is true for n  1 .
m
1  cos 2mx
Assume that  sin(2k  1) x 
k 1 2sin x
for some 1M

positive integer m.
When n  m  1 ,
m 1
L.H.S.   sin(2k  1) x
k 1
m
  sin(2k  1) x  sin[2( m  1)  1] x
k 1

1  cos 2mx
  sin(2m  1) x 1M by induction assumption
2sin x
1  cos 2mx  2sin(2m  1) x sin x

2sin x
1  cos 2mx  [cos 2mx  cos(2m  2) x]
 1M
2sin x
1  cos 2(m  1) x

2sin x
 R.H.S.
∴ The statement is true for n  m  1 .

2021-DSE-MATH-EP(M2)-MS 6 6 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


By mathematical induction, we have
n
1  cos 2nx
 sin(2k  1) x 
k 1 2sin x
for all positive

integers n. 1

101 103 105 199


sin  sin  sin   sin
(b) 12 12 12 12

cos
12
       
sin [2(51)  1]     sin [2(52)  1]    
  12     12  
   
 sin [2(100)  1]   
  12  


cos
12
100
   

k  51
sin (2k  1)   
  12  


cos
12
100
    50
   
 sin (2k  1)  12     sin (2k  1)  12  
k 1 k 1
 1M

cos
12
       
1  cos  2(100)    1  cos  2(50)   
  12     12  
 
2sin 2sin
 12 12 for using (a)
 1M
cos
12
  1   1 
1    2    1  2 
     
 
2sin cos
12 12
1

 
sin 2  
 12 
2 1A
(8)
9. (a) (i) y  ax  bx 3

dy
 a  3bx 2
dx
∵ (2, 16) is a stationary point.
dy
∴ 0 1M
dx x  2
a  12b  0 (1)

2021-DSE-MATH-EP(M2)-MS 7 7 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


By substituting (2, 16) into C1 , we have,
2a  8b  16 1M
a  4b  8 (2)
By solving (1) and (2), we have
a  12 , b  1 1A

dy
(ii)  12  3x 2
dx
d2y
 6 x 1M
dx 2
d2y
 6(2)
dx 2 x  2
 12  0
∴ (2, 16) is a maximum point of C1 . 1A

d2y
(iii) Solving  0 , we have x  0 .
dx 2
By substituting x  0 into C1 , we have
y  12(0)  (0)3  0
x0 x0 x0
2
d y
+ 0 – 1M
dx 2
∴ (0, 0) is the point of inflexion of C1 . 1A
(7)
(b) (i) PQ  (12r  r )  ln(12r  r )
3 3

 12r  r 3  ln(12r  r 3 ) 1A

(ii) Let A square units be the area of △OPQ.


1
A r[12r  r 3  ln(12r  r 3 )] 1M
2
1
 [12r 2  r 4  r ln(12r  r 3 )]
2
dA 1  r (12  3r 2 )  dr
  24r  4r 3  ln(12r  r 3 )   1M
dt 2  12r  r 3  dt
24(2)  4(2)3  ln[12(2)  23 ]
dA 1 
  2[12  3(2) 2 ] 4 1M
dt r  2 2   
 12(2)  2 3

 32  2 ln16
∴ The required rate of change is 32  2ln16 1A
square units per minute.
(5)

2021-DSE-MATH-EP(M2)-MS 8 8 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


10. (a) (i) sec x  sec x tan x
2

1 1 sin x
 2
 
cos x cos x cos x
1  sin x

cos 2 x
1  sin x
 1M
1  sin 2 x
1  sin x

(1  sin x)(1  sin x)
1
 1
1  sin x

 
1
(ii) 0
4
1  sin x
dx   4 (sec 2 x  sec x tan x) dx
0

 
  4 sec 2 x dx   4 sec x tan x dx 1M
0 0
 
 [tan x]04  [sec x]04 1M
 1 2 1
 2 1A

(5)
(b) (i) Let u    x , then du  dx .

0
f (    x) cos(  x) dx

  f (  x) cos(  x) dx
0

   f (u ) cos(u ) du
0
1M


  f ( x) cos x dx 1
0

1 1
(ii) Note that  .
1  sin(  x) 1  sin x
1
Let f ( x)  .
1  sin x
 
1  cos   x 

 4  dx
04  3 
1  sin   x
 4 
 
  cos   x 
4
1
dx   4  4  dx
0  3  0  3 
1  sin   x 1  sin   x
 4   4 

2021-DSE-MATH-EP(M2)-MS 9 9 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


 
  cos   x 
4
1
dx   4  4  dx
0   0   
1  sin   x  1  sin     x 
4   4 

1 cos x
   du   4
0
dx 1M for using (b) (i)
4 1  sin u
0 1  sin x

 
1 1
4 du   4 d (1  sin x)
0 1  sin u 0 1  sin x


 2  [ln(1  sin x)]04 (by (a)(i)) 1M
 1 
 2  ln 1   1A
 2

(5)
(c) The required volume
2

 1  cos x 
   4   dx 1M
4  1  sin x 

  1 
cos x 
    4 dx   4 dx 
 1  sin x  1  sin x
 4 4 
  
  ([tan x] 4  [sec x] 4  [ln(1  sin x)] 4 ) 1M
  
4 4 4

   1   1   
  (1  1)  ( 2  2)  ln 1    ln 1   
   2  2   
  2  1 
   2  ln    1A
  2  1  

(3)
11. (a) (i) ( P  2I )( P  3I )  4I
a 2 2  a  3 2   4 0
   
 1 b  2  1 b  3  0 4 
 (a  2)(a  3)  2 2(a  2)  2(b  3)   4 0 
  
 a 3b  2 2  (b  2)(b  3)   0 4 
 a 2  5a  8 2(a  b  5)   4 0 
   1M
 a b5 b 2  5b  8   0 4 
So, we have
 a 2  5a  8  4

2(a  b  5)  0
 1M
 a b5  0
 b 2  5b  8  4

∴ a  4, b  1 1A for both correct

2021-DSE-MATH-EP(M2)-MS 10 10 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


(ii) ( P  2 I )( P  3I )  4 I
P 2  5P  6 I  4 I
5P  P 2  2 I
1  1 
P  (5I  P)    (5I  P)  P  I 1M
2  2 
1
∴ P 1 exists and P 1  (5I  P ) . 1M
2
1  5  4 0  2 
i.e. P 1   
2  0 1 5 1 
 1 
 1
 2  1A
 1 2 

 2 
Alternative Solution
4 2
det P  2 1M
1 1
1
P 1  adj P 1M
det P
1  1 2 
  
2  1 4 
 1 
 1
 2  1A
 1 2 

 2 
(6)

(b) (i) PQP 1


 1 
1
 4 2   0 1  2
   
1 1 2 3   1 2 

 2 
1 0
  1A
0 2
n
1 0
( PQP 1 ) n   
0 2
1 0 
PQ n P 1   n 
1M
0 2 
1 0 
Q n  P 1  n 
P
0 2 
 1 
 2 1  1 0  4 2 
  n  
  1 2  0 2  1 1 
 
 2 
 22 n
1  2n 
 n 1  1A
 2  2 1  2n 1 

2021-DSE-MATH-EP(M2)-MS 11 11 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


0 0  0 0 
(ii) R2    
r 0  r 0 
0 0
  1A
0 0

(iii) A  Q  PT  xI
 0 1  4 1  x 0 
   
 2 3   2 1  0 x 
4 x 0 
 
 4 4  x
When x  4 , we have
0 0
A  1M
 4 0
From (b)(ii), we have
0 0
An    for n  2 1M
0 0
100
∴  (k  1) A
k 1
k
 (1  1) A  2 A when x  4 . 1A

i.e. The claim is agreed.


(7)
12. (a) (i) OA  OB
i j k
 2 3 2 1M
2 2 3
 5i  10 j  10k 1A

(ii) The required unit vector


OA  OB

OA  OB
1
 (5i  10 j  10k ) 1M
(5)  (10) 2  (10) 2
2

1 2 2
  i  j k 1A
3 3 3
(4)
1
(b) (i) Area of △OAB  OA  OB
2
15
 1M
2
Volume of tetrahedron OABC

1
 (area of △OAB)( OC )
3

2021-DSE-MATH-EP(M2)-MS 12 12 © Pearson Education Asia Limited 2020


2021 Mock Paper (Extended Part) - Module 2 (Marking Scheme)

Solutions Marks Remarks


So, we have
1  15  25
  ( OC ) 
3 2  2
OC  5 1M

 1 2 2 
∴ OC  5   i  j  k 
 3 3 3 
5 10 10 1A
  i  j k
3 3 3

(ii) CA  OA  OC
1 19 4
  i  j k 1M
3 3 3
CB  OB  OC for either one
11 16 1
 i  j k
3 3 3
CA  CB

i j k
1 19 4
 
3 3 3
11 16 1
3 3 3
 5i  5 j  25k 1A

(5)
(c) The acute angle between △OAB and △ABC is equal to
the acute angle between OA  OB and CA  CB . 1M accept using other vectors
Let  be the acute angle between △OAB and △ABC. perpendicular to △OAB and
△ABC
(OA  OB )  (CA  CB )
cos   1M
OA  OB CA  CB
(5i  10 j  10k )  (5i  5 j  25k )

15 (5) 2  52  (25) 2
25  50  250

15 675
15

675
1A
  54.7 (cor. to the nearest 0.1)
(3)

2021-DSE-MATH-EP(M2)-MS 13 13 © Pearson Education Asia Limited 2020

You might also like